ebook img

Optimal Impulsive Control: The Extension Approach PDF

196 Pages·2019·2.512 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimal Impulsive Control: The Extension Approach

Lecture Notes in Control and Information Sciences 477 Aram Arutyunov Dmitry Karamzin Fernando Lobo Pereira Optimal Impulsive Control The Extension Approach Lecture Notes in Control and Information Sciences Volume 477 Series editors Frank Allgöwer, Stuttgart, Germany Manfred Morari, Zürich, Switzerland Series Advisory Board P. Fleming, University of Sheffield, UK P. Kokotovic, University of California, Santa Barbara, CA, USA A.B. Kurzhanski, Moscow State University, Russia H. Kwakernaak, University of Twente, Enschede, The Netherlands A. Rantzer, Lund Institute of Technology, Sweden J.N. Tsitsiklis, MIT, Cambridge, MA, USA Thisseriesaimstoreportnewdevelopmentsinthefieldsofcontrolandinformation sciences—quickly, informally and at a high level. The type of material considered for publication includes: 1. Preliminary drafts of monographs and advanced textbooks 2. Lectures on a new field, or presenting a new angle on a classical field 3. Research reports 4. Reports of meetings, provided they are (a) of exceptional interest and (b) devoted to a specific topic. The timeliness of subject material is very important. More information about this series at http://www.springer.com/series/642 Aram Arutyunov Dmitry Karamzin (cid:129) Fernando Lobo Pereira Optimal Impulsive Control The Extension Approach 123 AramArutyunov Dmitry Karamzin Moscow State University Federal ResearchCenter “Computer Moscow,Russia ScienceandControl”of the Russian Academyof Sciences and Moscow,Russia Institute of Control Sciences of the Fernando LoboPereira Russian Academy ofSciences FEUP/DEEC Moscow,Russia Porto University Porto, Portugal and RUDN University Moscow,Russia ISSN 0170-8643 ISSN 1610-7411 (electronic) Lecture Notesin Control andInformation Sciences ISBN978-3-030-02259-4 ISBN978-3-030-02260-0 (eBook) https://doi.org/10.1007/978-3-030-02260-0 LibraryofCongressControlNumber:2018957638 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The idea for writing this book emerged from the need to put together a number of researchresultsonoptimalimpulsivecontrolproblemsobtainedbytheauthorsover the past years. The class of impulsive dynamic optimization problems stems from thefactthatmanyconventionaloptimalcontrolproblemsdonothaveasolutionin the classical setting. The absence of a classical solution naturally invokes the so-called extension, or relaxation, of a problem and leads to the concept of gen- eralized solution including the notion of generalized control and trajectory. Herein, we consider several extensions of optimal control problems within the framework of optimal impulsive control theory. In such a framework, the feasible arcs are permitted to have jumps, and therefore, conventional continuous solutions may fail to exist. Various types of results derived by the authors, essentially cen- tered on the necessary conditions of optimality in the form of Pontryagin’s maxi- mumprinciple,andexistence theorems,whichshape asubstantial bodyofoptimal impulsivecontroltheory,arebroughttogether.Atthesametime,optimalimpulsive control theory is presented in a certain unified framework, while the paradigms of the different problems are introduced in increasing order of complexity. More precisely, the rationale underlying the book consists in addressing extensions of increasing complexity, starting from the simplest case provided by linear control systems and ending with the most general case of totally nonlinear differential control system with state constraints. This book reflects rather long and laborious cooperative research work under- taken by the authors over the past years, most of which was developed through strong networking between the authors’ institutions, the emphasis being on the Research Unit SYSTEC of Engineering Faculty of the University of Porto. Such work certainly would not have been possible, if it were not for the multilateral support of a whole team of researchers and staff. In this regard, we would like to express our gratitude to a number of people who, through their constant research, administrativeorlogisticsupport,helpedusinourefforttowritethisbook.Firstof v vi Preface all, we are sincerely grateful to our teachers, co-authors, and colleagues. We especiallythank ProfessorRichard Vinterfrom ImperialCollegeLondon.Weowe muchtotheconstantassistanceofthestaffofDEEC/FEUP,notably,PauloManuel Lopes,IsidroRibeiroPereira,PedroLopesRibeiro,andJoséAntónioNogueira.We gratefully acknowledge the proofreading of Alison Goldstraw Fernandes which contributed to the valuable readability of the book. We also thank Oliver Jackson, Manjula Saravanan and Komala Jaishankar from Springer for their excellent sup- port throughout the publishing process. Finally,weacknowledgethevaluablesupportfromvarioussciencefoundations, both in Russia and Portugal. This work was supported by the Russian Foundation for Basic Research during the projects 16-31-60005 and 18-29-03061, by the RussianScienceFoundationduringtheproject17-11-01168,andbytheFoundation for Science and Technology (Portugal) during the projects FCT R&D Unit SYSTEC—POCI-01-0145-FEDER-006933 funded by ERDF j COMPETE2020 j FCT/MEC j PT2020 extension to 2018, NORTE-01-0145-FEDER-000033 funded by ERDF j NORTE 2020, and POCI-01-0145-FEDER-032485 funded by ERDF j COMPETE2020. Porto, Portugal Aram Arutyunov July 15, 2018 Dmitry Karamzin Fernando Lobo Pereira Contents 1 Linear Impulsive Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Impulsive Control Problems Under Borel Measurability . . . . . . . . . 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Impulsive Control Problems Under the Frobenius Condition . . . . . . 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5 Second-Order Optimality Conditions for a Simple Problem. . . . . . 56 3.6 Second-Order Necessary Conditions Under the Frobenius Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 Impulsive Control Problems Without the Frobenius Condition . . . . 75 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Problem Statement and Solution Concept. . . . . . . . . . . . . . . . . . . 77 4.3 Well-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 vii viii Contents 4.4 Existence of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.5 Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Impulsive Control Problems with State Constraints . . . . . . . . . . . . . 99 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3 Maximum Principle in Gamkrelidze’s Form. . . . . . . . . . . . . . . . . 104 5.4 Nondegeneracy Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 Impulsive Control Problems with Mixed Constraints . . . . . . . . . . . . 121 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Problem Formulation and Basic Definitions . . . . . . . . . . . . . . . . . 126 6.4 Basic Constructions and Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 130 6.5 Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 General Nonlinear Impulsive Control Problems . . . . . . . . . . . . . . . . 153 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.3 Extension Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.4 Generalized Existence Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.5 Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.6 Examples of Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 173 Notation Rk Euclidean space of dimension k R Real line: R¼R1 CðT;RkÞ Space of continuous vector-valued functions xðtÞ¼ðx1ðtÞ;x2ðtÞ;...xkðtÞÞ defined on T with values in Rk, w.r.t. the norm kxk ¼ max jxðtÞj C t2T C(cid:2)ðT;RkÞ Dual space to CðT;RkÞ, or the space of Borel vector-valued measures l¼ðl1;l2;...;lkÞ wRith values in Rk, w.r.t. theRnorm of total variation klk¼sup hf;dli, where notation hf;dli kfkC¼1PTR T standsforthesumofintegrals fidli,beingfi thecomponents i T of f, i¼1;2;...;k BVðT;RkÞ Space of vector-valued functions xðtÞ of bounded variation defined on T with values in Rk, w.r.t. the norm kxk ¼Varxj BV T L ðT;RkÞ Spaceofmeasurablevector-valuedfunctionsxðtÞdefinedonT with p values in Rk s.t., jxðtÞjp is integrable, 1(cid:3)p\1, w.r.t. the norm R kxk ¼ð jxðtÞjpdtÞ1=p, while for p¼1, xðtÞ is essentially Lp T bounded, w.r.t. the norm kxk ¼esssup jxðtÞj L1 t2T W1;pðT;RkÞ Spaceofabsolutelycontinuousvector-valuedfunctionsxðtÞdefined on T with values in Rk, and such that dx2L ðT;RkÞ dt p l Vector-valued Borel measure l Continuous component of measure l c l Discrete, or atomic, component of measure l d l Absolute continuous component of measure l ac l Singular continuous component of measure l sc rangel Set of all possible values of measure l suppl Support of measure l jlj Total variation measure of measure l klk Norm given by total variation of measure l on T, that is klk¼jljðTÞ lðsÞ Value of measure l on the set fsg, that is lðfsgÞ ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.