Optimal Design of Electrostatically Actuated Microsystems by Michael Raulli Bachelor of Science, Villanova University, 2000 Master of Science, University of Colorado, 2002 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2005 This thesis entitled: Optimal Design of Electrostatically Actuated Microsystems written by Michael Raulli has been approved for the Department of Aerospace Engineering Sciences Kurt Maute Martin Dunn Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Raulli, Michael (Ph.D., Aerospace Engineering Sciences) Optimal Design of Electrostatically Actuated Microsystems Thesis directed by Dr. Kurt Maute This thesis addresses the application of numerical optimization techniques to devices classified as Micro-Electro-Mechanical-Systems (MEMS). The finite element (FEM) based analysis and sensitivity analysis capabilities for the fully-coupled electro- mechanicalproblem,whichresultsfromelectrostaticallyactuatedMEMS,aredeveloped and implemented. Specifically, shape and topology optimization, using gradient based algorithms, are applied to the design of MEMS. Topology optimization generates opti- mal topology without the requirement of close-to-optimal initial designs. It is proposed toextendthecurrentstateoftheartintopologyoptimizationtoafully-coupledelectro- mechanical problem, in which the electrostatic and structural domains occupy distinct regionsofspace.Thedifficultyinallowingtheconductinginterfacebetweenthedomains to freely evolve during the topology optimization process is addressed. Additionally, the prediction of the instability phenomena known as ‘pull-in’, by an eigenvalue analysis, is incorporatedintotheproposeddesignmethodology.Thedesignoptimizationofrealistic MEMSdevicesisthedrivingforcebehindtheapplicationofalldevelopedcomputational tools. Acknowledgements I would like to acknowledge, first and foremost, my advisor Kurt Maute for the extensive amount of time, effort and expertise he contributed to this thesis. Also, my committee members: Martin Dunn, Carlos Felippa, Jim Allen and Victor Bright, for their insight. I would also like to acknowledge the support of the Center for Aerospace Structures.SpecialthanksaregiventoRajeshPoolaSubranmanyaswamyforgenerating the computational meshes used in the example problem of section 5.2.2, and studying the behavior of the device. Special thanks are given to Wissam Houchaime for his work on the formulation of the stability eigenvalue problem. Most importantly though, the support of my wife, Corrie, made this thesis possible. Contents Chapter 1 Introduction 1 1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 General Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Original Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Manuscript Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Computational Framework for Coupled Optimization Problem 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Three Model Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Electro-mechanical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Electro-mechanical State Equations . . . . . . . . . . . . . . . . 15 2.3.2 Discretization of the Electrostatic Field . . . . . . . . . . . . . . 18 2.3.3 Solution of coupled Electro-mechanical System . . . . . . . . . . 20 2.4 Electro-mechanical Sensitivity Analysis . . . . . . . . . . . . . . . . . . 24 2.4.1 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Adjoint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Evaluation of Off-diaganol Jacobian Terms . . . . . . . . . . . . 36 2.4.4 Evaluation of Residual Partial Derivatives . . . . . . . . . . . . . 41 2.4.5 Evaluation of Criteria Partial Derivatives . . . . . . . . . . . . . 46 2.5 Stability Analysis of Electro-mechanical systems . . . . . . . . . . . . . 47 vi 3 Topology Optimization, Theory and Applications 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Topology Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.1 Classical Problem Definition . . . . . . . . . . . . . . . . . . . . 54 3.2.2 Ill-posedness and Regularization . . . . . . . . . . . . . . . . . . 56 3.3 Active Research in Topology Optimization . . . . . . . . . . . . . . . . . 60 3.3.1 Multiphysics in Topology Optimization . . . . . . . . . . . . . . 61 3.3.2 Design Dependent Loads in Topology Optimization . . . . . . . . 63 3.4 Methodology for Electro-mechanical Topology Optimization . . . . . . . 65 3.4.1 Changing Electrostatic Domain . . . . . . . . . . . . . . . . . . . 69 3.4.2 Changing Voltage Boundary Conditions . . . . . . . . . . . . . . 73 3.4.3 Changing Electrostatic Force . . . . . . . . . . . . . . . . . . . . 76 4 Verification of Methodology and Implementation 80 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 Verification of Electrostatic Element Implementation . . . . . . . . . . . 81 4.3 Verification of Coupled Analysis Algorithm . . . . . . . . . . . . . . . . 85 4.3.1 Analytical Verification . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3.2 Numerical Verification . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.3 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Verification of Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 94 4.5 Verification of Eigenvalue Analysis . . . . . . . . . . . . . . . . . . . . . 97 4.6 Verification of Soft-Voltage Boundary Conditions . . . . . . . . . . . . . 102 4.7 Verification of Topology Optimization Parameterization . . . . . . . . . 103 4.7.1 Two-dimensional Verification . . . . . . . . . . . . . . . . . . . . 104 4.7.2 Three-dimensional Verification . . . . . . . . . . . . . . . . . . . 108 vii 5 Numerical Results and Applications 111 5.1 Electro-mechanical Shape Optimization . . . . . . . . . . . . . . . . . . 111 5.1.1 Experimental Actuator Stress-Displacement Optimization . . . . 112 5.1.2 Experimental Actuator Mass-Stiffness Optimization . . . . . . . 115 5.1.3 Comb Drive Actuator Shape Optimization . . . . . . . . . . . . . 115 5.2 Electro-mechanical Reliability Based Design Optimization . . . . . . . . 120 5.2.1 Experimental Actuator RBDO Problem . . . . . . . . . . . . . . 124 5.2.2 Torsional Mirror RBDO Problem . . . . . . . . . . . . . . . . . . 128 5.3 Electrostatic-Fluid-Structure Shape Optimization . . . . . . . . . . . . . 134 5.3.1 Electrostatic-Fluid-Structure Methodology. . . . . . . . . . . . . 135 5.3.2 Electrostatically Actuated Channel Optimization . . . . . . . . . 141 5.3.3 Electrostatically Actuated Aeroelastic Wing Optimization . . . . 145 5.4 Electro-mechanical Topology Optimization. . . . . . . . . . . . . . . . . 149 5.4.1 Two-dimensional Membrane Mass-Stiffness Topology Optimization151 5.4.2 Three-dimensional Plate Mass-Stiffness Topology Optimization . 160 5.4.3 Two-dimensional Membrane Force Inverter Topology Optimization168 5.4.4 Three-dimensional Plate Force Inverter Topology Optimization . 173 6 Summary 180 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Bibliography 184 Appendix A Notation Summary 191 Tables Table 2.1 Optimization criteria used in thesis . . . . . . . . . . . . . . . . . . . . . 12 2.2 Electro-mechanical solution algorithm . . . . . . . . . . . . . . . . . . . 23 2.3 Direct method algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Adjoint method algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Power method algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1 Parameters for test problem of figure 4.1 . . . . . . . . . . . . . . . . . . 81 4.2 Results for 2-d test problem of figure 4.1 . . . . . . . . . . . . . . . . . . 82 4.3 Results for 3-d test problem of figure 4.1 . . . . . . . . . . . . . . . . . . 84 4.4 Mesh details for cantilever beam numerical comparison . . . . . . . . . . 88 4.5 Electrostatic and structural properties for cantilever beam . . . . . . . . 88 4.6 Electrostatic and structural properties for two-dimensional plate example 92 4.7 Mesh details for experimental comparison . . . . . . . . . . . . . . . . . 93 4.8 Parameters for soft voltage test problem . . . . . . . . . . . . . . . . . . 102 4.9 Agreement between strict and soft voltage for different weighting factors 103 4.10 Electrostatic and structural properties for verification of 2-d topology approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.11 Numerical results from 2-d exact and topology models . . . . . . . . . . 107 4.12 Electrostatic and structural properties for verification of 3-d topology approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 ix 4.13 Numerical results from 3-d exact and topology models . . . . . . . . . . 110 5.1 Experimental actuator stress-displacement optimization summary . . . . 113 5.2 Experimental actuator mass-stiffness optimization summary . . . . . . . 115 5.3 Electrostatic and structural properties for comb drive example . . . . . 117 5.4 Summary of computational problem for comb drive example . . . . . . . 118 5.5 Summary of optimization problem and results for comb drive example . 120 5.6 Random variables for RBDO . . . . . . . . . . . . . . . . . . . . . . . . 128 5.7 Electrostatic and structural properties for mirror example . . . . . . . . 131 5.8 Summary of computational problem for mirror example . . . . . . . . . 131 5.9 Summary of optimization problem and results for comb drive example . 132 5.10 Random variables for RBDO . . . . . . . . . . . . . . . . . . . . . . . . 133 5.11 Summary of mirror RBDO . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.12 Algorithm for electro-fluid-elastic analysis . . . . . . . . . . . . . . . . . 138 5.13 Free stream conditions, electrostatic parameters, and structural proper- ties of channel problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.14 Discretization of fluid, electrostatic, and structural domains of channel problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.15 Results of optimization for channel problem . . . . . . . . . . . . . . . . 145 5.16 Free stream conditions, electrostatic parameters, and structural proper- ties; wing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.17 Discretization of fluid, electrostatic, and structural domains; wing example148 5.18 Optimization results for micro-wing . . . . . . . . . . . . . . . . . . . . 149 5.19 Electrostaticandstructuralpropertiesfortwo-dimensionalmembraneex- ample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.20 Summaryofcomputationalproblemfortwo-dimensionalmembrane,cases 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 x 5.21 Summary of computational problem for two-dimensional membrane ex- ample, case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.22 Summary of optimization problem and results for two-dimensional mem- brane example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.23 Electrostatic and structural properties for three-dimensional plate example162 5.24 Summaryofcomputationalproblemforthree-dimensionalplateexample, cases 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.25 Summaryofoptimizationproblemandresultsforthree-dimensionalplate example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.26 Summary of optimization problem and results for two-dimensional inver- sion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.27 Summary of optimization problem and results for three-dimensional in- version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Description: