ebook img

Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets PDF

20 Pages·2017·2.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets

energies Article Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets HomaRashidizadeh-Kermani1,HamidRezaNajafi1,AmjadAnvari-Moghaddam2,* and JosepM.Guerrero2 1 DepartmentofElectrical&ComputerEngineering,UniversityofBirjand,Birjand9856,Iran; [email protected](H.R.-K.);h.r.najafi@birjand.ac.ir(H.R.N.) 2 DepartmentofEnergyTechnology,AalborgUniversity,AalborgEast9220,Denmark;[email protected] * Correspondence:[email protected];Tel.:+45-9356-2062 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:11August2018;Accepted:10September2018;Published:12September2018 Abstract:Thispaperproposestheproblemofdecisionmakingofanelectricvehicle(EV)aggregatorina competitivemarketinthepresenceofdifferentuncertainresources. Intheproposedmodel,abi-level problem is formulated where, in the upper-level, the objective of the aggregator is to maximize its expectedprofitthroughitsinteractionsand,inthelower-level,theEVownersminimizetheirpayments. Therefore,theobjectivesoftheupperandthelower-levelarecontrary.Tosolvetheobtainednonlinear bi-level program, Karush-Kuhn-Tucker (KKT) optimality conditions and strong duality are applied to transform the initial problem into a linear single-level problem. Moreover, to deal with various uncertainties,includingmarketprices,EVscharge/dischargedemandsandthepricesofferedbyrivals, ariskmeasurementtoolisincorporatedintotheproblem. Theproposedmodelisfinallyappliedtoa testsystemanditseffectivenessisevaluated.Simulationresultsshowthattheproposedapproachhas thepotentialtooffersignificantbenefitstotheaggregatorandEVownersforbetterdecision-makingin anuncertainenvironment.Duringdifferentsituations,itisobservedthatwithincreasingrisk-aversion factor,astheaggregatortriestohedgeagainstvolatilities,itspurchasesfromday-aheadandnegative balancingmarketsdecreasessignificantly.However,theparticipationofEVaggregatorinthepositive balancingmarketincreasesaccordinglytomakemoreprofit. Keywords: aggregator; competitive trading floor; electric vehicle (EV); energy management; riskmeasurement 1. Introduction Amassivepenetrationofelectricvehicles(EVs)inthesmartgridrequiresoptimalscheduling of their participation in the electricity market [1]. In order to manage the interaction between EVsandthenetwork, anEVaggregatoractsasamiddlemanandschedulesEVcharge/discharge processes[2,3]. Inthedecision-makingframework,anEVaggregatorencountersuncertaintiesforEV management,includingmarketpricesandEVowners’behavior,aswellasthepricesofferedbythe rivalaggregators[4,5]. TheproblemsofdecisionmakingofanEVaggregatorinatradingfloorhave beenpresentedinseveralresearchworks[6–11]. Forexample,in[6]singlesupplier’sdecision-making problemissolvedbyparticleswarmoptimizationforbothblockbidandlinearbidelectricitymarket models. Anintegratedmodelofplug-inEVsandrenewabledistributedgeneratorsinatradingfloor isproposedin[7],inwhichtheEVownerscansellbacktheenergygeneratedfromtheirrenewables ortheenergystoredintheirEVs. Also,anoptimalstructureforparticipationofanEVaggregator in the day-ahead (DA) and ancillary services markets is presented in [8]. In [9], a multi-objective day-aheadmarket-clearingmechanismwithdemandresponseoffersisdevelopedinwhichenergy anddemand-sidereservesareclearedthroughaco-optimizationprocess. Aninteractiveprogramfor Energies2018,11,2413;doi:10.3390/en11092413 www.mdpi.com/journal/energies Energies2018,11,2413 2of20 thechargingprocessofEVs,aswellasinterruptibleloadpricing,issuggestedin[10],inwhichthe aggregatorwillreplytothecommandsfromthenetwork. Also,in[11],authorsproposeaprobabilistic model for a bidding strategy of an aggregator in DA and regulating trading floors. In situations whereadecisionmakerisconfrontedwithuncertaintieswhicharemodeledasstochasticprocesses, a risk controlling measurement is normally suggested to control the risk of profit/cost variability. TheproposedoptimizationmodelincludesinevitabledeviationsbetweenDA-clearedbidsandactual real-time energy delivery. Energy deviations are characterized as “uninstructed” or “instructed”, depending on whether or not the responsibility is with the aggregator. Some research works that addressedtheaggregatordecision-makingproblemusedriskmeasurementtoolstoavoidundesirable outcomesduetouncertainties. In[12], astochasticprogrammingstructureforEVaggregatorsfor participationinenergyandreservemarketsisproposedthatconsidersconditionalvalueatrisk(CVaR). Moreover,in[13],value-at-riskisappliedtoastochasticoptimizationproblemforexchangingenergy ofEVsintheelectricitytradingfloor. Amethodologytomaximizeaggregatorprofits,basedonmaking decisionsinDAandbalancingmarkets,isdevelopedin[14]. Underuncertainmarketpricesandfleet mobility,theproposedtwo-stagelinearstochasticprogramfindsoptimalplug-inEV(PEV)charging schedulesatthevehiclelevel. Moreover,astochasticlinearprogramwiththeapplicationofaCVaR termasarisk-aversiontoolisproposedfortheparticipationoftheaggregatorinelectricitymarkets. Sincetheelectricityindustryisevolvingintoadistributedandcompetitiveindustry, someof the research works focused on a competitive environment to allow the EV owners to choose the properaggregator[15–17]. In[15],theauthorsproposedanoperationaldecision-makingmodelfora distributioncompany(DisCo)inacompetitiveenvironmentassociatedwithdistributedgeneration (DG)unitsandinterruptibleloadoptions.ThecompetitionbetweenDisCosismodelledusingabi-level optimizationmethod. TheDisCo’sobjectiveistominimizethecostofmarketpurchasesandDGunit dispatchwhileconsideringtheresponsesofotherDisCos. Also,competitivebehaviorofsuppliers inanelectricitytradingfloorismodeledin[16]usingaMarkovgameapproach. Likewise,in[17], acooperativegamemodelisproposedtoobtaintheexchangesbetweenEVparkinglotsandutilitiesin aspinningreservemarkettocompensatetheuncertaintiesduetothestochasticnatureofrenewables. Atheoreticalmodelofthecompetitionbetweendemandresponse(DR)aggregatorsforsellingenergy previouslystoredinanaggregationofstoragedevicesgivensufficientdemandfromotheraggregators throughanincompleteinformationgameisproposedin[18]. Although the competitive environment is considered in some of the reviewed references, thepreferencesoftheEVownersaslowerlevelplayersintheelectricitymarketarenotaddressedfrom theviewpointofEVaggregators. However,inafewrecentstudies,thedecision-makingframework of an EV aggregator is investigated as a stochastic bi-level problem. Also, a bi-level problem is addressed in [19] where the aggregator wants to maximize its expected profit while considering EVs’preferences. TheinteractionsofthePEVownersandtheparkinglotsarealsomodeledasthey impose restrictions on the parking’s behavior. Therefore, a bi-level problem is constructed where, intheupper-level, theobjectiveoftheaggregatoristomaximizeitsprofitthroughitsinteractions and,inthelower-level,theparkinglotmaximizesitsownprofitlimitedtothepreferencesofPEVs. Althoughtheuncertaintiesofresourcesareconsideredinthesamework,nomechanismisusedto controluncertainties. In[20],amathematicalprogramwithequilibriumconstraintsispresentedto obtainoptimalprofitofanEVaggregator,aswellastominimizethepaymentspaidbytheEVowners. Tothisend,theformulationisproposedasabi-levelproblem,inwhichtheaggregator’supper-level decisionsonretailpricesandoptimalbiddinginelectricitymarketsareconsidered,andthelower-level client-sideminimizationofPEV-chargingschedulecost,includinganaffinedemandresponsetothe retailprices,isalsotakenintoaccount. Inthatstudy,althoughtheschedulingfortheEVaggregatoris formulatedasabi-levelproblem,thecompetitionbetweentheaggregatorsisnotconsidered. In[21], incontrasttotheusualcontracts,theaggregatorissupposedtobidinsuchawayastoinfluencethe market prices. Also, the impact of the aggregator’s bidding strategy on the prices is analyzed via abi-levelprogram;however,theeffectofthepricesofferedbytherivalsisnotconsidered. In[22], Energies2018,11,2413 3of20 abi-levelproblemofofferingpricesbyanEVaggregatorinacompetitivemarketisproposed. Inthis work,onlygridtovehiclemodeisconsideredforthedecision-makingprocessandtheinfluenceof EVsdischargingmodeswasnotaddressed. In the research to date, the investigation of simultaneous charging/discharging modes in the decision-making problem of an EV aggregator in a competitive market is very limited. Also,theinfluenceofofferingpricesofrivalsontherisk-aversionbehavioroftheaggregator,aswellas considerationofthevehicletogridmode,isnotaddressed. Therefore,inthispaper,forschedulingof anEVaggregator,astochasticbi-levelmodelisproposedinacompetitivetradingfloor. Intheupper level,theaggregatortriestomaximizeitsexpectedprofitand,inthelowerlevel,theEVownersaimat minimizingtheirpayments. Then,byusingKarush-Kuhn-Tucker(KKT)optimalityconditionsand dualitytheory,theequivalentsinglelevelformoftheproblemisobtained. Thesourcesofuncertainties, suchasDAandbalancingprices,aswellasEVcharge/dischargedemands,aremodeledbasedontime series. Moreover,thepricesofferedbyrivalsaremodeledwithaprobabilitydensityfunction(PDF). Inaddition,CVaRisusedintheproposeddecision-makingproblem. Therefore,themaincontributions ofthispapercouldbesummarizedasfollows: 1. To develop a stochastic decision-making model for scheduling of an EV aggregator in a competitive trading floor, as well as to determine the optimal level of the aggregator’s involvementinDAandbalancingmarkets. 2. Toinvestigatetheeffectsofarisk-aversionparameteronthedecision-makingoftheaggregator. Also, the reaction of EV owners to the prices offered by the aggregators under different risk-aversioncircumstancesisassessed. 3. To effectively solve the stochastic optimization framework with sources of uncertainties, the proposed model is reformulated to be an expectation optimization problem with CVaR constraintstoreducetheunfavorableeffectofundesiredscenarios. Therestofthispaperisstructuredasfollows. Section2describestheproblemofschedulingof anEVaggregatorinanelectricitymarket. Also,inthissection,thementionedproblemismodelled asabi-levelstochasticprogrammingstructure. Section3presentsnumericalresultsanddiscussion. Finally,theconclusionisbroughtinSection4. 2. MaterialsandMethods Inacompetitivemarket,thereactionofEVownerstothepricesofferedbytherivalaggregators shouldbeappropriatelymodelled. Inthispaper,abi-levelprogramforschedulingofanEVaggregator ispresentedinordertodeterminethesellingpricesofferedtotheEVownersinashort-termmarket. Thebi-leveloptimizationproblemisusedtomaximizetheexpectedprofitoftheaggregatorwhile minimizingthepaymentsoftheowners. Therefore,theplayersofthebi-levelproblemarecategorized intotwomaingroupsbasedonthebenefittheyreceive. ThefirstcategoryincludestheEVaggregators whotrytotakepartintheelectricitymarket. Here,itisassumedthattheaggregatorsbuyenergy at volatile prices on the electricity market and resell itat fixed tariffs to the EV owners. The main challengefortheaggregatorsisthelossestheyincurduetothemarketpricechanges. Toprovide relieffromthis,theaggregatorappliesaproperofferingstrategytomaximizeitsprofitconsideringthe uncertaintiesaswellasthebehaviorofrivalaggregators. ThesecondplayersareEVownerswhowant tominimizetheirpayments. Figure1showsthebi-levelstructureofthementionedproblem. 2.1. ProblemDescription As shown in Figure 1, the bi-level problem has two optimization levels. In the upper level, the aggregator aims at maximizing its expected profit from participating in a pool-based short-term electricitytradingfloor,includingDAandbalancingmarkets. Inthislevel,scheduledtransactionsfor the next day are determined and then, the energy deviations are calculated and eliminated through actionstakeninthebalancingmarket.Moreover,theaggregatorofferssuitablecharge/dischargeprices Energies2018,11,2413 4of20 Energies 2018, 11, x FOR PEER REVIEW 4 of 20 totheEVownerstoencouragethemmakinginteractiveenergytrading. Also,itisreasonablethatthe it is reasonable that the aggregator wants to purchase energy from the network with lower prices and aggregatorwantstopurchaseenergyfromthenetworkwithlowerpricesandtoofferchargepricestothe to offer charge prices to the EV owners with the highest possible prices to make more profit. However, EVownerswiththehighestpossiblepricestomakemoreprofit.However,sincethemarketenvironment since the market environment is competitive, it should consider different price scenarios that the rival iscompetitive,itshouldconsiderdifferentpricescenariosthattherivalaggregatorsmayoffertotheEV aggregators may offer to the EV owners since, in a competitive environment, the decision making of ownerssince,inacompetitiveenvironment,thedecisionmakingofoneaggregatorwillaffecttheothers. one aggregator will affect the others. Under study aggregator Upper Level Scenarios of DA prices Maximize the expected profit Scenarios of balancing prices 1-Determining the optimal amount of energy traded with the grid. Scenarios of 2- Determining the optimal amount Charge/Discharge load Scenarios of prices of charge/discharge energy of EVs. O of EVs offered by rivals ffered EVs demand share EVs owners Lower Level charge/discharge price Minimize charge cost of EVs Maximize discharge achievements Subject to: Technical constraints Charge prices Discharge prices Input Data Forecasted Data FiguFreig1u.rBe i1-.l eBvi-ellevsterlu sctrtuucretuoref tohf ethper opproopsoesdedd edceicsiisoinonm maakkininggf foorr tthhee eelleeccttrriicc vveehhiicclele (E(EVV) )agaggrgergeagtaotro rin acominp ae tciotimvpeeetnitviviero ennmvireonntm. ent. FiguFriegu2re s2h sohwowss tthhee ssuuggggesetsetde dmemtheotdh otod sotloves tohlev eprothbleemp. rIonb tlheem e.nergIny trtahdeinegn pehrgasye, ttrhaed ing phasaeg,gtrhegeataogr gernecgoautnotrerse ndcifofeurnentet rusncdeirftfaeirnetniets, uinnccluerdtianign tpireisc,esi nofc ltuhed iDnAg mparirckeest, poofsitthivee/DneAgatmivae rket, balancing markets and rival aggregators’ prices, as well as the required energy of EVs. These positive/negativebalancingmarketsandrivalaggregators’prices,aswellastherequiredenergyof uncertainties can be modeled by using scenario generation and reduction techniques. EVs. Theseuncertaintiescanbemodeledbyusingscenariogenerationandreductiontechniques. The proposed framework considers three main units: a data collection and storage unit, a Theproposedframeworkconsidersthreemainunits:adatacollectionandstorageunit,aprediction prediction module, and an optimization unit. The data collection and storage unit governs the module,andanoptimizationunit.Thedatacollectionandstorageunitgovernsthecollectionofinformation collection of information related to the demand of EVs and the prediction module provides accurate relatedtothedemandofEVsandthepredictionmoduleprovidesaccurateforecastsoffutureEVdemand. forecasts of future EV demand. The input to the prediction unit includes information about the Theimnpaurktetto ptrhieceps,r erdiviactlsio’ npruicneist ianncdlu rdeqesuiirnefdo rdmemataionnd aobf oEuVtst hbeasmeda rokne thpisrtiocreisc,arli vdaaltsa’ cporlilceecsteadn bdyr ethqeu ired demadnadtao cfoEllVecstbioans eadndon sthoirsatogrei cuanlidt.a Ttahceo olluetcpteudt obfy tthhee pdraetdaicctoiollnec utinoint aisn dthset oprraegdeicutendi t.mTahrkeeotu ptpriucetso, fthe predircivtiaolns’ upnriicteiss atnhde tphree ddeicmteadndm oafr EkVets pwriitche sa, prrivoablasb’iplirtyic oefs parnedditchtieond eemrroarn. dBaosfeEdV osn wthiitsh inafoprrmobaatiboinli,t yof preditchteio onpteirmroizra.tBioans eudniot nshtohuisldin sfoolrvme tahteio bni-,ltehveelo oppttiimmiizzaattiioonn purnoibtlsehmo utold msaoxlivmeizthe ethbei -elxepveecltoepd tpimroifzita tion probloefm thteo amggarxeigmatizoer wthheileex mpeinctimedizpinrogf tithoe fptahyemaegngtrse ogfa tthoer owwhnileersm. Tinhiem oiuztinpugtt ohfe tphea yompteimntiszaotfiothne uonwit ners. is the optimal bidding in the electricity market and offering of proper prices to the EVs while Theoutputoftheoptimizationunitistheoptimalbiddingintheelectricitymarketandofferingofproper satisfying system constraints. pricestotheEVswhilesatisfyingsystemconstraints. In real-world situations, it is assumed that the EV charging stations are equipped with smart Inreal-worldsituations, itisassumedthattheEVchargingstationsareequippedwithsmart energy management controllers (SEMC) and the owners are able to respond to the charge/discharge energymanagementcontrollers(SEMC)andtheownersareabletorespondtothecharge/discharge prices. To this end, the SEMC of each charging station can choose a proper aggregator by monitoring pricerse.aTl-otimtheis pernicdes, tahned ScEanM sCwiotcfhe atoc hthceh marogsitn cgomstpaetitoitnivcea anggcrheogoastoera inp srohopretr-taergmgr secghaetdourlibnyg.m Tohnisi tios ring real-tfiemaseibpler ibcyes daenvdelocapninsgw ai tfcahst tocotmhemmunoiscattcioonm mpeetditiaiv weiatgh gbriedgiraetcotrioinnasl hdoartta- tterramnsfsecrh beedtuwleineng .thTeh isis feasiabglegrbegyadtoervs ealnodp itnheg EaVf acshtarcgoimngm stuantiiocnast.i oItn shmoeudldi abew nitohtedb itdhiarte cthtieo onwalnderast awitlrl annostf ebre binevtowlveeedn the aggreeagcaht odrasya inn dthteh peroEcVescs;h raartgheinr,g thsitsa aticot niss d.oIntes hboy uthlde SbEeMnCo tseydstethma atnthd ethoewrenfoerres itw isi lnlonto dtifbfiecuinltv oorl ved eachbduarydeinnstohmeep irno pcerascst;icrae tfhoer rt,hteh oiswancetriss [2d3o]n. ebytheSEMCsystemandthereforeitisnotdifficultor burd ensomeinpracticefortheowners[11]. Energies2018,11,2413 5of20 Energies 2018, 11, x FOR PEER REVIEW 5 of 20 Data collection/ storage and prediction unit EVs charge/ Rivals’ prices Market prices discharge demand Generate scenarios Generate scenarios Generate scenario based on PDF based on relation (1) based on time series Scenario Reduction Combine scenarios Optimization unit of First Level: ermine charge/discharge percentageEvs supplied by the aggregators TSEunobe STSmrjegeuoT123accyb ---xomtoO j iCTb etndmiofachnhdef ltieeaitt a zmhetL rrnoeeireg ncein:m etzcevgeh/e io edr e,n cgnRlti e:hhesysicxaets trhr pkrapgaea iaecrdncyg/ottidmeesnni:d gssee tc npnrwhaertasioirnt rgfhogtiys ftet hoo ,op…effwr iaEmncgVeeagr.rsrsk,e:egta,tor: Offering charge/discharge prices offered by under study aggregator et d 1- To supply the required energy of EVs, o T 2-To satisfy technical constraints of EVs. 1- To Combine the first and second level 2- To linearize the problem To maximize the expected profit of the aggregator: Subject to: The two level constraints, The obtained mathematical constraints FFigiguurree2 2.. FFlloowwcchhaarrtt ooff tthhee ssoolluuttioionn mmeeththooddoloolgoyg.y . InItnh ethleo wloewrelre vleevleolf othf ethper pobrolebmle,mth, ethEeV EVow onwenrserpsr pefreerfetro tcoh cahrgareg/ed/disicshchaargrgeet htheeirirE EVVsst hthrorouugghht he mothste cmomospt ectiotmivpeeatgitgivree gaagtgorre.gInatoorth. eInr woothredrs ,wEoVrdosw, nEeVr sopwrenfeerrs toprmefienr imtoi zmeitnhiemcihzea rtghien gchpaarygminegn ts anpdamymaxeinmtsi zeanthde dmisacxhimarigzee acthheie vdeimscehnatrsg.eH earceh,itehveemsceenntasr. ioHserreela, tetdhet ostcheencahriaorsg er/edlaistecdh artgoe pthreic es offcehraerdgeb/yditshceharrigvea lpsraicrees goeffneerreadt ebdy twheit rhivaalnso arrme gaelnPeDraFt.eTdh weieths taim noartmioanl ePrDroFr. sThoef tehsteimriavtaiolnp reircreosrsa re of the rival prices are modeled with intervals as the standard deviation. In addition to modeledwithintervalsasthestandarddeviation. Inadditiontocharge/dischargepricesofferedby charge/discharge prices offered by the rivals, there exist other uncertain resources in the problem, therivals, thereexistotheruncertainresourcesintheproblem, suchasDAandpositive/negative such as DA and positive/negative imbalance prices and the EVs’ charge/discharge requests. Here, an imbalancepricesandtheEVs’charge/dischargerequests. Here,anautoregressiveintegratedmoving autoregressive integrated moving average (ARIMA) model [24] is used to generate the scenarios average (ARIMA) model [23] is used to generate the scenarios associated with DA and balancing associated with DA and balancing prices. In this study, it is supposed that EVs demand is correlated prices. Inthisstudy,itissupposedthatEVsdemandiscorrelatedtotheDApricessuchthateachEV to the DA prices such that each EV demand scenario is generated based on a DA price scenario as demandscenarioisgeneratedbasedonaDApricescenarioasfollows[23]: follows [24]: EEtD,ωctDh,ωc=h E=ˆtDcEhˆtD+cEhˆt+DchΠEˆt[D(cChtΠD,ωA[(−CCˆtDt,DωAA)−/CˆCtDˆtDA]A )/CˆtDA] (1) (1) whwehreerCeˆ tDCAˆtDisAt hise tehxep eexcpteecdteDdA DApr picreicien inp epreiroioddt ta annddt thhee rreellaattiioonnsshhiipp bbeetwtweeeenn ththe eDDAA prpicreic aenadn tdhet he EV demand in each scenario, ωωis represented by ΠΠ, which is considered to be 0.2 based on [24]. EV demand in each scenario, is represented by , which is considered to be 0.2 based on [24]. Also, the discharge load of EVs is supposed as a percentage of EVs demand. In total, each set of Energies2018,11,2413 6of20 scenariosconsistsofDAandpositive/negativebalancingpricesandEVscharge/dischargerequests asfollows: (cid:110) (cid:111) Scenarioω = CDA, Cpos,B, Cneg,B,EDch,EDdch (2) t,ω t,ω t,ω t,ω t,ω 2.2. Bi-LevelModel Theproposeddecision-makingproblemoftheEVaggregatorisformulatedastwoupperand lowerlevels. 2.2.1. Upper-LevelFormulation TheEVaggregatortakespartinDAandbalancingmarketsinordertoobtainmaximumexpected profitduringtheschedulinghorizon. Theaggregatorprofitconsistsoftherevenueachievedfrom sellingenergyforthechargeprocessandfromloadreductioninthenegativebalancingmarket,minus thepaymentsduetothepurchasesfromDAandpositivemarkets,aswellasbuyingenergyfromEVs dischargingprocess. Therefore,theupperlevelproblemisformulatedasfollows: Maximize ∑ π(ω)∑ [(Ech Cch −EdchCdch)+(−EDACDA−Epos,BCpos,B+Eneg,BCneg,B)] ω∈Ω t∈T t,ω s0,t t,ω s0,t t,ω t,ω t,ω t,ω t,ω t,ω (cid:20) (cid:21) (3) +β ζ− 1 ∑ π(ω)ι(ω) 1−α ω∈Ω whereαandι(ω)representtheconfidencelevelandauxiliaryvariableforriskcalculations,respectively. Equation(3)representstheobjectivefunctionfromtheaggregator’sviewpoint. Theleftexpression of the first line of this equation denotes the charge revenue minus the discharge payments of the aggregatorunderstudy. TherightexpressionexpressesthepaymentsinDAandpositivebalancing marketsand,also,thenegativebalancingrevenue. Thesecondlinedemonstratestherisk-aversion term. Thetradeoffbetweentheobjectivefunctionandrisk-aversiontermisprovidedbyparameter β as the risk parameter [24]. This parameter models the tradeoff between the expected profit and risk, andthereforedependsonthepreferencesoftheaggregator. Ariskaverseaggregatorprefers minimizingrisk;thus,itchoosesalargevalueofβtoincreasetheweightoftheriskmeasurementtool intheobjectivefunction. Incontrast,whentheaggregatordisplayslessriskaversion,itchooseshigh valuesofβand,consequently,itobtainshigherprofitvalues. Therelatedconstraintsofthislevelare providedasfollows: Ech −Edch = EDA+Epos,B−Eneg,B (4) t,ω t,ω t,ω t,ω t,ω (cid:104) (cid:105) − ∑ Ech Cch −EdchCdch−EDACDA−Epos,BCpos,B+Eneg,BCneg,B +ζ−ι(ω) ≤0 (5) t,ω s0,t t,ω s0,t t,ω t,ω t,ω t,ω t,ω t,ω t∈T ι(ω) ≥0 (6) Ech = EDch ∑ ρch(ξ)Xch (7) t,ω t,ω S0,t,ξ ξ∈Ξ Edch = EDdch ∑ ρdch(ξ)Xdch (8) t,ω t,ω S0,t,ξ ξ∈Ξ EDA = EDA (9) t,ω t,ω(cid:48) Epos/neg,B ≤ P (10) t,ω Constraint(4)explainsthebalanceforenergyateachscenarioandateachschedulinghour[14]. Constraints (5) and (6) are associated with the CVaR term [14]. Moreover, EVs’ charge/discharge demand that is supplied by the aggregator is obtained from constraints (7) and (8), respectively. Non-anticipativity is provided in (9) and imposes that identical DA bids have to be made in all Energies2018,11,2413 7of20 scenarioswithequalDAprices[20]. Theenergytradedinthepositiveandnegativebalancingmarket islimitedbasedon(10). 2.2.2. Lower-LevelFormulation ThelowerlevelproblemexplainsthepreferencesofEVownersandisformulatedasinEquation(11). Basedonthisequation,theEVownersseekthecheapestchargeandthehighestdischargepricesoffered bythemostcompetitiveaggregatortominimizetheirpayments. (cid:95)Dch Minimize{E [Cch Xch + ∑ Cch Xch ] t s0,t s0,t,ξ s,t,ξ s,t,ξ s ∈ N S s (cid:54)=0 + ∑ ∑ (cid:95)EDchWs,s(cid:48)ZS,S(cid:48) + ∑ ∑ (cid:95)EDdchWs,s(cid:48)ZS,S(cid:48) ) t ch ch,t,ξ t dch dch,t,ξ s∈NS s(cid:48) ∈ N s∈NS s(cid:48) ∈ N (11) S S s(cid:48) (cid:54)= s s(cid:48) (cid:54)= s (cid:95)Ddch −(E [CdchXdch + ∑ CdchXdch]} t s0,t s0,t,ξ s,t,ξ s,t,ξ s ∈ N S s (cid:54)=0 wheresands(cid:48) refertothetransferofEVownersbetweentheaggregators,andindexs=0denotes the aggregator under study. Equation (11) investigates the objective function of the lower level problem,whichexpressesthecostofpurchasedenergyfromboththeaggregatorunderstudyandrival aggregators. ThefirstlineoftheequationrepresentstheEVchargecostspaidtotheaggregatorunder studyandrivalaggregators,respectively. Thesecondlinedenotesthecostsduetotheshiftofcharge anddischargeofEVsbetweentheaggregators,respectively. ThelastrepresentstherevenueofEVs duetotheirdischargingprocesstotheaggregatorunderstudyandrivalaggregators. Theconstraints areasfollows: Xch = X0 + ∑ ZS(cid:48),S − ∑ ZS,S(cid:48) (12) s,t,ξ sch,t,ξ ch,t,ξ ch,t,ξ s(cid:48) ∈ N s(cid:48) ∈ N S S s(cid:48) (cid:54)= s s(cid:48) (cid:54)= s Xdch = X0 + ∑ ZS(cid:48),S − ∑ ZS,S(cid:48) (13) s,t,ξ sdch,t,ξ dch,t,ξ dch,t,ξ s(cid:48) ∈ N s(cid:48) ∈ N S S s(cid:48) (cid:54)= s s(cid:48) (cid:54)= s (cid:95)EDch = ∑ π(ω)EDch (14) t t,ω ω∈Ω (cid:95)EDdch = ∑ π(ω)EDdch (15) t t,ω ω∈Ω ∑ Xch/dch =1 (16) s,t,ξ s∈NS Xch/dch ≥0 (17) s,t,ξ Zs,s(cid:48) ≥0,∀s,s(cid:48) ∈ S,s (cid:54)= s(cid:48) (18) ch/dch,t,ξ TheshareofeachaggregatortosupplyEVsforthechargeanddischargeprocessisrepresentedin constraints(12)and(13),respectively. Constraints(14)and(15)explainthetotalexpectedchargeand dischargedemandofEVsateachhour. Also,constraint(16)explainsthatalloftheaggregatorssupply thecharge/dischargeprocessofEVsateachhour. Moreover,constraints(17)and(18)explainthe limitationforthevariablesthatshowthepercentageofdemandtobesupplied[25]. Finally,constraints Energies2018,11,2413 8of20 (19)-(24)describethetechnicalconstraintstokeepstateofcharge(SOC)ofEVswithinitslimitation andtheamountofenergythattheycanobtainorinjectfrom/tothenetwork[17]. Inthefollowing equations,µch/dch,µch/dch,γch/dch,γch/dch,µs andµs representtheauxiliaryvariablesthatareused t,ω t,ω t,ω t,ω t,ω t,ω forKKToptimalityconditions. 0≤ Ech ≤ Pch : µch ,µch (19) t,ω t,ω t,ω 0≤ Edch ≤ Pdch : µdch,µdch (20) t,ω t,ω t,ω 1 SoC −SoC −ηch×Ech + ×Edch =0: λs (21) t,ω t−1,ω t,ω ηdch t,ω t,ω SoC×ECap ≤ SoC ≤ SoC×ECap : µs ,µs (22) t,ω t,ω t,ω 0≤ ηch×Ech ≤ (SoC×ECap)−SoC : γch ,γch (23) t,ω t−1 t,ω t,ω 1 0≤ ×Edch ≤ SoC : γdch, γdch (24) ηdch t,ω t−1,ω t,ω t,ω TheupperlevelproblemgivestheamountofenergypurchasedfromDAandbalancingmarkets andthecharge/dischargepricesignalsofferedtotheEVowners. Incontrast,thelowerlevelproblem givesthepercentageofEVcharge/dischargeloadthatwillbesuppliedbytheaggregators. Itshould bementionedthattheproblemdiscussedaboveisnonlinearduetotheinclusionoftermsEch Cch and t,ω s0,t EdchCdch inrelations(3)and(5). t,ω s0,t Theequivalentsingle-levelformoftheproblemisobtainedwiththeapplicationofKKToptimality conditionsofthelowerlevelproblem.Then,thebilinearproductsofEch Cch andEdchCdcharereplaced t,ω s0,t t,ω s0,t withequivalentsingle-levelexpressionsusingthestrongdualitytheorem[25]. Finally,theequivalent formofthebi-levelproblemexplainedin(3)–(24)isobtainedasasingle-levelmixed-integerlinear programming(MILP)problem,whichcanbeefficientlysolvedbycommerciallyavailablesoftware. This equivalent problem includes the objective function of the upper level as represented in (25), theconstraintsofbothlevels,andtheequivalentexpressionofthelowerlevelobjectivefunctionthatis representedasfollows:   Revch −Revdch (cid:34) (cid:35) Maximize ∑ π(ω)∑ −tE,ωDACDAt,ω +β ζ− 1 ∑ π(ω)ι(ω) (25)  t,ω t,ω  1−α ω∈Ω t∈T −Epos,BCpos,B+Pneg,BCneg,B ω∈Ω t,ω t,ω t,ω t,ω The bi-level programming problem is transformed into its equivalent single-level nonlinear optimization problem using the KKT optimality conditions of each lower-level problem. KKT conditions apply here since the lower-level problems are convex. In Equation (25), Revch t,ω andRevdch representthechargerevenuesanddischargepaymentsfortheaggregatorunderstudy, t,ω respectively. The other terms are as explained earlier. Equation (25) is obtained subject to the constraints(4)–(10),(12)–(24)andtheconstraintsthatobtainedfromKKTanddualitytheory,asgiven inAppendixA. 3. NumericalResultsandDiscussion Inordertoevaluatetheapplicabilityandeffectivenessofthepresentedbi-levelmodel,atestcase studywithrealisticmarketpricesisused. 3.1. TestCaseStudy Inthisstudy,toevaluatetheproposeddecision-makingmodel,fouraggregatorsareconsidered, inwhichoneofthemisconsideredtobetheaggregatorunderstudy(S )andtheothersareconsidered 0 toberivals(S –S ). TheDAandbalancingelectricitymarketpricesforthemodelpresentedaboveare 1 3 Energies2018,11,2413 9of20 Energies 2018, 11, x FOR PEER REVIEW 9 of 20 eexxttrraacctteedd ffrroomm tthhee NNoorrddppooooll mmaarrkkeett [[2276]]. .IInn tthhiiss ssttuuddyy,, ffoorr eeaacchh ssttoocchhaassttiicc ppaarraammeetteerr,, 220000 sscceennaarriiooss aarree ggeenneerraatteedd uussiinngg AARRIIMMAA mmooddeellss.. TThhee ggeenneerraatteedd sscceennaarriiooss ooff eeaacchh ppaarraammeetteerr aarree rreedduucceedd ttoo sseevveenn sscceennaarriiooss bbyy uussiinngg tthhee mmeetthhoodd eexxppllaaiinneedd iinn [[2222]].. TThhee sscceennaarriiooss rreellaatteedd ttoo eeaacchh ppaarraammeetteerr aarree sshhoowwnn iinn FFiigguurree 33.. MMoorreeoovveerr,, iinn tthhiiss ssttuuddyy,, 110000 EEVVss wwiitthh tthhee ssaammee cchhaarraacctteerriissttiiccss wwiitthh tthhee bbaatttteerryy ccaappaacciittyy ooff 1166kkWWhh aarree ccoonnssiiddeerreedd.. TThhee iinniittiiaall SSOOCC ooff EEVVss aatt eeaacchh sscceennaarriioo iiss rraannddoommllyy ggeenneerraatteedd wwiitthhiinn iittss tteecchhnniiccaall lliimmiittaattiioonn. .TThhee ffoorreeccaasstteedd cchhaarrggee//ddisicshcahragreg epprirciecse soofffefereredd bbyy ththrreeee rriivvaal laaggggrreeggaattoorrss aarree oobbttaaiinneedd ffrroomm [2[278]]a nadndth etihreairs soacsisaotceidatsecde nsacreionsarairoesg aenree rgateenderwaittehda wthirtehe -as etghmreeen-tsnegomrmeanlt PnDoFrm[2a8l] . α PTDhFe v[2a9l]u. eTohfe avdaolupete odf is0 .9a5dobpasteedd iosn 0.[9154 ]baanseddt ohne [s1im4]u alnadti othnet ismimeusltaetpioins stiemtteo s1tehp. iTs hseet stcoh 1e dh.u Tlihneg shcohreidzounlinisg 2h4ohri.zFoinn aisl l2y4,t hh.e Fbini-alellvye, ltshteo cbhi-alestvieclp srtoogchraamstimc ipnrgogprraomblmemingis pforormbluemlat iesd foarsmanuleaqteudiv aasl eannt eMquILivPaplernotg MramILPa npdrosgorlvaemd awnidth soClPvLedE Xwiintht hCePGLAEXM iSns tohfetw GaAreM[2S9 s]oofntwaacroem [3p0u] toenr wa ictohm4pGuBtsero wfRitAh M4 GanBds oCfi 5RACPMU a.nd Ci5 CPU. e c pri 30 e alancWh) 25 bM ve im(€/ 20 siti Po 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hour) (a) (b) ce 50 0.4 ce pri 40 MWh) 0.3 mbalanMWh) 2300 emand ( 0.2 ative i(€/ 10 EVs d 0.1 g Ne 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (hour) Time (hour) (c) (d) Figure3.Scenariosof(a)day-aheadprices;(b)positivebalancingprices;(c)negativebalancingprices; Figure 3. Scenarios of (a) day-ahead prices; (b) positive balancing prices; (c) negative balancing prices; (d)EVdemand. (d) EV demand. 3.2. Simulation 3.2. Simulation Regardingrisk-aversionintheformofCVaRweights,Figure4ashowstheexpectedprofitversus CVaRRefgoarrddiifnfegr reinskt-laevveerlssioofnβ in. Itthies foobrmse rovfe CdVtahRat wweiitghhitns,c Freigausirneg 4aβ sthhoewags gthreeg eaxtpoerc’steedx ppreocftietd veprrsoufist CdVecarRea fsoers .dWiffheerenntth leevagelgsr eogf aβt.o Irt bies coobmseersvveedr ythraistk waivther isnec,rtheaeslionwg eβs tth(1e- αa)g-gqrueagnattioler’osf epxrpoeficttesdce pnarorifoits daercerieganseosr.e Wd.hAenls toh,ei tagcagnrebgeatsoere bnecthoamteisn vleorwy rriisskk -aavveerrssei,o tnhef alocwtoerss,t (C1V-αa)R-qiusannetgilae toivf ep,rwofhiti scchenmaeraionss atrhea itgtnhoerperdo. fiAtlisno,s iotm caeno bfet hseeesnc etnhaart iions lioswn ergisakt-iavvee,rassioenxp falacitnoerds, iCnV[1a4R] .isH noewgaetvivere,, wwihthicahn mineacrnesa tshinagt trhisek p-raovfeirt siino nsofmacet oorf, tthhee ssecenneagraiotisv ies snceegnaatriivoes, waso euxlpdlabienoedm iintt e[1d4a].n Hdoawseavreers,u wlti,tCh VaanR inmcroevaessintgo wrisakrd- apvoesristiiovne vfaaclutoers,. tMheosree onveegra,ttihvee esxcpeneactreiods pwroofiutldv ebresu osmthiteteadv earnadg eaos fat hreessutaltn, dCaVrdaRd emvioavtieosn todwurairndg pthoesitwivheo vlealduaeys. fMorordeioffveerre,n tthve aelxupeescotefdβ pirsoifliltu vsetrrasutesd thine aFvigeurargee4 obf. thAes ssthaonwdanr,dw dietvhiainticorne adsuinrgingβ , tthhee wsthaonldea drdayd feovri adtiifofneroenftt hvealpureosfi otsf dβ eicsr ielalussetsr.aItnedf aicnt ,Fwighuerne 4thbe. Aagsg srheogwatno,r wtriitehs itnochreeadsginega gβ,a itnhset svtaonladtailritdi eds,evthiaetiloonw opf rothbea bpleropfirtos fidtsecirneausnefsa. vIonr afabclet, swcehneanr itohsea areggigrengoarteodr. trWiehs etno ithebdegcoe maegsailnessts vroislkatailviteiersse, ,thheo wloewv eprr,otbhaebpler opfirtosfiitns isnc eunnafraivoosrbaebcloe msceenmaoriroesd airsep eigrnseodre,dw. hWichhelne aitd bsetcoomexepse lreiessn criisnkg apvreorfistes, hfaorwfreovmer,t thhoes epreoxfpitesc itne dsc.eInnaoritohse brewcoomrdes ,mwoirteh diniscpreerasseidn,g wβh,itchhe lpearodfis ttso wexitpherloiewncpinrogb parboifliittsy faarre ferloimmi nthaotesde. eTxhpeercetfeodre. ,Itnh eotshtaenr dwarodrddse, vwiaittiho ninocfrtehaesienxgp eβc, ttehdep prorofiftitosf wthietha glogwre gpartoobradbuirliitnyg atrhee eslcimheidnuatliendg. hTohreirzeofnorwe,o tuhled sdteacnrdeaasrde. deviation of the expected profit of the aggregator during the scheduling horizon would decrease. EEnneerrggiieess 22001188,, 1111,, 2x4 F1O3R PEER REVIEW 1100 ooff2 200 Expected profit (€) 777567 β=β0=.001.1 β=1 β=2 β=β5=9; β=1β0=6 Expected profit (€) 777567 β=10β=9β=6 β=3 β=2ββ==00.0.11 74 74 -0.4 -0.25 -0.1 0.05 0.2 0.35 0.5 0.65 14.6 14.7 14.8 14.9 15 CVaR (€) Profit standard deviation (€) (a) (b) Figure4.Expectedprofitversus(a)CVaR;(b)averageofstandarddeviationoftheprofitfordifferent Figure 4. Expected profit versus (a) CVaR; (b) average of standard deviation of the profit for different valuesofβ. values of β. Table1showstheexpectedDA,positive/negativeenergyexchangedbetweentheaggregatorand Table 1 shows the expected DA, positive/negative energy exchanged between the aggregator (cid:95)DA (cid:95)Pos  (cid:95)Neg  tahnedn tehtew noertkw(oErk (,EEDA, EanPods Eand )EdNuegri)n dgutrhinegw thhoel ewdhaoyl.e Adsays.h Aows snh,owwitnh, iwncitrhea isnicnrgeaβsfinrogm β 0fr.0o1mt o0.1001, tthoe 1a0g, gtrheeg aatgogr’rsepgaartotirc’isp aptaiornticinipDatAioann dinn DegAa taivnedb anleagnactinivgem baarlkanetcsinvgar imesafrrkoemts 3v.7a8r6ieasn fdro2m.15 38.7M8W6 ahntdo 32..119598 aMndW1h.8 t8o0 3M.1W99h a,nwdh i1c.h88s0h oMwWsrhe,d wuchtiicohn sshofo1w5s.5 r%edauncdti1o2n.7s% o,f r1e5sp.5e%ct iavnedly .1T2h.7i%si,s rbeescpaeucsteivwelhye. nTthhies aisg bgerecgauatsoer wbehceonm these magogrreergiasktoarv beercsoe,miteps umrcohraes reisskle asvsebrlsoec,k ist pofuerncheragsyesf rleosms bthloecmkso oref evnoelartgilye fmroamrk tehtse. Mmoorreeo vvoelra,wtilieth minacrrkeeatssi.n Mgβorferoomve0r.,0 w1ittoh1 i0n,ctrheeaasginggre βg aftroorm’s 0p.u0r1c htoa s1e0s, ftrhoem atghgerpeogsaittoivre’sb paularncchinagsems farrokmet itnhcer epaosseistifvroem ba0l.a5n29citnog0 .m72a9rkMetW ihnc(r3e6a.5s%es) ,fwrohmic h0.i5s2b9e ctaou 0se.7t2h9e MpoWsithiv (e3m6.5a%rk)e, twishmicohr eiss tbabecleauansed tthhee apgogsrietigvaet omrcaarnkehte disg meaograei nssttabvolela atinlidti etshbey aigngcrreeagsaintogrt hcaenp uhrecdhgasee sagfraoimnstth visomlaatirlkiteite.sT abbyl ein2cirseaalssionggi vthene tpoucrochmapsaerse frtohmeo tbhtiasi mneadrkreest.u Tltasbwlei t2h itsh aolsseo rgeipvoernt etod cinom[1p4a].reIt tchaen obbetasieneend frreosmultths ewtiwtho tthaobslee srethpaotrttehde finin d[1in4g].s Iitn ctahnis bpea pseerenh afvroemth ethsea mtweotr etnabdlefosr tehnaetr gthyet rfainndsaicntgiosn isnw thitihs ipnacrpeears ihnagvreis kth-aev searmsioen tfraecntdor sfo.r energFyo rtrmanosraecteiolanbso wraittiho nin,ctrheeasDinAg rainskd-apvoesristiivoen/ fnacetgoartsi.v e imbalance energy procurements by the aggreFgoart omrourned eerlasbtuordaytiionnt,h tehleo wDeAst aanndd hpiogshiteisvteβ/n(eβg=at0iv.0e1 iamnbda1la0n)acere edneeprigcyte dprioncFuirgeumreen5t.sI nbyor dtheer taoggarveogiadtodr autnadcerro wstuddinyg i,nt thhee elonweregsyt apnrdo chuigrehmesetn βt (iβn = o0t.h01er anridsk 1-0a)v aerres idoenpifcatcetdo risn iFsignuorte i5ll.u Inst roartdeedr. Ftor oamvoFidig duareta5 car,oc,witdcianng,b tehes eeennerthgayt pthroecturerenmdeonftD inA oatnhdern reisgka-taivveerbsaiolann fcainctgoersn eisr gnyotp iullrucshtarsaetesdfo. Fllroowms tFhigeusrhea p5ae,co,f iEt Vcadne bmea snedenin thFaigt uthree 3trde.nAdl soof ,DwAh eanndth neeEgVatsivaere bnaolatnscaitnisgfi eednewrgityh pthuercphuarscehsa fsoeldloewnse rtghye fsrhoampet hoef DEVA dmemaraknetd, tihne Faiggugrree g3adt.o Arwlsoil,l wprhoecnu rtehed eEvVias taioren sniont tshaetispfoiesdit iwveitmh tahrek eptu(Frcihguasreed5 ben).eIrtgiys cfroonmce tivheed DfAro mmaFrikgeutr,e th3de athgagtredguartionrg wthiell npirgohctuarned deeavrilaytiionntsh ienm thoer npinosgi,titvhee EmVarokwetn (eFrisgturyret o5bc)h. aIrtg ies tchoenicreEivVesdt forobmer Feiagduyref o3rdd tahialty duusrei.nCg othnes enqiughent atlny,dt ehaeralyg ginr etghaet morotrrnieinsgto, thbue yEVm oowreneenres rtgryy tfoo rchthaorgsee hthoeuirr sEtVoss utop pbely rEeaVdsyf rfoomr dtahielyD uAsem. Carokneste,qwuheincthlyh,a tshleo awgegrrepgriacteosr tthraiens tthoe bpuoys imtivoereb eanlaenrcgiyn gfomr tahrokseet. hours to supply EVs from the DA market, which has lower prices than the positive balancing market. Table1.Expectedenergyexchanged(MWh)fordifferentvaluesofβ. Table 1. Expected energy exchanged (MWh) for different values of β. β EˆDA EˆPos EˆNeg 0.01β 3Eˆ.7D8A6 Eˆ0P.o5s2 9 EˆN2e.g1 53 0.1 3.785 0.529 2.152 0.01 3.786 0.529 2.153 1 3.747 0.530 2.118 0.1 3.785 0.529 2.152 2 3.732 0.535 2.108 1 3.747 0.530 2.118 3 3.466 0.615 2.007 2 3.732 0.535 2.108 5 3.22 0.716 1.897 6 3 33.4.2606 0.601.752 1 2.0017.8 82 105 33..12929 0.701.762 2 1.8917.8 80 6 3.20 0.721 1.882 10 3.199 0.722 1.880 Table2.Expectedenergyexchanged(MWh)fordifferentvaluesofβadoptedfrom[14]. Table 2. Expected energy excβhanged E(ˆMDAWh) foErˆ PdoisfferenEtˆ Nvaeglues of β adopted from [14]. 0.01β 2Eˆ.6D5A5 Eˆ1P.o2s76 EˆN0e.g653 0.08 2.575 1.33 9 0.6 36 0.103.01 21..675753 1.227.063 1 0.6503.5 25 0.301.08 21..567054 1.323.196 6 0.6306.4 92 0.47 1.310 2.361 0.393 0.13 1.773 2.031 0.525 3.89 1.181 2.457 0.360 0.31 1.604 2.166 0.492 0.47 1.310 2.361 0.393 3.89 1.181 2.457 0.360

Description:
Vehicle Aggregator in Short-Term Electricity Markets .. offered by the rivals are generated with a normal PDF. The estimation errors of the rival prices
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.