Astronomy&Astrophysicsmanuscriptno.paper_cross_corr_rnote_published_arxiv cESO2016 (cid:13) August9,2016 Optimal cosmic microwave background map-making in the presence of cross-correlated noise (ResearchNote) G.deGasperis1,2,A.Buzzelli2,3,P.Cabella1,2,P.deBernardis3,4,andN.Vittorio1,2 1 DipartimentodiFisica,UniversitàdiRoma“TorVergata”,viadellaRicercaScientifica1,I-00133,Roma,Italy 2 SezioneINFNRoma2,viadellaRicercaScientifica1,I-00133,Roma,Italy 6 3 DipartimentodiFisica,SapienzaUniversitàdiRoma,piazzaleAldoMoro5,I-00185,Roma,Italy 1 4 SezioneINFNRoma1,piazzaleAldoMoro5,I-00185,Roma,Italy 0 2 Received/Accepted g u ABSTRACT A Aims.WepresentanextensionoftheROMAmap-making algorithmforthegenerationofoptimalcosmicmicrowavebackground 8 polarizationmaps.Thenewcodeallowsforapossiblecross-correlatednoisecomponentamongthedetectorsofaCMBexperiment. ApromisingapplicationistheforthcomingLSPEballoon-borneexperiment,whichisdevotedtotheaccurateobservationofCMB ] O polarizationatlargeangularscales. Methods.Wegeneralized thenoisecovariance matrixintimedomaintoaccount foralltheoff-diagonal termsduetothedetector C cross-talk.Hence,weperformedpreliminaryforecastsoftheLSPE-SWIPEinstrument. . Results.Wefoundthatconsideringthenoisecross-correlationamongthedetectorsresultsinamorerealisticestimateoftheangular h powerspectra.Inparticular,theextendedROMAalgorithmhasprovidedaconsiderablereductionofthespectraerrorbars.Weexpect p thatthisimprovementcouldbecrucialinconstrainingtheB-modepolarizationatthelargestscales. - o Keywords. Cosmology:Cosmicmicrowavebackgroundpolarization–Methods:dataanalysis r t s a [1. Introduction thatallowsustotakecommon-modenoiseintoaccountexplic- itlyandproperlyisthatbyPatanchonetal.(2008),forintensity 2The temperature and polarization patterns of cosmic mi- measurementsonly.GiventhepressinginterestonprimordialB- vcrowave background (CMB) have been an invaluable modedetection,aspecifictreatmentofnoisecross-correlationin 4source of cosmological information. While polarization 6 polarizationmeasurementsisnownecessary. E-modes have been widely observed and analyzed (e.g., 4 Amongthenextgenerationof CMB experiments,we focus Planck: PlanckCollaborationetal. 2015b), B-modes are still 4 ontheLarge-ScalePolarizationExplorer1 (LSPE)balloonmis- buried into foreground signal and experimental noise (e.g., 0 sion, which is devoted to accurate observationsof CMB polar- BICEP2/KeckandPlanckCollaborationsetal. 2015). Nowa- . izationatlargeangularscales(seee.g.,deBernardisetal.2012). 1days, the hunting for B-modes represents one of the most 0 TheLSPEisexpectedtoimprovethelimitontheratiooftensor- relevant and exciting research fields in cosmology. In fact, 6 to-scalarperturbationamplitudesdowntor .0.03. a B-mode detection in CMB polarization would provide a 1 In this work we present an extension of the ROMA definitiveconfirmationoftheexistenceofagravitationalwaves : map-making code (Roma optimal map-making algorithm, vprimordial background, as expected in the inflation paradigm deGasperisetal. 2005) to produce optimal CMB polarization i(Lyth&Riotto1999). X mapsoutofcross-correlatedmulti-detectorCMB observations. Becauseofthelowsignal-to-noiseratio,polarizationobser- r Inparticular,wediscusshowaproperinclusionofthedetector avationsrequirelargemultidetectorarrays.Theincreaseddetec- noisecross-correlationsresultsinmorerealisticestimatesofthe tor array size and the integration of many pixels on the same angular power spectra error bars. This benefit could be crucial wafer rise the problem of cross talk among the detectors. This for the detection of a primordial B-mode signal at low multi- canbeduetoeitherfocalplanetemperaturevariationsand/orat- poles. mospheric fluctuations. Both these effects are expected to pro- duce common-mode noise in the detectors. This noise cross- correlation has to be properly taken into account in the map- 2. Formalism,algebraandnoisemodel makingprocedure. After the pioneering work of Wright (1996), map-making A CMB experimentobservesthe sky at a given resolution(i.e. has been thoroughly studied in the literature (see e.g., with Np pixels in the sky) and collects Nd samples in a given Cantalupoetal. 2010, and referencestherein). However,cross- temporalsequence,thetimeordereddata(TOD).Oncethedata correlated noise among the detectors has not been discussed arecalibrated,anyartifactisflaggedoutandthepointingisre- as much and is crudely neglected. The only detailed treatment constructed,the first step in the CMB data analysis is the esti- Sendoffprintrequeststo:[email protected] 1 http://planck.roma1.infn.it/lspe Articlenumber,page1of5 A&Aproofs:manuscriptno.paper_cross_corr_rnote_published_arxiv mationofoptimalskymapsfromtheTOD.Intheliteraturetwo main strategies are present: a maximum-likelihood(minimum- variance)approach(see e.g.,deGasperisetal. 2005, andrefer- encestherein)anddestripingtechniques(seee.g.,Tristrametal. 2011,andreferencestherein). Wetakethecross-correlatednoisecomponentamongdetec- tors into account in the following way. The observational data fromonedetectorcanbemodeledas D=AS+n. (1) Here, D is the TOD, A is the generalizedpointing matrix, S = (I,Q,U)isthemaptripletandnistheinstrumentalnoise,which accountsfor anysystematic effects, cosmic ray hits, etc. When dealingwithmultipledetectorobservations,theTODsfromin- dividual detectors are simply concatenated end-to-end. Under the assumption of a Gaussian and stationary noise, the gener- alized least squared approach yields the following maximum- likelihoodestimatorforthesignal S=(cid:16)ATN−1A(cid:17)−1ATN−1D. (2) e The noise covariancematrix in the time domain, N nn , t t ≡ h ′i isblockdiagonalonlyinthecaseofnocross-correlationamong samplesofdifferentdetectors.ThepresentversionoftheROMA algorithm takes into account all the off-diagonal terms, which have usually beenneglectedin past works. The solutionof Eq. 2isaverycomputationallydemandingtaskbecauseofthelarge size of the matrix N, kN kN , where k is the number of de- p p Fig.1.Skyregionscannedby18sampledetectors,sparselylocatedin × tectors. Our algorithm adopts a Fourier-based, preconditioned the two focal planes of LSPE-SWIPE, in ecliptic coordinates (upper conjugate-gradientiterativemethod. panel)andtheinversepixelconditionnumberR asanestimatorof cond The choice of the noise model is clearly a crucial issue. In polarization angle coverage per pixel (lower panel). In our definition, general,thedetectornoisespectrumisinthesumofastationary R =1/2incaseofperfectanglecoverageuniformity.Bothmapsare cond Gaussianwhitenoiseathigherfrequenciesanda1/f component atHEALPix(seeGórskietal.2005)Nside=128. at lower frequencies,which implies an unavoidablecorrelation among different samples in the single detector time stream. A furthercomplicationisthepresenceofthenoisecommon-mode 106 seenbyallthedetectors.Itscontributionhasbeenestimateddi- rectlyfromdata(seee.g.,Masietal.2006).Thecross-correlated 104 noiseistypicalofground-andballoon-basedexperiment,asitis ] 1 sourced mainly by atmospheric fluctuations. However, it could z− 102 also affectspace missions, due to common-modedetectortem- H 2 peraturedrifts.Thisworkisaddressedtotheballoonregime,but K 100 µ ourtreatmentiscompletelygeneral. [ / r 10-2 e w 3. ForecastsoftheLSPE-SWIPEexperiment o P 10-4 In this work we focuson the forthcomingLSPE balloon-borne experimentthatisdevotedtotheaccuratemeasurementofCMB 10-6 polarizationatlargeangularscales. 0.001 0.010 0.100 1.000 10.000 Weusethelevelofnoisecross-correlationamongtheCMB Frequency/[Hz] polarimetersestimated for BOOMERanG (Masietal. 2006) as abenchmarkforoursimulations.Sincethedeepsimilaritiesbe- Fig.2.Powervsfrequencyfortemperature(indashedblackline)and tween BOOMERanG and the LSPE-SWIPE experiment (long polarizationintensity(insolidredline)inthecaseof halfwaveplate duration stratospheric bolometric experiments subject to atmo- (HWP) steps of 11.25 /min. In our simulations, we focused on two ◦ spheric common-modefluctuations),we foundit naturalto use noisekneefrequencies:0.02and0.1Hz. the BOOMERanG noise properties for the LSPE-SWIPE pre- liminaryforecasts. 55 deg. The azimuth scan speed will be set around 2 rpm, i.e. 12 deg/s. A large portion of the northern sky (around 25% of 3.1.Theinstrument thecelestialsphere)isexpectedtobeobservedwithanangular During its circumpolar Arctic flight, LSPE will scan the sky resolutionofabout1.5degreesFWHM. Thepayloadwillhost by spinning around the local vertical, while keeping the tele- twoinstruments:theShortWavelengthInstrumentforthePolar- scope elevation constant for long periods, in the range 30 to ization Explorer(SWIPE; deBernardisetal. 2012), which will Articlenumber,page2of5 G.deGasperisetal.:OptimalCMBmap-makinginthepresenceofcross-correlatednoise(RN) maptheskyinthreefrequencybandscenteredat140,220,and f =0.02Hz k 240GHz; and the STRatospheric Italian Polarimeter (STRIP, 0 Bersanellietal. 2012), which will survey the same sky region intwofrequencybandscenteredat43and90GHz. In this work we focus on the SWIPE bolometric po- %) -10 larimeter instrument, which is characterized by two symmetric e ( nc -20 orthogonally-placedfocal planes hosting an overall number of e er 1th1e0pdreetseecntcoersopfear fhraelqfuwenavcye.pTlahteep(eHcWuliPa)riptyoloafriSzaWtiIoPnEmwoidllulbae- al diff -30 torasfirstopticalelement,followedbya50cmaperturerefrac- n -40 o tive telescope, a beam-splittingpolarizer,and finally the multi- cti a moded focal planes. The SWIPE detectors are multimode spi- Fr -50 derweb TES bolometers operating at 0.3K (see Gualtierietal. 2016). -60 In Fig. 1 we show the sky region as seen by a subset of 0 20 40 60 80 100 18 LSPE-SWIPE detectors, which are arranged in three triples Multipoleℓ sparsely located in each of the two focal planes, and the cor- responding angle coverage estimator, for one observation day. Fig.3. FractionaldifferenceoftheBBpowerspectraerrorbarsfrom The maps are at HEALPix2 resolution N = 128 (27.5’ per side LSPE-SWIPE simulations estimated considering and neglecting the pixel,seeGórskietal.2005).InFig.2weshowthetemperature bolometer noise cross-correlation of case 1 (in dashed red line) and and polarization intensity power as a functionof frequencyfor case2(insolidblackline)forakneefrequency f =0.02Hz. k onebolometeroftheSWIPEinstrument,assumingthenominal HWPstepsof11.25 /min. ◦ f =0.1Hz k Becauseofthelargenumberofdetectorsweexpectthatthe noisecross-correlationmayrepresentacriticalissue andthere- 0 fore,apropertreatmentisnecessary.However,wehighlightthat thecross-correlationamongthedetectorsmustbeaccountedfor %) -10 inrelationtothepossiblefilteringofthedata;thebenefitofcon- e ( sideringthenoisecommonmodecruciallydependsonthemag- nc -20 e nitudeofthelow-frequencycut.Forinstance,wetestedtheex- er tendedROMA codeonthe BOOMERanGrealdata setandwe diff -30 found no remarkable benefits with respect to the past analysis al n -40 that completely neglected the noise cross-correlation. The low o impact of the new treatment is due to the heavy filter of low- acti frequency data streams performed on the real data set, which Fr -50 hascrudelycutouttheinformationatlargeangularscaleswhere -60 the cross-correlatednoise effectis morerelevant.However,us- ing simulated unfiltered data we found that a proper treatment 0 20 40 60 80 100 ofthenoisecross-correlationresultsinconsiderablybettermaps Multipoleℓ and angular power spectrum estimates (the spectrum standard deviationshavebeenreducedupto20%;seeBuzzelli2015and Fig.4. FractionaldifferenceoftheBBpowerspectraerrorbarsfrom Buzzellietal. 2016). In the following simulations, we first as- LSPE-SWIPE simulations estimated considering and neglecting the sumethatnofilterwasappliedonthedata,hencewefaceaspe- bolometer noise cross-correlation of case 1 (in dashed red line) and cificcasewherereasonablefrequencycutshavebeenperformed. case2(insolidblackline)forakneefrequency fk =0.1Hz. 3.2.Simulations 1. The cross-correlationis present in both the 1/f2 and white noisepartofthespectrum.Intheformer,thecross-correlated WegeneratesimulatedTODbasedontheSWIPEscanningstrat- componentissharedbyallthedetectors;inthelatterweas- egy and polarimeter angles for one day of observations (Nd = sume 10% of cross-correlation among each triple and 1% 8.64 106 samples per detector) and telescope elevation of 45 among any other detector, with respect to the auto noise × deg. In particularwe choose an HWP stepping of 11.25◦/min, spectrum. This situation is the analog to that found in the repeatedlyscanningthe range0◦ 78.75◦, andwe consider18 BOOMERanGanalysis; − detectorsasdescribedabove. 2. Thecross-correlationislimitedtothe1/f2 partofthenoise We assume the cosmological parameters estimated by spectrumwithnowhitenoisecommonmode. Planck (PlanckCollaborationetal. 2015a) with a tensor-to- scalar ratio r = 0.09. The noise is simulated assuming the In the four cases, we produced 50 signal-only, noise-only, and bolometer to be photon-noise limited with a white plateau of signalplusnoiseMonteCarlosimulatedmaps,bothtakinginto 15µK √sathigherfrequenciesanda1/fα noisewithα=2 accountornotthenoisecross-correlationamongdetectorsinthe CMB at lower frequencies, as expected for the multimoded 140GHz map-makingcode.Then,weappliedtheMASTERpowerspec- channel.Wefocusontwokneefrequencies,0.02and0.1Hz,the trumestimator(Hivonetal.2002)tothemaps. expectedbestandworstcase.Foreachkneefrequency,wecon- Itshouldbetakenintoaccountthat,atlargeangularscales, sidertwodifferentcommon-modeconfigurations: the MASTER spectrumestimator methodmay notbe the most convenient choice. As mentioned by Molinarietal. (2014), 2 http://healpix.sourceforge.net at low multipoles a quadratic maximum likelihood estimator Articlenumber,page3of5 A&Aproofs:manuscriptno.paper_cross_corr_rnote_published_arxiv (QML) is preferable. Nonetheless, the aim of this work is to check the reliability of an improved map-making code, which 20 0.02 Hz can also be successfully tested by using quicker but less accu- 0.05 Hz 0 0.1 Hz rateangularpowerspectraestimates. In Fig. 3 we show the fractional difference of BB power %) spectraerrorbarsestimatedconsideringandneglectingthenoise e ( -20 c n cross-correlation in the algorithm, assuming the data set to be ere -40 cfoorntaamknineeatferdeqbuyenthceytfwko=n0o.i0s2eHcoz.nfiTghuerraetisounltsdefoscrrifbke=d a0b.1oHvez, al diff -60 are shown in Fig. 4. It is evident that neglecting the cross- n o correlation affects heavily the power spectra error bars. For cti -80 a knee frequency fk = 0.02Hz, the inclusion of the cross- Fra correlation has the effect of reducing the spectra error bars up -100 to 40 50%. For f = 0.1Hz, we find an improvement up to − k -120 50 60%. − 0 20 40 60 80 100 Multipoleℓ 3.3.Comparisonwithfilteringtechniques Fig. 5. Fractional difference between the BB power spectrum error As mentionedabove,to reducethe low-frequencynoise contri- bars estimated including the noise cross-correlation and applying a bution, it is a common choice to high pass the data stream at low-frequency data filtering (neglecting the cross-correlated noise) at somecutfrequency fc.However,thismethodisnotlossless, as fc=0.02Hzindottedline, fc=0.05Hzindashedlineand fc=0.1Hz partofthesignalinformationisfilteredoutaswell. insolidline.TheBBspectracorrespond tothenoiseconfigurationof While this option appears to be feasible when the low- case2with fk =0.1Hz. frequency cutoff f is 0.02Hz since the cosmological signal at c lower frequencies is negligible, we found that (see Fig. 2) if scaleswiththeprimaryaimtoconstraintheprimordialB-mode f = 0.05 or 0.1Hz the high-pass filter will cut the polariza- c polarization. tionintensitypowerof 17and25%andtheI Stokespowerof ≃ WeappliedtheextendedROMAalgorithmtosimulateddata 31and48%,respectively. ≃ oftheLSPE-SWIPEinstrumentandfoundthattheinclusionof To estimate the effectof data filteringon the powerspectra cross-correlationprovidesspectraerrorbarssmaller upto50 errorbars,weperformasimilaranalysisasabovebutwithhigh- − 60%,dependingonthechosenkneefrequency.Wepointoutthat pass frequencies f = 0.02,0.05and 0.1Hz and neglecting the c this improvement could be crucial in constraining the B-mode cross-correlatednoiseintheanalysisforthenoiseconfiguration polarization. ofcase2and f =0.1Hz. k Averyrelevantissueistocomparetheseresultswithapos- We comparethese results with the powerspectra errorbars sible low-frequencydata filtering, commonly used for ground- estimatedaccountingforcross-correlatednoisewithnodatafil- based and balloon-borne experiments. We found that account- tering. In Fig. 5 we show the fractional difference of the error ingforcross-correlatednoisewithnofilteringisaviableoption, barsbetweenthecaseswithcross-correlationandlow-frequency whichiscertainlylesscrudethanacutoflow-frequencystreams, filtering. It can be noticed that, by including the noise cross- withtheadditionalpotentialadvantageofnotremovingcosmo- correlationin the map-makingcode, we are recoveringsmaller logicalinformationatthelargestscales. BB power spectrum error bars compared to the case with data filtering.Atverylowmultipoles,theimprovementisupto30% Acknowledgements. We acknowledge the use of the HEALPix package and100%forthe f = 0.02Hzand f 0.05Hzcases,respec- (Górskietal.2005)andoftheFFTWlibrary(Frigo&Johnson2005).Wewish c c ≥ tothankSilviaMasiandMarinaMigliaccioforusefulsuggestionsanddiscus- tively. sions,andLSPEcollaborationforprovidinguswiththeLSPE-SWIPEpointing It is not the aim of this work to forecasta suitable filtering informations. strategyforLSPE-SWIPEinrelationtotheinclusionofthenoise cross-correlationintheanalysis.Thiswouldrequireamoreac- curate specifications of many parameters, such as telescope el- References evation,azimuthscanvelocityandHWPvelocity.However,we stress that the improvementsprovided by the extended ROMA Bersanelli, M., Mennella, A.,Morgante, G., etal. 2012, in Society ofPhoto- code may result in a less dramatic filtering of low-frequency OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.8446,So- data,thuspreservingmostofthecosmologicalinformation. cietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries, 7 BICEP2/Keck and Planck Collaborations, Ade, P. A. R., Aghanim, N., et al. 2015,PhysicalReviewLetters,114,101301 4. Conclusions Buzzelli,A.2015,Master’sthesis,UniversitàdiRoma“TorVergata”,Italy Buzzelli,A.,Cabella,P.,deGasperis,G.,&Vittorio,N.2016,JournalofPhysics We presented a new version of the ROMA map-making code ConferenceSeries,689,012003 extendedtoapossiblecross-correlatednoisecomponentamong Cantalupo,C.M.,Borrill,J.D.,Jaffe,A.H.,Kisner,T.S.,&Stompor,R.2010, ApJS,187,212 thedetectorsofaCMBexperiment. deBernardis,P.,Aiola,S.,Amico,G.,etal.2012,inSocietyofPhoto-Optical This effect must be properly taken into account in the data Instrumentation Engineers(SPIE)ConferenceSeries,Vol.8452,Societyof analysisofanyexperimentaimedatdetectionofB-modepolar- Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,3 ization,eitherfromspace,balloonsorground. deGasperis,G.,Balbi,A.,Cabella,P.,Natoli,P.,&Vittorio,N.2005,A&A,436, 1159 Amongthe nextgenerationofCMB experiments,we focus Frigo,M.&Johnson,S.G.2005,ProceedingsoftheIEEE,93,216,specialissue ontheforthcomingLSPEballoon-borneexperiment,devotedto on“ProgramGeneration,Optimization,andPlatformAdaptation” the accurate observation of CMB polarization at large angular Górski,K.M.,Hivon,E.,Banday,A.J.,etal.2005,ApJ,622,759 Articlenumber,page4of5 G.deGasperisetal.:OptimalCMBmap-makinginthepresenceofcross-correlatednoise(RN) Gualtieri,R.,Battistelli,E.S.,Cruciani,A.,etal.2016,JournalofLowTemper- aturePhysics[arXiv:1602.07744] Hivon,E.,Górski,K.M.,Netterfield,C.B.,etal.2002,ApJ,567,2 Lyth,D.H.D.H.&Riotto,A.A.1999,Phys.Rep.,314,1 Masi,S.,Ade,P.A.R.,Bock,J.J.,etal.2006,A&A,458,687 Molinari,D.,Gruppuso,A.,Polenta,G.,etal.2014,MNRAS,440,957 Patanchon,G.,Ade,P.A.R.,Bock,J.J.,etal.2008,ApJ,681,708 PlanckCollaboration,Ade,P.A.R.,Aghanim,N.,etal.2015a,ArXive-prints [arXiv:1502.01589] Planck Collaboration, Aghanim, N.,Arnaud, M.,et al. 2015b, ArXive-prints [arXiv:1507.02704] Tristram,M.,Filliard,C.,Perdereau,O.,etal.2011,A&A,534,A88 Wright,E.L.1996,ArXivAstrophysicse-prints[astro-ph/9612006] Articlenumber,page5of5