ebook img

Optimal Control of a Double Integrator: A Primer on Maximum Principle PDF

313 Pages·2017·3.365 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimal Control of a Double Integrator: A Primer on Maximum Principle

Studies in Systems, Decision and Control 68 Arturo Locatelli Optimal Control of a Double Integrator A Primer on Maximum Principle Studies in Systems, Decision and Control Volume 68 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Systems, Decision and Control” (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control- quickly, up to date and withahighquality.Theintentistocoverthetheory,applications,andperspectives on the state of the art and future developments relevant to systems, decision making,control,complexprocessesandrelatedareas, asembeddedinthefieldsof engineering,computerscience,physics,economics,socialandlifesciences,aswell astheparadigmsandmethodologiesbehindthem.Theseriescontainsmonographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Bio- logical Systems, Vehicular Networking and Connected Vehicles, Aerospace Sys- tems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular valuetoboththecontributorsandthereadershiparetheshortpublicationtimeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/13304 Arturo Locatelli Optimal Control of a Double Integrator A Primer on Maximum Principle 123 ArturoLocatelli Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Milan Italy ISSN 2198-4182 ISSN 2198-4190 (electronic) Studies in Systems,DecisionandControl ISBN978-3-319-42125-4 ISBN978-3-319-42126-1 (eBook) DOI 10.1007/978-3-319-42126-1 LibraryofCongressControlNumber:2016945869 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland To Franca, my parents, children and grandchildren Preface OptimalControlTheoryhasbeenverypopularalongafairlylargenumberofyears, startingfromthelate1950swhensomefundamentalresultshavebeenestablished. AmongthemthereisnodoubtthattheMaximumPrinciplemustbeconsideredasa cornerstone.However,the(possibly)excessiveenthusiasmforitsreputedcapability ofsolvinganykindofproblem,whichhascharacterizedthebeginningofitsstory, has been followed by an (equally) unjustified rejection by considering it as purely abstractconceptswithnorealutility.Inrecentyearsithasbeenrecognizedthatthe truthliessomewherebetweenthesetwoopinions,andoptimalcontrolhasfoundits (appropriate yet limited) space within any curriculum where system and control theory plays a significant role. Consistently, this book is intended to supply an introductory but fairly comprehensive treatment of the founding issues of Pontryagin’s Maximum Principle. The book is suited for students who are already familiar with the basics of system and control theory and possess the calculus background usually taught in undergraduateengineeringcurricula.Furthermoreitsstructureallowsdifferentways of reading it and teaching its contents. A first level presentation of the Maximum Principle can be carried on by referring to Chap. 1, Sects. 2.1 and 2.2 (restraining the attention to Sects. 2.2.1 and 2.2.2) and to Chaps. 3–5. Subsequently, the materialofSect.2.2.3andChap.6canbeexploredandafurtherin-depthstudycan be achieved through Sect. 2.2.4 and Chap. 7. A second level presentation which suppliesadeeperinsightmakesreferencetothemorecomplexproblemsdealtwith in Sect. 2.3 and Chaps. 8–10. Their treatment is almost self-consistent so that the fruitionofthismaterialneedsSects.2.1–2.3,whereasitdoesnotnecessarilyrequire consideringChaps.3–7.Finally,thetopicsinChaps.11and12canbeaddedboth to the first and the second level presentations. Milan, Italy Arturo Locatelli vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 The Maximum Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Statement of the Optimal Control Problems. . . . . . . . . . . . . . . 3 2.2 Necessary Conditions: Simple Constraints. . . . . . . . . . . . . . . . 6 2.2.1 Purely Integral Performance Index . . . . . . . . . . . . . . . 9 2.2.2 Performance Index Function of the Final Event . . . . . . 11 2.2.3 Non-standard Constraints on the Final State . . . . . . . . 13 2.2.4 Minimum Time Problems . . . . . . . . . . . . . . . . . . . . . 14 2.3 Necessary Conditions: Complex Constraints . . . . . . . . . . . . . . 20 2.3.1 Description of Complex Constraints. . . . . . . . . . . . . . 20 2.3.2 Integral Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Punctual and Isolated Constraints. . . . . . . . . . . . . . . . 22 2.3.4 Punctual and Global Constraints . . . . . . . . . . . . . . . . 23 2.4 Necessary Conditions: Singular Arcs . . . . . . . . . . . . . . . . . . . 26 2.5 The Considered Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Simple Constraints: J =∫, x(t ) = Given . . . . . . . . . . . . . . . . . . . . 31 0 3.1 ðxðt Þ; t ; t Þ¼Given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 f 0 f 3.2 ðxðt Þ; t Þ¼ Given; t ¼ Free . . . . . . . . . . . . . . . . . . . . . . . . 38 f 0 f 3.3 xðt Þ¼Not Given; ðt ;t Þ¼ Given . . . . . . . . . . . . . . . . . . . . 48 f 0 f 3.4 xðt Þ¼Not Given; t ¼ Given; t ¼Free. . . . . . . . . . . . . . . . 62 f 0 f 4 Simple Constraints: J =∫, x(t ) = Not Given. . . . . . . . . . . . . . . . . 77 0 4.1 ðxðt Þ; t ; t Þ¼ Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 f 0 f 4.2 xðt Þ¼Not Given; ðt ; t Þ¼ Given. . . . . . . . . . . . . . . . . . . . 84 f 0 f 4.3 xðt Þ¼Not Given; ðt ; t Þ¼Free . . . . . . . . . . . . . . . . . . . . . 92 f 0 f 5 Simple Constraints: J =∫+ m, x(t ) = Given, 0 x(tf) = Not Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.1 (t ; t Þ¼ Given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 0 f 5.2 t ¼ Given; t ¼Free. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 0 f ix x Contents 6 Nonstandard Constraints on the Final State . . . . . . . . . . . . . . . . . 127 7 Minimum Time Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8 Integral Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.1 Integral Equality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.2 Integral Inequality Constraints. . . . . . . . . . . . . . . . . . . . . . . . 178 9 Punctual and Isolated Constrains. . . . . . . . . . . . . . . . . . . . . . . . . 193 10 Punctual and Global Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.1 Punctual and Global Equality Constraints . . . . . . . . . . . . . . . . 227 10.2 Punctual and Global Inequality Constraints. . . . . . . . . . . . . . . 240 11 Singular Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12 Local Sufficient Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 12.1 xðt Þ¼PartiallyGiven; t ¼Free. . . . . . . . . . . . . . . . . . . . . . 299 f f 12.2 xðt Þ¼Given; t ¼Given. . . . . . . . . . . . . . . . . . . . . . . . . . . 303 f f 12.3 xðt Þ¼Free; t ¼Free. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 f f 12.4 xðt Þ¼Free; t ¼Given. . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 f f Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Chapter 1 Introduction Since its appearance in the early sixties, the Pontryagin’s Maximum Principle is a fundamental part of Control Theory. Indeed it is the basic tool when we have to cope with Optimal Control problems, in particular those stated in terms of finite- dimensional,continuous-timedynamicalsystems. Aswellknown,theMaximumPrincipleisrootedintheCalculusofVariationsand manypeoplelegitimatelyseeitasanaturalextensionofthischapterofmathematics, specifically oriented to control problems. Thus it should not be surprising that the supplied results intrinsically have the nature and present the limits of necessary conditions.Asamatteroffactstheseconditionsstemfromacustomaryandsimple idea.Specifically,asolutionoftheproblemmustentailthatanychangeofitsfree parameters does not cause an improvement of the value of the performance index (theindextobeoptimized)ifthechangeisaccomplishedstartingfromthesituation whichisclaimedtobeoptimal.Theconditionswhichresultbyexploitingfirstorder variationalmethods,namelybyimposingthattheimprovementdoesnottakeplace whenfirstordervariationsoccur,arenecessaryoptimalityconditions.Howeverthis simpleideaisoftendevelopedinafairlycomplexmathematicalcontext,especially whentheproblemisfeaturedwithnontrivialconstraintsonthestateand/orcontrol variables. Theaimofthisbookistopresentinasimpleandfriendlymannertheachievements resultingfromfirstordervariationalmethods.Theyareillustratedbyalargenumber of problems which, almost without exceptions, refer to a particular second-order, linearandtime-invariantdynamicalsystem,theso-calleddoubleintegrator.There is no doubt that it is the simplest system which supplies a fairly comprehensive overview of the topics under consideration. Furthermore a deeper insight on the significance of the solutions can frequently be gained by recalling that the double integrator constitutes the mathematical model of a body with unitary mass which isconstrainedtomovealongastraightlineundertheactionofaforce.Finally,the required computational burden is made as small as possible by the choice of this particularsystem,sothatthepresentedmaterialcaneasilybegrasped.Consistently, wehavechosennottogiveaformalproofofthevariousnecessaryconditionsand ©SpringerInternationalPublishingSwitzerland2017 1 A.Locatelli,OptimalControlofaDoubleIntegrator,StudiesinSystems, DecisionandControl68,DOI10.1007/978-3-319-42126-1_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.