View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com LinearAlgebraanditsApplications428(2008)1230–1249 www.elsevier.com/locate/laa Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation J. Tervo a,∗, M. Vauhkonen b, E. Boman b a DepartmentofMathematicsandStatistics,UniversityofKuopio,P.O.Box1627,FIN-70211,Kuopio,Finland b DepartmentofPhysics,UniversityofKuopio,Kuopio,Finland Received31July2006;accepted4March2007 Availableonline24March2007 SubmittedbyY.Censor Abstract We consider an inverse problem related to external radiation therapy treatment planning. The dose calculation (the forward problem) is based on the Boltzmann Transport Equation (BTE) which models exactlythetransportofchargedparticlesintissue.Theinverseplanning(theinverseproblem)isformulated asanoptimalboundarycontrolproblem.Theoptimalcontrolvariableistheincoming(external)fluxand theoutputisthedosedistributioninpatientdomain.Bothphysicalandbiologicalcostfunctionsaredefined buthereweconcentrateonthephysicallybasedoptimization.Thediscretizationisdonebyfiniteelement approximationsforwhichtheBTEisexpressedinitsvariationalform.Intheoptimizationprocessofthe discretemodelweapplysocalledparametrization(whichmayessentiallydiminishthedecisionvariablesin optimization)ofthematrixequations.Parametrizationisbasedoncertainlinearalgebraicdecompositions ofmatrices.Onesimulationispresentedwhichshowthefunctionalityofthedevelopedmethods. ©2007ElsevierInc.Allrightsreserved. Keywords: Boltzmanntransportequation;Radiotherapy;Optimalcontrol;Parametrization;Globaloptimization 1. Introduction In the field of radiation therapy much research has been done to obtain new innovative techniques for treating cancer patients with radiation. New equipments and new computational approacheshavebeendevelopedbuttherestillisalackofautomatictreatmentplanningsystem. Treatmentplanningisaninverseprobleminnature.Insolvingtheinverseproblemonealways ∗ Correspondingauthor. E-mailaddress:Jouko.Tervo@uku.fi(J.Tervo). 0024-3795/$-seefrontmatter(2007ElsevierInc.Allrightsreserved. doi:10.1016/j.laa.2007.03.003 J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 1231 needsadosecalculationmodel,thatis,aphysical“doselaw”whichdeterminesthedoseinthe patientbasedontheknowledgeoftheradiationfluxincidentonthesurfaceofthepatientdomain. Inthemathematicalterminology,thismeansthesolutionoftheforwardproblem. For solving the forward problem one has developed and applied various dose calculation models. Widely used models are variants of so-called pencil beam models which require the applicationofadosedepositionkernel.Themostaccurate,physicallyrigorousandrobustmodels arebasedontheBoltzmanntransportequation(BTE)[1,6,8,9,12,15].Transportequationbased dosecalculationmodelsarevalidininhomogeneousmaterialandtheyalsotakerigorouslyinto accountthescatteringeffects.Mainlyduetocomputationalproblems,BTEbasedmodelsarenot yetextensivelyusedinsolvingtheforwardproblem. Inoncologicalsocietythesolutionoftheinverseproblem,i.e.,theconceptof“thebestplan” seems not to be absolutely unique. In some cases it may be difficult to measure the optimality criteria.However,theprinciplesoftheoptimalplancanbefoundedeitheronthephysicalcriteria oronthebiologicalcriteria.Nowadaysinpracticethecriteriaaremainlybasedonphysicalones. Inthecaseofphysicalcriteriaonetriestocreateaprescribeddosedistributioninthetarget (tumor) such that the dose in the healthy tissue is under certain prescribed value. In addition, one takes special care of critical organs by demanding that the dose in vulnerable regions is under certain prescribed level. Some additional constraints (e.g. dose volume constraints) may be included. Using physical criteria the objective functions are relatively easy to construct and a lot of various alternatives can be found in literature (e.g. [23,24] and the references therein). Anotherpossibilityintheoptimizationapplyingphysicalcriteriaistoseekonlyfeasible(nearly optimal)solutions[5,16].Recentlywehavedevelopedoptimizationalgorithmswhichusedirectly themultileafcollimator(MLC)systemparametersinoptimization[16–19].Thecorresponding deliveryquality(objective)functionsareusuallyhighlynonlinearandmultiextremal.Themodel constraintsaremainlylinearinequalitiesandsorelativelysimple. Intheoptimizationwhichisbasedonbiologicalcriteriaoneutilizesstatisticaldatacollected fromclinicaltrials.Inthecaseofbiologicalcriteria,twodifferentprobabilities,namelythetumor controlprobability(TCP)andthenormaltissuecomplicationprobability(NTCP)areemployedin thetreatmentplanning[3,4,24].TheaimistoprovideashighTCPaspossibleandatthesametime maintaintheNTCPatanacceptablelevelincertainorgansofthepatient.Thebiologicalobjective functions are more difficult to construct and as a rule one can say that the biological objective functionsaremathematicallymorecomplextohandlethanthephysicalobjectivefunctions. Recentlywehavedevelopedanoptimalcontrolapproachforsolvingtheoptimizationproblem [20].InthisapproachtheBTEhasbeenutilizedandtheoptimizationproblemissolvedbythe boundarycontroloptimizationtheory.Inthispaperweintroducearadiationtreatmentplanning approachthatisbasedontheBoltzmanntransportequationandoptimalcontrol.Anovellinear algebraicparametrizationapproachisutilizedforthediscretizedmodelinordertoreducethenum- berofoptimizedparametersintheoptimizationprocedure.Solvingeffectivelylargedimensional linearsystemsandthecalculationofthesingularvaluedecompositionsforthemaredifficulties inourapproach.Thecontrolparametersinthisstudyaretheintensitiesoftheappliedradiation fields, though it would be fairly straightforward to formulate the problem also for the case of MLC.Inthatcase,however,theobjectivefunctionsbecomehighlynonlinearandthenumberof decisionparametersincreases.Numericalresultsfortwo-dimensionalpatientbodyareshownin thepaper.Innumericalconsiderationswehaveconcentratedontheuseofphysicaloptimization criteriabuttheoptimizationschemeapplyingthebiologicaloptimizationcriteriaisalsodefined inthepaper.Theoptimizationproblemsforrealistic(3-dimensionalpatientbody)casesarevery largedimensionalandtheyarestillcomputationallytooexpensive. 1232 J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 2. Calculationofdose 2.1. Boltzmanntransportequationmodel PhysicallytheBoltzmanntransportequationisbasedontheparticleequilibriumininfinitesimal small voxels of tissue. The modeling requires the knowledge of the differential and total cross sectionswhichdependonthenatureofinteractionsofparticles.Thetotaldoseisobtainedasa superpositionofdifferentfieldsaswillbedescribedindetailbelow(Section2.3). We consider only the stationary transport of particles. Assume that ψ =ψ (x,E,(cid:2)),j = j j 1,2,3 are the phase space densities for photons, electrons and positrons, respectively. x = (x ,x ,x )isthepointinthepatientdomainV ⊂R3.(cid:2)isapointontheunitsphereS ofR3. 1 2 3 Inthecasewhereelasticcollision,inelasticcollisionandbremsstrahlungaretakenintoaccount themodelconsistsofthefollowingcoupledsystemofpartialdifferential–integralequations (cid:2)·∇ψ +K (ψ ,ψ ,ψ )=Q (x,E,(cid:2)), 1 1 1 2 3 1 (cid:2)·∇ψ +K (ψ ,ψ ,ψ )=Q (x,E,(cid:2)), (2.1) 2 2 1 2 3 2 (cid:2)·∇ψ +K (ψ ,ψ ,ψ )=Q (x,E,(cid:2)). 3 3 1 2 3 3 Themodel(2.1)islinear.Itneglectssomenonlinearinteractionswhicharenotessentialindose calculation.ThefunctionsK (ψ ,ψ ,ψ ),j =1,2,3arecollisiontermsresultingfromdifferent j 1 2 3 kindofinteractions(mentionedabove).K ,K ,K arelinearfunctionsofψ:=(ψ ,ψ ,ψ ).The 1 2 3 1 2 3 interactionscanbedescribedbytheintegrals(j =1,2,3) (cid:3) (cid:3) (cid:2)3 (cid:2)3 K ψ = σ (x,E(cid:5),E,(cid:2)(cid:5),(cid:2))ψ (x,E(cid:5),(cid:2)(cid:5))d(cid:2)(cid:5)dE(cid:5)− (cid:3) (x,E)ψ . j k,j k k,j k k=1 I S k=1 Aboveσ (x,E(cid:5),E,(cid:2)(cid:5),(cid:2))aredifferentialcrosssectionsand(cid:3) (x,E)aretotalcrosssections. k,j k,j Iftheinteractionfromparticlej toparticlekisnotpossible,σ =0.Fortotalcrosssections k,j (cid:3) =0, j =/ k. (2.2) k,j Finally,Qj(x,E(cid:4),(cid:2))arethesourceterms.Thesemaydescribesourcesintissue(interiortherapy). The integral f((cid:2))d(cid:2) denotes the standard surface integral. We denote by I the energy S interval,say[E ,E ].Thesolutionψisdefinedinthe6-dimensionalstatespaceG:=V ×I ×S. 1 2 Inthefollowingwedenotethesystem(2.1)moresimplyby ((cid:2)·∇+K)ψ =Q, (2.3) where (cid:2)·∇ψ =((cid:2)·∇ψ ,(cid:2)·∇ψ ,(cid:2)·∇ψ ) 1 2 3 and Kψ =(K ψ,K ψ,K ψ), Q=(Q ,Q ,Q ). We consider exterior radiation therapy. 1 2 3 1 2 3 Hence we have Q=0 and the boundary condition is used to model the extrageneous particle fluxes. 2.2. Photoninflow.Theboundarycondition We consider the photon inflow in the stationary case. This corresponds the exterior photon radiation. Other modalities are similarly considered. We assume that the boundary (cid:2)V is a Lipschitz-boundary. Then the outward normal ν(x) exists and is it continuous on (cid:2)V in spite ofpossiblyasetwithsurfacemeasurezero. J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 1233 Totakeintoaccounttheincomingextrageneousfluxwemustputsome(boundary)conditions forthesolution.Intheexteriortherapythetypicalconditionforthesolutionψ isoftheform ψ (x,E,(cid:2))=ψ (x,E,(cid:2))=0 for(x,E,(cid:2))∈(cid:2)V ×I ×S 2 3 suchthat(cid:2)·ν(x)<0, ψ (x,E,(cid:2))=u(x,E,(cid:2)) for(x,E,(cid:2))∈(cid:2)V ×I ×S 1 suchthat(cid:2)·ν(x)<0. (2.4) uisthephotonfluxdensityincidenton(cid:2)V.Weassumethatu∈L ((cid:2)V ×I ×S).Thecondition 2 ψ =ufor(cid:2)·ν(x)<0,x ∈(cid:2)V meansthatthebeam(thefluxu)isinwardlyonthepatch(cid:2)V 1 andtheconditionψ =0,j =2,3for(cid:2)·ν(x)<0meansthatnootherparticlesgenerateinward j fluxes. Remark1. Fortheexteriorelectronradiationtherolesofψ andψ arechangedintheboundary 1 2 condition.Otherwisetheboundaryconditionissameasin(2.4). 2.3. Thedefinitionofdose In practical situations the total dose distribution is computed as follows. Let the incoming (initial)fluxdensityofthelthfieldS beu.Weassumethatu ∈L ((cid:4) ×I ×S),where(cid:4) is l l l 2 l l apatchof(cid:2)V throughwhichtheradiationisenteringintodomainV.Letψl =(ψl,ψl,ψl)be 1 2 3 thefluxdensitycorrespondingtothefieldS,thatisψl isthesolutionoftheequation l ((cid:2)·∇+K)ψl =0 (2.5) withtheboundarycondition ψl(x,E,(cid:2))=ψl(x,E,(cid:2))=0 for(x,E,(cid:2))∈(cid:2)V ×I ×S 2 3 suchthat(cid:2)·ν(x)<0, ψl(x,E,(cid:2))=0, for(x,E,(cid:2))∈((cid:2)V \(cid:4))×I ×S 1 l suchthat(cid:2)·ν(x)<0, (2.6) ψl(x,E,(cid:2))=u(x,E,(cid:2)) for(x,E,(cid:2))∈(cid:4) ×I ×S 1 l l suchthat(cid:2)·ν(x)<0. Above (cid:2)·∇ψl:=((cid:2)·∇ψl,(cid:2)·∇ψl,(cid:2)·∇ψl), Kψl:=(K ψl,K ψl,K ψl). 1 2 3 1 2 3 ThedosecontributionD(x)fromthefieldS atapointxofthepatientdomainV isobtained l l fromthe(measurement)integral (cid:3) (cid:3) (cid:2)3 D(x)= κ (x,E)ψl(x,E,(cid:2))dEd(cid:2), (2.7) l j j j=1 S I where κ (x,E) are known (stopping power) factors (κ (x,E)=0). The total dose is obtained j 1 from 1234 J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 (cid:3) (cid:3) (cid:2)L (cid:2)L (cid:2)3 D(x)= D(x)= κ (x,E)ψl(x,E,(cid:2))dEd(cid:2). (2.8) l j j l=1 l=1j=1 S I Thecomputationoftotaldosecanalsobeformulatedasfollows.Defineu∈L ((cid:2)V ×I ×S) 2 suchthat (cid:2)L u= uχ, (2.9) l l l=1 whereχ :(cid:2)V ×I ×S →Rarethecharacteristicfunctionsof(cid:4) ×I ×S.Letψ =(ψ ,ψ ,ψ ) l l 1 2 3 bethesolutionoftheproblem ((cid:2)·∇+K)ψ =0 (2.10) withtheboundarycondition ψ (x,E,(cid:2))=ψ (x,E,(cid:2))=0 for(x,E,(cid:2))∈(cid:2)V ×I ×S 2 3 suchthat(cid:2)·ν(x)<0, ψ (x,E,(cid:2))=u, for(x,E,(cid:2))∈(cid:2)V ×I ×S 1 suchthat(cid:2)·ν(x)<0, (2.11) whereuisdefinedby(2.9). Thesolutionoftheproblem(2.10)–(2.11)is (cid:5) (cid:6) (cid:2)L (cid:2)L (cid:2)L ψ = ψl, ψl, ψl , (2.12) 1 2 3 l=1 l=1 l=1 whereψl(l =1,...,L)arethesolutionsof(2.5)–(2.6).Theprooffollowsfromtheuniqueness ofsolutions(2.3)–(2.4)whichwewillformulateinSection2.4.Nowthetotaldoseis (cid:3) (cid:3) (cid:2)3 D(x)= κ (x,E)ψ (x,E,(cid:2))dEd(cid:2), (2.13) j j j=1 S I whereψ isthesolutionof(2.10)–(2.11).Wefindthat(2.10)–(2.11)isexactlytheproblem(2.3)– (2.4)withu∈L ((cid:2)V ×I ×S)givenby(2.9). 2 Remark2. Theenergydepositioninapatientisduetothechargedparticles.Henceinpractice wecanassumethatκ (x,E)=0.Moregenerallythefactorsκ maydependalsoon(cid:2). 1 j 2.4. Variationalformofequations Let G be as above and let L (G) be the Lebesgue space of (real valued) square integrable 2 functionsonGwiththeusualinnerproduct.Furthermore,let (cid:7) L ((cid:2)V ×I ×S,|(cid:2)·ν|dσdEd(cid:2)) := g :(cid:2)V ×I ×S →R|gismeasurableand 2 (cid:8) (cid:3) (cid:3) (cid:3) |(cid:2)·ν|g2dσdEd(cid:2)<∞ , S I (cid:2)V J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 1235 whereσ isthesurfacemeasureon(cid:2)V.ThenL ((cid:2)V ×I ×S,|(cid:2)·ν|dσdEd(cid:2))isaHilbertspace 2 equippedwiththeinnerproduct (cid:3) (cid:3) (cid:3) (cid:9)g1,g2(cid:10)L2((cid:2)V×I×S,|(cid:2)·ν|dσdEd(cid:2)):= |(cid:2)·ν|g1g2dσdEd(cid:2). S I (cid:2)V Denote D(V ×I ×S):={f| |f ∈C∞(R3×R×S)}. V×I×S LetH bethecompletionofD(V ×I ×S)withrespecttotheinnerproduct 1 (cid:9)f1,f2(cid:10)H1:=(cid:9)f1,f2(cid:10)L2(G)+(cid:9)f1,f2(cid:10)L2((cid:2)V×I×S,|(cid:2)·ν|dσdEd(cid:2)). Furthermore,letH bethecompletionofD(V ×I ×S)withrespecttotheinnerproduct 2 (cid:9)f ,f (cid:10) =(cid:9)f ,f (cid:10) +(cid:9)(cid:2)·∇f ,(cid:2)·∇f (cid:10) . 1 2 H2 1 2 L2(G) 1 2 L2(G) Finally,letH:=H ∩H isequippedwiththestandardHilbertspaceinnerproduct 1 2 (cid:9)f ,f (cid:10) =(cid:9)f ,f (cid:10) +(cid:9)f ,f (cid:10) . 1 2 H 1 2 H1 1 2 H2 Foranyf ∈H1 thetracef|(cid:2)V×I×S) iswelldefinedinthesensethatthereexistsasequence {f }⊂D(V ×I ×S)suchthat n fn →f|(cid:2)V×I×S inL2((cid:2)V ×I ×S,|(cid:2)·ν|dσdEd(cid:2)). One knows that for each f ∈H2 the restriction f|(cid:2)V×I×S ∈L2(K) where K is a compact subsetof {(x,E,(cid:2))∈(cid:2)V ×I ×S||(cid:2)·ν(x)|>0} but f|(cid:2)V×I×S is not necessarily in L2((cid:2)V ×I ×S,|(cid:2)·ν|dσdEd(cid:2)) [8, pp. 220–221]. For ψ,v ∈H theGreen’sformula (cid:3) (cid:3) (cid:3) (cid:9)ψ,(cid:2)·∇v(cid:10) +(cid:9)(cid:2)·∇ψ,v(cid:10) = ((cid:2)·ν)ψvdσdEd(cid:2) (2.14) L2(G) L2(G) S I (cid:2)V isvalid[8,p.225]. IntheproductspacesH3,i =1,2weusetheusualinnerproducts i (cid:2)3 (cid:9)f,h(cid:10) = (cid:9)f ,h (cid:10) H3 j j Hi i j=1 for f =(f ,f ,f ),h=(h ,h ,h )∈H3. In the similar way we define the inner product in 1 2 3 1 2 3 i H3. Inthefollowingthesubscript“−”referstothenegativepartofafunctionandthesubscript“+” referstothepositivepartofafunction.Thevariationalformulationoftheproblem(2.3)–(2.4)is givenby[21]. Theorem1. Assumethat 1. (cid:3)k,j ∈L∞(V ×I), (2.15) 2. σ ∈C(V ×I2×S2), (2.16) k,j 3. Q ∈L (G),u∈L ((cid:2)V ×I ×S). (2.17) j 2 2 1236 J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 Then the variational form of the equation (2.10) with the stated boundary condition (2.11) is givenby B(ψ,v)=F(v), v ∈H3, (2.18) whereB(·,·):H3×H3 (cid:12)→Risthebilinearform (cid:3) (cid:3) (cid:3) (cid:2)3 B(ψ,v)=−(cid:9)ψ,(cid:2)·∇v(cid:10)L2(G)3 +j=1 S I (cid:2)V((cid:2)·ν)+ψjvjdσdEd(cid:2)+(cid:9)Kψ,v(cid:10)L2(G)3 (2.19) and (cid:3) (cid:3) (cid:3) F(v)=(cid:9)Q,v(cid:10)L2(G)3 + S I (cid:2)V((cid:2)·ν)−uv1dσdEd(cid:2). (2.20) Weformulatethefollowinglemma[21]: Lemma1. Assumethat 1. (cid:3)k,j ∈L∞(V ×I), (2.21) 2. σ ∈C(V ×I2×S2). (2.22) k,j 3.Thereexitsκ >0suchthatforψ ∈H3 (cid:9)Kψ,ψ(cid:10) (cid:2)κ(cid:13)ψ(cid:13)2 . (2.23) L2(G)3 L2(G)3 ThenthebilinearformB(ψ,v)satisfies B(ψ,v)(cid:3)C(cid:13)ψ(cid:13) (cid:13)v(cid:13) (boundedness) (2.24) H3 H3 1 forψ,v ∈H3and B(ψ,ψ)(cid:2)c(cid:13)ψ(cid:13)2 (H3−coercitivity) (2.25) H3 1 1 forψ ∈H3. Inaddition,F ∈(H3)∗(herethesuperscript“∗”referstotheadjointspace)andthereexists 1 C >0suchthat (cid:13)ψ(cid:13) (cid:3)C(cid:13)F(cid:13), (2.26) H3 1 where (cid:9) (cid:3) (cid:3) (cid:3) (cid:13)F(cid:13):=(cid:13)Q(cid:13)L2(G)3 + S I (cid:2)V |((cid:2)·ν)−|u2dσdEd(cid:2). In [2,21] we have proved the following sufficient algebraic criterion for the coercitivity assumption(2.23) J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 1237 Lemma2. Supposethat(cid:3)j,j ∈L∞(V ×I)andσk,j ∈C(V ×I2×S2).Furthermore,suppose that(2.2)isvalidandthatthereexistsα >0suchthatalmosteverywhere(x,E,(cid:2))∈G (cid:3) (cid:3) (cid:2)3 (cid:3) (x,E,(cid:2))− σ (x,E(cid:5),E,(cid:2)(cid:5),(cid:2))dE(cid:5) d(cid:2)(cid:5) (cid:2)α (2.27) j,j k,j S I k=1 and (cid:3) (cid:3) (cid:2)3 (cid:3) (x,E,(cid:2))− σ (x,E,E(cid:5),(cid:2),(cid:2)(cid:5))dE(cid:5)d(cid:2)(cid:5) (cid:2)α (2.28) j,j j,k S I k=1 forj =1,2,3.Thentheassumption (cid:9)Kψ,ψ(cid:10) (cid:2)α(cid:13)ψ(cid:13)2 (2.29) L2(G)3 L2(G)3 isvalid. Aphysicalbackgroundcanbeeasilyfoundforthecondition(2.27),wheretheintegrationsover energyandangulardomainsbasicallydescribethetotalscatteringcrosssections.Thecondition (2.27)statesthatthesumofthesescatteringcrosssectionscannotbelargerthanthetotalcross section itself. This is always true, because the total cross section is the sum of scattering and absorptioncrosssections.Thephysicalmeaningofthesecondcondition(2.28)isnotsoclear.It statesthatthoseintegrated‘inverse’scatteringcrosssections,whichchangeparticlesfromj tok cannotbelargerthanthetotalcrosssectionoftheparticlej.However,itseemsthatthissecond condition(2.28)isalsophysicallyrelevant. By the boundedness (2.24) the bilinear form B(·,·) can be extended on H3×H3 (here we 1 denotetheextensionagainbyB(·,·)).Theextensionsatisfiestheestimates |B(ψ,v)|(cid:3)C(cid:13)ψ(cid:13) (cid:13)v(cid:13) , ψ ∈H3, v ∈H3 (2.30) H3 H3 1 1 and B(ψ,ψ)(cid:2)c(cid:13)ψ(cid:13)2 , ψ ∈H3. (2.31) H3 1 Weformulatethefollowingexistenceresultofsolutions: Theorem2. Suppose that the assumptions of Theorem 1 are valid and that (2.2) and (2.27)– (2.28)hold.Thenthevariationalequation B(ψ,v)=F(v), v ∈H3 (2.32) hasoneandonlyonesolutionψ ∈H3. Inaddition,F ∈(H3)∗and 1 1 (cid:13)ψ(cid:13) (cid:3) (cid:13)F(cid:13), (2.33) H13 c where (cid:9) (cid:3) (cid:3) (cid:3) (cid:13)F(cid:13)(cid:3)(cid:13)Q(cid:13)L2(G)3 + S I (cid:2)V |((cid:2)·ν)−|u2dσdEd(cid:2). (2.34) Proof. The proof follows from estimates (2.30), (2.31) and the generalized Lax–Milgram Theorem[22,p.403].Weomitthedetailshere. (cid:4) 1238 J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 Theorem2givestheexistenceofweaksolutionsfortheproblem(2.10)–(2.11). 3. Optimalcontrolprobleminradiationtherapy 3.1. Inverseproblembasedonphysicalobjectives ThepatientdomainV ⊂R3containstumor’s(target’s)regionT,criticalorgans’regionCand normaltissue’sregionNandsowehavetheunionV =T∪C∪N.LetusassumethatwehaveL fieldsS,l =1,...,L.Thismeansthatgantry,couchandcollimatoranglesaredeterminedand l thewholetreatmentcontainsLdifferentanglesettings. Abovewehavefoundthatthedosecanbeobtainedfromthefunctional (cid:3) (cid:3) (cid:2)3 D(x)= κ (x,E)ψ (x,E,(cid:2))dEd(cid:2), (3.1) j j j=1 S I whereψ isthesolutionof(2.10)–(2.11).In(3.1)κ (x,E)areknownfactors(so-calledstopping j powers).Weassumethatκj ∈L∞(V ×I).Consideringtheexternaltherapywehavenointernal sources.SoQ =0foreachfieldS.Applyingtheaboveconcepts,theinverseradiationtreatment l l planningproblemstates: SupposethatD istheprescribed(uniform)doseintumorTandthatD andD aretheupper 0 C N bounds of dose in the critical organ C and in the normal tissue N, respectively. Furthermore, supposethatthenumberLandthegantry,couchandcollimatoranglesα,β andθ offieldsS l l l l aregiven. Determinetheincomingfluxu∈L ((cid:2)V ×I ×S)suchthat 2 D(x)=D , x ∈T, 0 D(x)(cid:3)D , x ∈C, C D(x)(cid:3)D , x ∈N. (3.2) N andthat u(cid:2)0. (3.3) Tumor, critical organ and normal tissue may be divided into many separate parts and dose limitsmaybedifferentintheseparts. Besidestherequirements(3.2)oneoftendemandsthatsocalleddosevolumeconstraints[3,23] are fulfilled. Dose volume constraints may be necessary for certain structures, for example for criticalorgans.WedescribethisrequirementshortlyforcriticalorganC.Letv(D)bethevolume fractionofCthatreceivesadosegreaterthanD.Wedemandthat v(D)(cid:3)v whenD (cid:2)d , (3.4) 0 C where v is a given volume fraction and d is a given dose. Since the function v =v(D) is a 0 C decreasingfunctionofDthecondition(3.4)isequivalentto v(d )(cid:3)v . (3.5) C 0 Thecondition(3.5)meansthat μ({x ∈C|D(x)(cid:2)d }) C (cid:3)v , (3.6) 0 μ(C) J.Tervoetal. / LinearAlgebraanditsApplications428(2008)1230–1249 1239 (cid:10) whereμistheLebesguemeasure.LetH :R→RbetheHeavisidefunctionH(x)= 1, x(cid:2)0. 0, x<0 Thenthedosevolumeconstraint(3.6)canbeexpressedas (cid:3) 1 H(D(x)−d )dx (cid:3)v . (3.7) C 0 μ(C) C In computer programs the Heaviside function H can be accurately replaced by the error func- (cid:4) tion erf (x)= √1 x e−s2/(cid:10)2ds. Furthermore, the requirement (3.6) can be approximated (cid:10) π(cid:10) −∞ accuratelybytherequirement (cid:2) 1 erf (D(x )−d )(cid:3)v , (3.8) |I | (cid:10) p C 0 C p∈IC whereI isaselectedfinitesetofC(forexample,thesetofnodesinfiniteelementcomputations). C Whenthedosevolumeconstraintsaretakenintoaccountrequirementslike(3.7)(or3.8))areadded totherequirements(3.2). 3.2. Optimalcontrolproblem Toclarifytheu-dependenceofvariableswedenoteψ =ψ(u),ifneeded.LetF :L ((cid:2)V × 2 I ×S)(cid:12)→(H3)∗betheoperatordefinedby (cid:3) (cid:3) (cid:3) (Fu)(v)= ((cid:2)·ν)−uv1dσdEd(cid:2). S I (cid:2)V NotethatF(v)=(Fu)(v)(orF =Fu).Usingthesenotationsψ =ψ(u)satisfiesthevariational equation B(ψ(u),v)=(Fu)(v), v ∈H3. (3.9) LetL:L (G)3 →L (V)bethefunctional 2 2 (cid:3) (cid:3) (cid:2)3 (Lψ)(x)= κ (x,E)ψ (x,E,(cid:2))dEd(cid:2). (3.10) j j j=1 S I Thenwehaveforthedose D =Lψ =Lψ(u). (3.11) ForlaterneedswenoticethattheadjointL∗ :L (V)→L (G)3ofLisgivenby 2 2 L∗v =(κ v,κ v,κ v), v ∈L (V). (3.12) 1 2 3 2 The dose D(x) must be as near as possible to the described dose D in the tumor and the 0 upperboundsofdoseincriticalorgansandnormaltissuemaynotbeviolated.Hencewetryto optimizetheincomingfluxusothatthisholds.Theconcreteimplementationofthisleadstothe followingkindofoptimizationproblems,forexample. Defineacostfunctionalby J(u)=c (cid:13)D −Lψ(u)(cid:13)2 1 0 L2(T) +c2(cid:13)(DC−Lψ(u))−(cid:13)2L2(C)+c3(cid:13)(DN−Lψ(u))−(cid:13)2L2(N) +c4(cid:13)(u)−(cid:13)2L2((cid:2)V×I×S)+c5(cid:13)u(cid:13)2L2((cid:2)V×I×S), (3.13)
Description: