ebook img

OPTIMAL ACTUATOR PLACEMENT AND ACTIVE STRUCTURE DESIGN FOR CONTROL OF ... PDF

322 Pages·2002·5.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview OPTIMAL ACTUATOR PLACEMENT AND ACTIVE STRUCTURE DESIGN FOR CONTROL OF ...

The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering OPTIMAL ACTUATOR PLACEMENT AND ACTIVE STRUCTURE DESIGN FOR CONTROL OF HELICOPTER AIRFRAME VIBRATIONS A Thesis in Mechanical Engineering by David E. Heverly II  2002 David E. Heverly II Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2002 We approve the thesis of David E. Heverly II. Date of Signature Kon-Well Wang William E. Diefenderfer Chaired Professor in Mechanical Engineering Thesis Co-Advisor Co-Chair of Committee Edward C. Smith Associate Professor of Aerospace Engineering Thesis Co-Advisor Co-Chair of Committee Farhan Gandhi Associate Professor of Aerospace Engineering Panagiotis Michaleris Assistant Professor of Mechanical Engineering Richard C. Benson Professor and Head Department of Mechanical and Nuclear Engineering ABSTRACT A comprehensive research program on active control of rotorcraft airframe vibration is detailed in this thesis. A systematic design methodology, to realize an active vibration control system, is proposed and studied. The methodology is a four-part design cycle and relies heavily on numerical computation, modeling, and analysis. The various analytical tools, models, and processes required to execute the methodology are described. Two dynamic models of the helicopter airframe and an optimization procedure for actuator placement are utilized within the methodology. The optimization procedure simultaneously determines the type of actuation, the locations to apply actuation, and the corresponding active control actions. A feasibility study is conducted to examine the effectiveness of helicopter vibration control by distributing actuators at optimal locations within the airframe, rather than confining actuation to a centralized region. Results indicate that distributed actuation is capable of greater vibration suppression and requires less control effort than a centralized actuation configuration. An analytical and experimental investigation is conducted on a scaled model of a helicopter tailboom. The scaled tailboom model is used to study the actuation design and realization issues associated with integrating dual-point actuation into a semi-monocoque airframe structure. A piezoelectric stack actuator configuration is designed and installed iv within the tailboom model. Experimental tests indicate the stack actuator configuration is able to produce a bending moment within the structure to suppress vibration without causing excessive localized stress in the structure. TABLE OF CONTENTS LIST OF FIGURES......................................................................................................viii LIST OF TABLES.......................................................................................................xii ACKNOWLEDGMENTS............................................................................................xiii Chapter 1 INTRODUCTION.......................................................................................1 1.1 Background.....................................................................................................1 1.1.1 Helicopter Vibration Sources................................................................2 1.1.2 Vibration Control Methods...................................................................4 1.1.2.1 Passive Control Methods............................................................5 1.1.2.2 Active Control Methods.............................................................7 1.2 Problem Statement and Research Objectives..................................................10 1.3 Literature Review............................................................................................13 1.3.1 Helicopter Airframe Dynamic Models.................................................14 1.3.2 Active Vibration Control of Helicopter Airframe................................15 1.3.3 Actuator Placement Methods................................................................28 1.4 Summary and Thesis Outline..........................................................................37 Chapter 2 OPTIMALLY DISTRIBUTED ACTUATION REALIZATION METHODOLOGY................................................................................................40 2.1 Introduction.....................................................................................................40 2.2 Optimally Distributed Actuation Realization Methodology...........................41 Chapter 3 AIRFRAME MODEL, EXCITATION LOADS, AND OPTIMIZATION PROCESS................................................................................46 3.1 Airframe Structural Dynamic Model..............................................................46 3.2 Excitation Loads.............................................................................................50 3.3 Actuation Modeling........................................................................................52 3.4 System Modeling............................................................................................57 3.5 Hybrid Active/Passive Optimization Process.................................................60 3.5.1 Active Control Law..............................................................................60 3.5.2 Simultaneous Controller Design and Actuator Placement Method......61 vi Chapter 4 OPTIMAL ACTUATION PLACEMENT RESULTS................................67 4.1 Uncontrolled Airframe Response....................................................................67 4.2 Baseline Active Control..................................................................................70 4.3 Active Control with Optimally Placed Actuation...........................................72 4.4 Multi-objective Optimization Analysis...........................................................82 4.5 Simplified Actuator Placement Method..........................................................89 4.6 Parametric Study on Number of Actuators.....................................................91 4.7 Summary and Conclusions..............................................................................92 Chapter 5 ANALYTICAL REALIZATION OF DISTRIBUTED ACTUATION......96 5.1 Introduction.....................................................................................................96 5.2 NASTRAN Finite Element Airframe Model..................................................97 5.3 Airframe Models Response Comparison........................................................98 5.4 Distributed Actuation Analytical Realization.................................................102 5.5 Airframe Dynamic Stress................................................................................109 5.6 Summary and Conclusion...............................................................................114 Chapter 6 SCALED TAILBOOM MODEL STRUCTURE AND EXPERIMENTAL STUDY..................................................................................116 6.1 Introduction.....................................................................................................116 6.2 Tailboom Construction and Design................................................................118 6.3 Experimental Setup.........................................................................................123 6.4 Actuation Design and Installation...................................................................124 6.4.1 Actuation Concept................................................................................124 6.4.2 Predicted Actuation Parameters............................................................125 6.4.3 Actuator Selection.................................................................................126 6.4.4 Stack Actuator Installation....................................................................132 6.5 Static Deflection Analysis...............................................................................134 6.6 Dynamic Analysis and Vibration Control.......................................................136 6.7 Summary and Conclusion...............................................................................143 Chapter 7 CONCLUSION AND FUTURE RESEARCH...........................................145 7.1 Thesis Summary and Conclusions..................................................................145 7.2 Future Research Recommendations................................................................153 BIBLIOGRAPHY........................................................................................................156 Appendix A HELICOPTER AIRFRAME MODEL AND COMPUTER SOURCE CODES..................................................................................................................162 vii Appendix B ADDITIONAL ACTUATION PLACEMENT RESULTS.....................210 Appendix C DISTRIBUTED ACTUATION REALIZATION ANALYSIS RESULTS.............................................................................................................218 Appendix D SCALED TAILBOOM MODEL SPECIFICATIONS AND ANALYSIS RESULTS.........................................................................................253 LIST OF FIGURES Figure 1.1: Principal sources of airframe excitation. [3].............................................3 Figure 1.2: Vibration levels in forward flight..............................................................4 Figure 1.3: ACSR actuator installation on Westland 30 helicopter. [7]......................18 Figure 1.4: S-76 helicopter main gearbox supports and ACSR actuator locations [9]..........................................................................................................................20 Figure 1.5: Sikorsky UH-60 Servo Inertial Force Generator (SIFG) [22]...................22 Figure 2.1: Optimally Distributed Actuation Realization Methodology (ODARM)...42 Figure 3.1: Apache AH-64 Reduced Order Elastic Line Model..................................49 Figure 3.2: Reduced order airframe model node numbering.......................................50 Figure 3.3: Airframe model excitations.......................................................................51 Figure 3.4: Centralized Actuation Configuration (CAC)............................................53 Figure 3.5: Force Actuation Unit (FAU).....................................................................54 Figure 3.6: Moment Actuation Unit (MAU)...............................................................54 Figure 3.7: Single-point actuation concept..................................................................55 Figure 3.8: Simulated annealing optimization algorithm............................................64 Figure 3.9: Hybrid active/passive optimization process..............................................66 Figure 4.1: Modal participation of uncontrolled response to external excitation........68 Figure 4.2: Nodes selected for vibration suppression..................................................69 Figure 4.3: Uncontrolled airframe response to hub and tail excitation.......................69 ix Figure 4.4: Uncontrolled vibration at target nodes......................................................70 Figure 4.5: CAC controlled airframe response to hub and tail excitation...................71 Figure 4.6: CAC controlled vibration at target nodes..................................................71 Figure 4.7: DAUC controlled airframe response to hub and tail excitation................73 Figure 4.8: DAUC controlled vibration at target nodes...............................................73 Figure 4.9: Optimized DAUC emphasizing vibration reduction.................................76 Figure 4.10: Optimized DAUC emphasizing control effort reduction........................76 Figure 4.11: Optimized DAUC emphasizing both control effort and vibration reduction................................................................................................................76 Figure 4.12: Vibration reduction of multi-objective optimized DAUC......................88 Figure 4.13: Control effort reduction of multi-objective optimized DAUC...............88 Figure 4.14: Evaluation indices for various actuation configurations.........................91 Figure 4.15: Optimization objective function and vibration index versus number of Actuation Units.................................................................................................92 Figure 4.16: Evaluation indices of CAC and 4 optimally distributed Actuation Unit configuration.................................................................................................92 Figure 5.1: Apache helicopter NASTRAN Finite Element model..............................98 Figure 5.2: Reduced Order Model, uncontrolled vibration response to hub and tail excitation...............................................................................................................100 Figure 5.3: NASTRAN model, uncontrolled vibration response to hub and tail excitation...............................................................................................................100 Figure 5.4: Reduced Order Model: Uncontrolled vibration at target nodes................101 Figure 5.5: NASTRAN model: Uncontrolled vibration at target nodes......................101 Figure 5.6: Dual-point actuation concept applied to semi-monocoque structure........103 Figure 5.7: Reduced Order Model: Centralized actuation, Controlled vibration at target nodes...........................................................................................................105 x Figure 5.8: NASTRAN model: Centralized actuation, Controlled vibration at target nodes...........................................................................................................105 Figure 5.9: Reduced Order Model: Distributed actuation, Controlled vibration at target nodes...........................................................................................................105 Figure 5.10: NASTRAN model: Distributed actuation, Controlled vibration at target nodes...........................................................................................................105 Figure 5.11: Reduced Order Model: Comparison of performance indices..................106 Figure 5.12: NASTRAN Model: Comparison of performance indices.......................106 Figure 5.13: NASTRAN Model: Comparison of performance indices, re- optimized locations...............................................................................................108 Figure 5.14: Finite Element dynamic stress from hub and tail excitation (uncontrolled)........................................................................................................109 Figure 5.15: Finite Element dynamic stress, Centralized control of hub and tail excitation...............................................................................................................110 Figure 5.16: Change of element stress from uncontrolled to centralized control........111 Figure 5.17: Finite Element dynamic stress, Distributed control of hub and tail excitation...............................................................................................................111 Figure 5.18: Change of element stress from uncontrolled to distributed control........112 Figure 5.19: Dynamic stress levels for distributed control of hub and tail excitation...............................................................................................................113 Figure 6.1: Tailboom model, 0.3 scale semi-monocoque structure.............................118 Figure 6.2: Scaled tailboom Beam Equivalent Model (BEM).....................................120 Figure 6.3: Cantilevered ROM and BEM mode shape comparison............................121 Figure 6.4: Scaled tailboom Finite Element Model (FEM).........................................123 Figure 6.5: Tailboom model and experimental setup..................................................123 Figure 6.6: APC Pst 150/14/100 piezoelectric stack actuator.....................................126 Figure 6.7: Piezoelectric stack element.......................................................................127 Figure 6.8: Stack actuator force and displacement relation.........................................130

Description:
Two dynamic models of the helicopter airframe and an optimization able to produce a bending moment within the structure to suppress .. Figure 3.1: Apache AH-64 Reduced Order Elastic Line Model.49 was assembled from Euler-Bernoulli beam, truss, and non-structural mass.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.