ebook img

Optics in Instruments PDF

307 Pages·2011·14.029 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optics in Instruments

Optics in Instruments Optics in Instruments Edited by Jean-Pierre Goure First published 2011 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2011 The rights of Jean-Pierre Goure to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. ____________________________________________________________________________________ Library of Congress Cataloging-in-Publication Data Optics in instruments / edited by Jean-Pierre Goure. p. cm. Includes bibliographical references and index. ISBN 978-1-84821-243-5 1. Optical instruments--Equipment and supplies. 2. Optoelectronic devices. 3. Optics. I. Goure, J.-P. TS513.O584 2011 681'.4--dc22 2011013016 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-243-5 Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Optics and Instruments . . . . . . . . . . . . . . . . . . . . . . . . . 1 Jean-Pierre GOURE 1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. The media and optical communications . . . . . . . . . . . . . . . . . . . 2 1.3. Instruments for image capture. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1. Classic image-capture instruments. . . . . . . . . . . . . . . . . . . . 3 1.3.2. Seeing even further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.3. Seeing and measuring small objects. . . . . . . . . . . . . . . . . . . 4 1.3.4. Improving the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4. Optics in industrial processes . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1. Metrology and production control. . . . . . . . . . . . . . . . . . . . 5 1.4.2. Process control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.3. Transformation of matter and shaping of materials. . . . . . . . . . 7 1.5. Optics and the medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6. Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7. The basic components of an instrument . . . . . . . . . . . . . . . . . . . 9 1.8. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2. Formation of Images. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Henri GAGNAIRE 2.1. Introduction to optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2. Study of a centered system under Gaussian conditions . . . . . . . . . . 19 2.2.1. Main elements of a centered system. . . . . . . . . . . . . . . . . . . 19 2.2.2. Another form of the Lagrange-Helmoltz relation . . . . . . . . . . . 22 2.2.3. Nodal points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 vi Optics in Instruments 2.2.4. Relation between the object and image space focal lengths – optical power. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.5. Cartesian and Newtonian equations . . . . . . . . . . . . . . . . . . . 25 2.2.6. Longitudinal magnification. . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.7. Association of centered systems . . . . . . . . . . . . . . . . . . . . . 29 2.2.8. Spherical refractive surface. . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.9. Lens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3. General facts about optical instruments . . . . . . . . . . . . . . . . . . . 33 2.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2. Size of the image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.3. Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.4. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4. Geometric aberrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.2. Relation between wavefront aberrations and transverse ray aberrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.3. The different types of aberration. . . . . . . . . . . . . . . . . . . . . 44 2.4.4. Seidel aberrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.5. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5. Chromatic aberrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5.2. Some definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.5.3. Apparent achromatism of doublets. . . . . . . . . . . . . . . . . . . . 59 2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Chapter 3. A Revision of Photometry and Radiometry. . . . . . . . . . . . . 63 Jean-Louis MEYZONNETTE 3.1. Introduction: the role of photometry and radiometry . . . . . . . . . . . 63 3.2. The main values of an optical radiation . . . . . . . . . . . . . . . . . . . 64 3.2.1. Flux (F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.2. Solid angle (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.3. Intensity (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.4. Geometric extent (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.5. Radiance (L), exitance (M) . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.6. Irradiance E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.7. Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2.8. Radiometric units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3. Relations between radiometric parameters of a radiation. . . . . . . . . 73 3.3.1. General relations between geometric parameters . . . . . . . . . . . 73 3.3.2. Particular case of radiations with uniform radiance. . . . . . . . . . 76 3.3.3. Relations between energetic, photonic and visual parameters. . . . 80 Table of Contents vii 3.4. Some photometric properties of optical instruments. . . . . . . . . . . . 84 3.4.1. Conservation of the geometric extent of a beam in an optical medium and its transfer by an optical interface . . . . . . . . . . . 84 3.4.2. Effects of refraction and reflection on radiance . . . . . . . . . . . . 85 3.4.3. A revision of instrumental optics. . . . . . . . . . . . . . . . . . . . . 86 3.4.4. Photometry of an imaging system . . . . . . . . . . . . . . . . . . . . 90 3.4.5. Photometry of a “flux collector” instrument . . . . . . . . . . . . . . 92 3.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Chapter 4. Light Sources for Optical Instruments . . . . . . . . . . . . . . . 95 Jean-Pierre GOURE and Isabelle VERRIER 4.1. Generalities about sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2. Emission light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1. Coherence of sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.2. Sources characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.3. Different types of sources. . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3. Lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.1. Incandescent lamps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.2. Halogen lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.3. Luminescent discharge sources. . . . . . . . . . . . . . . . . . . . . . 103 4.4. Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4.1. Definition and general characteristics. . . . . . . . . . . . . . . . . . 109 4.4.2. Gas lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.3. Solid-state lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.4.4. Optical parametric oscillators. . . . . . . . . . . . . . . . . . . . . . . 122 4.4.5. Fiber lasers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5. Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.5.1. Light-emitting diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.5.2. Laser diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.6. Remote sources and optical power supply. . . . . . . . . . . . . . . . . . 135 4.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 5. Colorimetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Eric DINET 5.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2. Color and the observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.1. The physical stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2.2. The human visual system . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3. The foundation of colorimetry. . . . . . . . . . . . . . . . . . . . . . . . . 148 5.3.1. Tristimulus values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.3.2. Chromaticity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.4. Perception of color differences . . . . . . . . . . . . . . . . . . . . . . . . 155 viii Optics in Instruments 5.4.1. CIE 1976 L*u*v* color space . . . . . . . . . . . . . . . . . . . . . . . 157 5.4.2. CIE 1976 L*a*b* color space . . . . . . . . . . . . . . . . . . . . . . . 157 5.4.3. The problem of dark colors . . . . . . . . . . . . . . . . . . . . . . . . 158 5.5. Evaluation of color differences . . . . . . . . . . . . . . . . . . . . . . . . 159 5.5.1. Color deviation equations based on CIE 1976 color spaces. . . . . 160 5.5.2. Notes about CIE 1976 color spaces . . . . . . . . . . . . . . . . . . . 161 5.5.3. CMC (l:c) color formula. . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.5.4. CIE 1994 formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.5. CIE DE2000 total color deviation formula. . . . . . . . . . . . . . . 164 5.6. Interpreting color deviations and color tolerancing . . . . . . . . . . . . 166 5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.8. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Chapter 6. Bases for Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . 173 Michel JOURLIN 6.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.1.1. What is an image? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.1.2. Digitization of the spatial support . . . . . . . . . . . . . . . . . . . . 176 6.1.3. Digitization of gray scale . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.2. Classification of the image. . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.2.1. Earliest tools for classification: thresholding, multi-thresholding, contour detection . . . . . . . . . . . . . 180 6.2.2. Perspectives towards more complex tools . . . . . . . . . . . . . . . 191 6.3. Interpretation of binary images . . . . . . . . . . . . . . . . . . . . . . . . 192 6.3.1. Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.3.2. Parameters of shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.3.3. Binary mathematical morphology . . . . . . . . . . . . . . . . . . . . 198 6.3.4. Correction of a squared grid . . . . . . . . . . . . . . . . . . . . . . . 204 6.4. Gray level mathematical morphology . . . . . . . . . . . . . . . . . . . . 207 6.5. An example of a non-linear model: the LIP (Logarithmic Image Processing) model [JOU 01]. . . . . . . . . . . . . . . . 208 6.5.1. Initial physical framework . . . . . . . . . . . . . . . . . . . . . . . . 208 6.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Chapter 7. Optics for Imaging: Definition, Manufacturing, Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Gérard CORBASSON, Jacques DEBIZE and Thierry LEPINE 7.1. Lenses for photography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.1.1. Fixed focal length lenses . . . . . . . . . . . . . . . . . . . . . . . . . 217 7.1.2. Zoom lenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.2. Lenses for cinema and television . . . . . . . . . . . . . . . . . . . . . . . 223 Table of Contents ix 7.2.1. Cinema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.2.2. Television . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.2.3. Manufacture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7.3. Optics in astronomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 7.4. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Chapter 8. Optics for Images at Low Light Levels. . . . . . . . . . . . . . . . 235 Joël ROLLIN 8.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 8.1.1. Active imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 8.1.2. Low light level passive imagery . . . . . . . . . . . . . . . . . . . . . 236 8.1.3. Infrared thermography. . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.2. Light intensification devices. . . . . . . . . . . . . . . . . . . . . . . . . . 243 8.2.1. Different sensor technologies: light intensification tubes . . . . . . 243 8.2.2. Different sensors: video-compatible solutions. . . . . . . . . . . . . 244 8.2.3. Optics for LLL systems . . . . . . . . . . . . . . . . . . . . . . . . . . 246 8.3. A case apart: the SWIR band . . . . . . . . . . . . . . . . . . . . . . . . . 255 8.3.1. The interest of the SWIR band . . . . . . . . . . . . . . . . . . . . . . 255 8.3.2. SWIR sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 8.3.3. Optics for the SWIR band. . . . . . . . . . . . . . . . . . . . . . . . . 256 8.4. The 3-5 µm and 8-12 µm bands. . . . . . . . . . . . . . . . . . . . . . . . 257 8.4.1. The different types of sensors and the design constraints relating to optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 8.4.2. Optical materials in the IR band . . . . . . . . . . . . . . . . . . . . . 261 8.4.3. Rather special optical components. . . . . . . . . . . . . . . . . . . . 264 8.5. The future. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Chapter 9. From the Classic Microscope to the Tunnel Effect Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Michel SPAJER 9.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 9.2. Towards the limit of resolution. Aspects of the formation of images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 9.2.1. Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 9.2.2. Transfer function in coherent illumination. . . . . . . . . . . . . . . 271 9.2.3. Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 9.2.4. Transfer function in partially coherent illumination . . . . . . . . . 273 9.2.5. Transfer function in incoherent illumination. . . . . . . . . . . . . . 275 9.2.6. Structured illumination, synthetic pupil. . . . . . . . . . . . . . . . . 277 9.3. The confocal microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 9.3.1. Coherent confocal microscope . . . . . . . . . . . . . . . . . . . . . . 279 9.3.2. Incoherent confocal microscope (fluorescence). . . . . . . . . . . . 280 x Optics in Instruments 9.3.3. 4Pi synthetic aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 9.3.4. Stimulated emission depletion (STED) confocal microscope. . . . 283 9.4. Adaptive optics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.5. Polarized light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 9.6. Phase microscopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 9.6.1. Absolute interferometric phase-shifting measurements . . . . . . . 287 9.6.2. Measurements based on a single interferogram . . . . . . . . . . . . 289 9.6.3. 3D holographic microscopy. . . . . . . . . . . . . . . . . . . . . . . . 290 9.7. Confined light microscopy techniques. Evanescent waves. . . . . . . . 291 9.8. Near-field local probe microscopy . . . . . . . . . . . . . . . . . . . . . . 292 9.9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 9.10. Glossary of terms used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Preface Optical components-based instruments play a fundamental role in the scientific and technological advances of our time. We need to consider only a few examples, ranging from the most ordinary to the most complex. All of us have used a camera or a camcorder. The reading of bar codes by optical detection, with the aid of lasers, is commonplace in shops. Likewise, we use optical writing and reading on compact disks. Measurements and controls in industry are always carried out through spectroscopic methods. The telescope is essential in the observation of celestial bodies, and has allowed us to verify hypotheses related to our solar system. The instruments recently sent into space allow us to view our universe at distances that seemed impossible to achieve a few decades ago. The microscope has triggered an equally great revolution in biology and medicine, opening up vast new horizons in these fields, in diagnosis as well as treatment. The camera allowed for far more objective observation of the world than with the naked eye. These brief considerations allow us to understand the immensely important role played by optics in instruments for our view and our current conception of the world. These instruments are absolutely indispensable for a modern and objective view of reality. In the current work, the basics necessary for the understanding of optics-based instruments and systems are provided, along with some concrete examples of realization and development. The objective is to allow students, scientists and non- specialists in optics to better comprehend the wealth of physical phenomena which govern these instruments and to make optimal use of them. With this goal in mind, we will look at the principles being applied, as well as practical aspects. The description of photographic systems as well as the huge developments in microscopy will illustrate recent evolutions. In this volume we will limit ourselves to ultraviolet, visible and near infrared domains. An optical instrument is generally made up of several different optical systems (for example, the objectives and eyepieces when the detector functions as the eye) or

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.