ebook img

Optical textures: characterizing spatiotemporal chaos PDF

1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical textures: characterizing spatiotemporal chaos

Optical textures: characterizing spatiotemporal chaos MarcelG.Clerc,1GregorioGonza´lez-Corte´s,1VincentOdent,1,2and MarioWilson1,3,∗ 1DepartamentodeF´ısica,FacultaddeCienciasF´ısicasyMatema´ticas,UniversidaddeChile, BlancoEncalada2008,Santiago,Chile 2Presentaddress:Universite´Lille1,LaboratoiredePhysiquedesLasers,Atomeset Mole´cules,CNRSUMR8523,59655Villeneuved’AscqCedex,France 3CONACYT–CICESE,CarreteraEnsenada-Tijuana3918,ZonaPlayitas,C.P.22860, 6 Ensenada,Me´xico 1 ∗[email protected] 0 2 n Abstract: Macroscopicsystemssubjectedtoinjectionanddissipationof u energycanexhibitcomplexspatiotemporalbehaviorsasresultofdissipative J self-organization. Here, we report a one and two dimensional pattern 2 forming set up, which exhibits a transition from stationary patterns to spatiotemporal chaotic textures, based on a nematic liquid crystal layer ] S with spatially modulated input beam and optical feedback. Using an P adequate projection of spatiotemporal diagrams, we determine the largest . Lyapunov exponent. Jointly, this exponent and Fourier transform allow n i us to distinguish between spatiotemporal chaos and amplitude turbulence l n concepts,whichareusuallymerged. [ © 2016 OpticalSocietyofAmerica 2 OCIS codes: (190.0190) Nonlinear optics; (190.3100) Instabilities and chaos; (230.3720) v Liquid-crystaldevices. 4 4 8 Referencesandlinks 0 0 1. F.T.Arecchi,G.Giacomelli,P.L.Ramazza,andS.Residori,“Experimentalevidenceofchaoticitinerancyand . spatiotemporalchaosinoptics,”Phys.Rev.Lett.65,2531–2534(1990). 1 2. G.Huyet,M.C.Martinoni,J.Tredicce,andS.Rica,“SpatiotemporaldynamicsoflaserswithalargeFresnel 0 number,”Phys.Rev.Lett.75,4027–4030(1995). 6 3. G.HuyetandJ.R.Tredicce,“Spatio-temporalchaosinthetransversesectionoflasers,”PhysicaD96,209–214 1 (1996). : 4. A.V.MamaevandM.Saffman,“SelectionofunstablepatternsandcontrolofopticalturbulencebyFourierplane v filtering,”Phys.Rev.Lett.80,3499–4502(1998). i X 5. E.A.Rogers,R.Kalra,R.D.Schroll,A.Uchida,D.P.Lathrop,andR.Roy,“Generalizedsynchronizationof spatiotemporalchaosinaliquidcrystalspatiallightmodulator,”Phys.Rev.Lett.93,084101(2004). r 6. S.Residori,“Patterns,frontsandstructuresinaliquid-crystal-light-valvewithopticalfeedback,”Phys.Rep.416, a 201–272(2005). 7. K.StaliunasandJ.Sa´nchez-Morcillo,TransversePatterns(SpringerScience&BusinessMedia,2003). 8. O.Descalzi,M.G.Clerc,S.Residori,andG.Assanto,eds.,LocalizedStatesinPhysics:SolitonsandPatterns (SpringerScience&BusinessMedia,2011). 9. M.Tlidi,K.Staliunas,K.Panajotov,A.G.Vladimirov,andM.G.Clerc,“Localizedstructuresindissipative media:fromopticstoplantecology,”Phil.Trans.R.Soc.A372,20140101(2014). 10. G.NicolisandI.Prigogine,Self-OrganizationinNonEquilibriumSystems(J.Wiley&Sons,1977). 11. G.Nicolis,IntroductiontoNonlinearScience(CambridgeUniversity,1995). 12. P.CoulletandJ.Lega,“Defect-mediatedturbulenceinwavepatterns,”Europhys.Lett.7,511–516(1988). 13. P.Coullet,L.Gil,andJ.Lega,“Defect-mediatedturbulence,”Phys.Rev.Lett.62,1619–1622(1989). 14. G.Goren,J.P.Eckmann,andI.Procaccia,“Scenariofortheonsetofspace-timechaos,”Phys.Rev.E57,4106– 4134(1998). 15. W.Decker,W.Pesch,andA.Weber,“SpiraldefectchaosinRayleigh-Benardconvection,”Phys.Rev.Lett.73, 648–651(1994). 16. B.EchebarriaandH.Riecke,“Defectchaosofoscillatinghexagonsinrotatingconvection,”Phys.Rev.Lett.84, 4838–4841(2000). 17. K.E.DanielsandE.Bodenschatz,“Defectturbulenceininclinedlayerconvection,”Phys.Rev.Lett.88,034501 (2002). 18. M. Miranda and J. Burguete, “Experimentally observed route to spatiotemporal chaos in an extended one- dimensionalarrayofconvectiveoscillators,”Phys.Rev.E79,046201(2009). 19. P.BrunetandI.Limat,“Defectsandspatiotemporaldisorderinapatternoffallingliquidcolumns,”Phys.Rev. E70,046207(2004). 20. Q.OuyangandJ.M.Flesselles,“Transitionfromspiralstodefectturbulencedrivenbyaconvectiveinstability,” Nature379,143–146(1996). 21. A.Garfinkel,M.L.Spano,W.L.Ditto,andJ.N.Weiss,“Controllingcardiacchaos,”Science257,1230–1235 (1992). 22. S.Q.ZhouandG.Ahlers,“Spatiotemporalchaosinelectroconvectionofahomeotropicallyalignednematic liquidcrystal,”Phys.Rev.E74,046212(2006). 23. S. J. Moon, M. D. Shattuck, C. Bizon, D. I. Goldman, J. B. Swift, and H. L. Swinney, “Phase bubbles and spatiotemporalchaosingranularpatterns,”Phys.Rev.E65,011301(2001). 24. N.Verschueren,U.Bortolozzo,M.G.Clerc,andS.Residori,“Spatiotemporalchaoticlocalizedstateinliquid crystallightvalveexperimentswithopticalfeedback,”Phys.Rev.Lett.110,104101(2013). 25. N. Verschueren, U. Bortolozzo, M. G. Clerc, and S. Residori, “Chaoticon: localized pattern with permanent dynamics,”Phil.Trans.R.Soc.A.372,20140011(2014). 26. P.Manneville,DissipativeStructuresandWeakTurbulence(Academic,1990). 27. L.Pastur,U.Bortolozzo,andP.L.Ramazza,“Transitiontospace-timechaosinanopticalloopwithtranslational transport,”Phys.Rev.E69,016210(2004). 28. M.G.Clerc,G.Gonzalez-Cortes,andM.Wilson,“ExperimentalSpatiotemporalChaoticTexturesinaLiquid CrystalLightValvewithOpticalFeedback,”inNonlinearDynamics:Materials,TheoryandExperiments,M. TlidiandM.G.Clerc,eds.(Springer,2016). 29. M.G.Clerc,C.Falcon,M.A.Garcia-Nustes,V.Odent,andI.Ortega,“Emergenceofspatiotemporaldislocation chainsindriftingpatterns,”Chaos24,023133(2014). 30. E.Louvergneaux,“Pattern-Dislocation-TypeDynamicalInstabilityin1DOpticalFeedbackKerrMediawith GaussianTransversePumping,”Phys.Rev.Lett.87,244501(2001). 31. S.Bielawski,C.Szwaj,C.Bruni,D.Garzella,G.L.Orlandi,andM.E.Couprie,“Advection-inducedspectrotem- poraldefectsinafree-electronlaser”Phys.Rev.Lett.95,034801(2005). 32. G.Nicolis,IntroductiontoNonlinearScience(CambridgeUniversity,1995). 33. M.G.ClercandN.Verschueren,“Quasiperiodicityroutetospatiotemporalchaosinone-dimensionalpattern- formingsystems,”Phys.Rev.E.88,052916(2013). 34. K.E.DanielsandE.Bodenschatz,“Defectturbulenceininclinedlayerconvection,”Phys.Rev.Lett.88,034501 (2002). 35. Y.Kuramoto,ChemicalOscillations:Waves,andTurbulence(Springer,1984). 36. U.Frisch,Turbulence:theLegacyofA.N.Kolmogorov(CambridgeUniversity,1995). 37. A.Wolf,J.B.Swift,H.L.Swinney,andJ.A.Vastano,“DeterminingtheLyapunovexponentsfromatimeseries,” PhysicaD16,285–317(1985). 38. E.Ott,ChaosinDynamicalSystems,2nded.(CambridgeUniversity,2002). 39. H.Abarbanel,AnalysisofObservedChaoticData(Springer-Verlag,1996). 1. Introduction Opticalsystemsmaintainedfarfromequilibrium,throughtheinjectionanddissipationofen- ergy,canpresentspatiotemporalstructures,patterns[1–9].Thesestructuresappearasawayto optimizeenergytransportandmomenta[10].Patternsaretheresultoftheinterplaybetweenthe lineargainandthenonlinearsaturationmechanisms.Inmanyphysicalsystems,thesestructures arestationaryandemergeasaspatialinstabilityofauniformstatewhenacontrolparameteris changedandsurpassesacriticalvalue,whichusuallycorrespondstoimbalancesofforces.As theparametersofthesystemarechanged,stationarypatternscanbecomeunstableandbifur- cate to more complex patterns, even into aperiodic dynamics states [11–14]. This behavior is characterizedbycomplexspatiotemporaldynamicsexhibitedbythepatternandacontinuous coupling between spatial modes in time. Complex spatiotemporal dynamics of patterns have been observed, for example, in fluids [15–19], chemical reaction-diffusion systems [20], car- x LCLV feedback loop V 0 SLM z L y PC L F LCLV FP L B d FB BS M 1-D 2-D BS Far Field y L L 1 mm Near x Near Field M Field Fig. 1. Schematic representation of the experimental setup. LCLV stands for the liquid crystallightvalve,Lrepresentstheachromaticlenseswithafocaldistance f =25cm,M arethemirrors,FBisanopticalfiberbundle,BSstandsforthebeamsplitters,PCrepresents apolarizingcube,SLMisaspatiallightmodulatorandFPrepresentstheFourierplane.F andBstandfortheforward(incoming)andbackward(reflected)beamrespectively.d is theequivalentopticallength.Inthebottomleftpartoftheimage,twoexamplesofobtained patternsandtextures. diac fibrillation [21], electroconvection [22], fluidized granular matter [23], nonlinear optical cavities [1–4] and in a liquid crystal light valve [6,24,25]. In most of these studies, complex behaviors are characterized by spatial and temporal Fourier transforms, wave vector distribu- tion, filtering spatiotemporal diagrams, power spectrum of spatial mode, length distributions, Poincare´ maps and number of defects as a function of the parameters. However, in these ex- perimentalstudies,spatiotemporalcomplexityhasnotbeencharacterizedusingrigoroustools of dynamical systems theory as Lyapunov exponents [26,27]. These exponents characterize the exponential sensitivity of the dynamical behaviors under study and in turn gives a char- acteristic time scale on which one has the ability to predict the time evolution of the system. When the largest Lyapunov exponent (LLE) is positive (negative) the system under study is chaotic(stationary).Recently,wehavecomputedtheexperimentalLLEandcharacterizedthe spatiotemporalchaosintwospatialdimensionsinaliquidcrystallightvalve(LCLV)withopti- calfeedback[28].ThedynamicsexhibitedbytheLCLVwithopticalfeedbackischaracterized bythechangesthatmolecularorientationinducesinthephaseofthereflectedlight,which,in itsturn—opticalfeedback—producesavoltagethatreorientstheliquidcrystalmolecules. Oneofthemostimportantconceptsincomplexspatiotemporaldynamicsisturbulence:the powerspectrumasaresultofthetransportofsomephysicalquantityofdifferentscalesshows apowerlawdecayasitsmainsignature[36].Theaimofthisarticleistoinvestigateoneand twodimensionalpatternformingsysteminaLCLV,showninFig.1,whichexhibitsatransi- tionfromstationarypatternstospatiotemporalchaotictexturesandtoquasiperiodicity.Using adequatespatiotemporaldiagrams,weobtaintheLLE.Jointly,thisexponentandFouriertrans- formallowustodistinguishbetweenspatiotemporalchaosandamplitudeturbulenceconcepts, whichareusuallymerged. 2. Experimentaldetails Theliquidcrystallightvalvewithanopticalfeedbackisaflexibleopticalexperimentalsetup thatexhibitspatternformation[6][seeFig.1].TheLCLVisilluminatedbyanexpandedand collimatedHe-Nelaserbeam,λ =633nm,with3cmtransversediameterandpowerI =6.5 in mW/cm2, linearly polarized along the vertical axis. Once shone into the LCLV, the beam is reflected by the dielectric mirror deposed on the rear part of the cell and, thus, sent to the polarizingcube.Duetothephase-changethelightsuffersinthereflection,thepolarizingcube will send the reflected light into the feedback loop. To close the feedback loop, a mirror and an optical fiber bundle are used, these elements assure the light to reach the photoconductor placed in the back part of the LCLV. In the feedback loop, a 4-f array is placed in order to obtain a self-imaging configuration and access to the Fourier plane, this array is constructed with2identicallenseswithfocallength f =25cmplacedinsuchawaythatbothsidesofthe LCLVareconjugatedplanes.WefiltertheFourierplaneinordertoforcethesystemtoexhibit roll-patterns in a given direction. Thanks to this configuration the free propagation length in thefeedbackloopcanbeeasilyadjusted.Fortheperformedexperimentsanopticalequivalent lengthofd=−4cmwasused.Aspatiallightmodulator(SLM)wasplacedintheinputbeam opticalpathwitha1:1imagingbetweentheSLMandthefrontalpartoftheLCLV.Withthe aidofaspecializedsoftware,asquaremaskwasproducedandsenttotheSLM.TheSLMand the polarizing cube combination allow to impose an arbitrary shape to the input beam. For a uniform mask of 160 gray-value, the typical input intensity would be I =0.83mW/cm2. To w obtaintheshapeusedintheexperiments,oneandtwo-dimensionalmasks,I(x,y),werecreated and,bymeansofthesemasks,oneandtwodimensionalpatternscanbeobtainedascanbeseen in the bottom left part of Fig. 1. The system dynamics is controlled by adjusting the external voltageV appliedtotheLCLV. 0 3. Fromstationarytodisordereddynamics The presented dynamics in the LCLV have been explored in two different configurations, the firstoneusinganintensitymaskofzero-levelintensityeverywhereexceptforacentralsquare partwithlengtha =2.5mm(2-Dmask),andthesecondonewithazero-levelintensityexcept 0 onanarrowchannelof150µmwidthand2.5mmlength(1-Dmask).Theinjectedintensityis spatiallymodulatedasI =I (x,y),whereI canbecontrolledbychangingthemaskcreatedin in 0 0 theSLM,and{x,y}arethetransversecoordinatesofthesample.I ismeasuredwhenimposing 0 agivengray-valuetotheilluminatedarea,thatis,forthe2-Dmask (cid:26) I +b |x|≤a , and |y|≤a I (x,y)= 0 0 0 0 0 b else 0 whenb isconstantthroughoutthesampleand|x|>0,|y|>0.Thesameappliesto1-Dmask 0 withtheonlydifferencethat|y|=150µm,whichissmallenough,comparedwiththepattern wavelength, to neglect its size and consider it as a 1-D mask. In the presented configurations I =0.9mW/cm2andb =0.1mW/cm2.ThealternatingvoltageV hasbeenvariedbetween3 0 0 0 and7V ,ataconstantfrequency f =5kHz,startingwiththeappearanceofstationaryroll- rms 0 patterns.FordifferentV values,thedynamicalbehaviorobtainedinthesystemwasrecorded 0 with a CCD camera. Figure 2 shows the spatiotemporal evolution of the observed patterns in oneandtwodimensions,respectively.Thisevolutionischaracterizedbyprojectedspatiotem- poraldiagrams,whichareconstructed,inthe2-Dexperiments,bypickinganarbitraryline— transversal to the rolls direction—in the illuminated zone and superposing it as time evolves; in the 1-D experiments this construction is simpler, is enough to superpose the pattern as the time evolves. The system exhibits stationary stripe patterns [cf. Fig. 2(a)]. These patterns are a) b) c) 1-D 1-D 1-D t 2-D 2-D 2-D x d) y x t Fig. 2. Spatial textures in LCLV with optical feedback at different voltageV . Top pan- 0 els correspond to spatiotemporal diagrams of observed dynamics working with one- dimensional patterns. Middle panels panels stand for projected spatiotemporal diagrams oftwo-dimensionaltextures.a)Periodicregime,b)chaoticbehavior,c)quasi-periodicdy- namics,andd)a3-Dspatiotemporaldiagramofacomplextexturefoundintheintermittent regimeatV =4.3Vrms.Allvaluesweretakenduring100sandarenormalized. 0 inducedbyaspatialfilteringintheFourierplane[cf.FPinFig.1].Actually,throughaslit,we canfilterspatialmodes. IncreasingV ,thedynamicsshownbythepatternbecomesabruptlycomplex[cf.Figs.2(b) 0 and 2(d)]. Clearly, in the projected spatiotemporal diagram, we detected an intermittent be- havior. That is, the pattern exhibits aperiodic oscillations invaded by large fluctuations, gen- erating several spatial and temporal dislocations. Likewise, the system exhibits a high spa- tiotemporal complexity. This kind of disorder is usually associated to spatiotemporal chaotic textures[28,32–34].Figure2(d)showsa3-Dspatiotemporaldiagram,fromthisdiagramitis clearthatanarbitrarilychosenlinerepresentsthedynamics. Further increasingV , the pattern begins to oscillate in a complex manner [see Fig. 2(c)]. 0 We observe in the projected spatiotemporal diagram local waves, oscillations and spatiotem- poral dislocations. Similar dynamics has been reported in one-dimensional inhomogeneous systems[29–31].Inourexperimentstheseinhomogeneitiescanbecausedbytheinherentim- perfections and inhomogeneities induced by the filter in the Fourier plane. Hence, this kind of dynamical behavior could be expected. The complex dynamics exhibited by this pattern is constantly repeated over time. Which leads us to infer that this kind of behavior could be quasiperiodicity. AmathematicaltoolforanalyzethespatialmodesinteractionistheFourierspectrum.Figure 3showstheFourierspectraofdifferentdynamicalregimes.Showingthatthedynamicschanges between stripe patterns, quasi-periodicity and spatiotemporal chaotic textures. The stationary 104 V=3.25 f ’ V=3.80 V=4.35 f f ’’ f ’’’ ] s A [102 100 0 265 530 795 K [µm−1] Fig. 3. Fourier spectra for three different dynamical regimes. In gray (blue) the Fourier spectrumofastationarypattern,inlight-gray(red)aquasi-periodicregime,itcanbeob- servedtheemergenceofincommensurablefrequencies(f(cid:48), f(cid:48)(cid:48)and f(cid:48)(cid:48)(cid:48)).Inblack,abroad- enedspectrumthatcorrespondstoachaotictexture,presentinganexponentialdecayofthe modesmarkedbythedashedline. patternischaracterizedbyadominantwavelength f.Thewidthofthispeakisduetotempera- turefluctuationsanddynamicsofdefectssuchasdislocationsandboundarygrains.Thequasi periodictextureischaracterizedbytheappearanceofincommensurablewavelengths,{f(cid:48),f(cid:48)(cid:48)(cid:48)}, withrespecttothemainwavelength f(cid:48)(cid:48) anditsharmonics.Thespatiotemporalchaotictexture ischaracterizedby presentinganenlargedspectrum asaresultof theinteractionbetweenthe main incommensurablemodes [35]. Note thatin this regime, themodes are coupledwith ex- ponential decay [see the dashed line in Fig. 3]. Therefore, the system does not exhibit power spectrumbehaviorwhichisthehallmarkofturbulencedynamics[36]. 4. Quantifyingthedynamics Acharacterizationofcomplexdynamicslikechaosandspatiotemporalchaoscanbedoneby means of Lyapunov exponents. There are as many exponents as the dimension of the system understudy.TheanalyticalstudyofLyapunovexponentsisaparamountendeavorandinprac- ticeinaccessible,thenthepragmaticstrategyisanumericalderivationoftheexponents.From experimentaldata,inthecaseoflow-dimensionaldynamicalsystems,bymeansofrecognition of initial conditions one can determine the LLE [37]. This exponent accounts for the greatest exponentialgrowthanditsdefinedby 1 (cid:20) ||u(x,t)−u(cid:48)(x,t)|| (cid:21) λ = lim lim ln , (1) 0 t→∞∆0→0t ||u(x,to)−u(cid:48)(x,to)|| where u(x,t) and u(cid:48)(x,t) are given fields, ∆ ≡ ||u(x,t )−u(cid:48)(x,t )|| and ||f(x,t)||2 ≡ o 0 0 (cid:82)|f(x,t)|2dx is a norm. ∆(t)≡||u(x,t)−u(cid:48)(x,t)|| stands for the global evolution of the dif- ferencebetweenthefields. Whenλ ispositiveornegative,theperturbationofagiventrajectoryischaracterizedbyan 0 exponentialseparationorapproach,respectively.DynamicalbehaviorswithzeroLLEscorre- spondtoequilibriumwithinvariantdirections,suchasperiodicorquasi-periodicsolutionsand non-chaoticattractors[38].Hence,theLLEisanexceptionalorderparameterforcharacterizing transitionsfromstationarytocomplexspatiotemporaldynamics. Experimentally, to estimate the LLE, it is mandatory to have two close initial conditions a) line A line B 1200 x [μm] A B 0 0 0 x [μm] 1200 1000 x [μm] 1200 200t[s] 0 A 0 B 1 t[s] t[s] 0 0 80 80 b) 0.6 line A line B I [a.u.] 0.2 0 x [μm] 1200 c) d) 55 diffs. exp. fit (I) [a.u.]Δ1500 (I) [a.u.]Δ30 7.5 50 V [Vrm5s.]5 3.5 10 t [s] 50 t 1[s0]0 200 Fig. 4. LLE estimation for the LCLV with optical feedback withV0=4.70Vrms. a) Pro- jectedspatiotemporaldiagramoftheLCLV.Thebottompanelsaccountforspatiotemporal diagramwithcloseinitialconditions(lines1and2),b)Intensityprofilesoflines1and2,c) A3-Dgraphthatshowsevolutionofdifferences∆(t,V )fordifferentappliedvoltagesV , 0 0 itcanbenotedthatnotalwaysthetrajectoriesareexponentiallyseparated,andd)Tempo- ralevolutionofglobaldifference∆(t),dotsstandforexperimentaldataandthecontinuous curveistheexponentialfitting∆(t)≈aebt+cedt witha=0.0045,b=8.813,c=16.57 andd=0.2773. and observe if their evolution diverge at large times [28]. The implemented method needs, as a first step, to find two close fields [see lines 1 and 2 in Figs. 4(a) and 4(b)] along the projected spatiotemporal diagrams and compute their difference ∆ . The temporal evolution 0 ofthedifferenceshouldbe givenby∆(t)≈∆0eλ0t forlarget [cfFigs.4(c)and 4(d)].Dueto the complexity of evolution of the difference between fields—clearly the number of positive Lyapunovexponentsishuge—wewillconsideratleasttwounstablegrowthdirections,thatis ∆(t)≈aebt+cedt [cf.Fig.4]. A bifurcation diagram was constructed with the obtained LLEs as can be seen in Fig. 5. The system starts with stationary stripe patterns at V =3.0V and the dynamics remains 0 rms unchangeduntiltheappliedvoltagereachedV =3.5V .Atthisvoltage,theLLEgoestozero, 0 rms meaning that the system exhibits a bifurcation. Experimentally, we observed that the steady patternchangestoanaperiodicregime.Thechaoticbehaviorremainsuntilthemeanintensity intheLCLVdestroysthechaoticattractorduetodestructiveinterferenceatV =3.9V [see 0 rms Fig.5],causingacrisis.Oncethelightisrecovered,thesystementersinanintermittentregime betweenchaosandquasi-periodicity.Afterthiswindowthesystembecomeschaoticuntilthe attractorisannihilatedbydestructiveinterferenceatV =5.35V .Oncethelightisrecovered 0 rms Intermittency 0.8 Chaos Quasi-periodicity u.] a. 1/s]0.4 nsity [ λ [0 01.5n inte a 0 0 me −0.4 3 3.5 4 4.5 5 5.5 6 6.5 7 Voltage [Vrms] Fig.5.BifurcationdiagramconstructedwiththeestimatedLLEasafunctionofapplied voltageV of the LCLV with optical feedback. The diagram is clearly separated in four 0 dynamicalregimes,stationarypattersbeforeV0=3.5Vrms,chaosshadowedingray(green), intermittencybetweenchaosandquasi-periodicityindarkgray(gray)areaandawindowof quasi-periodicityshadowedattheendinlightgray.Thestarscorrespondtothecalculated LLEwhilethecirclesshowthenormalizedmeanintensitypresentintheLCLV. the system remains in a quasi-periodic regime until the next cycle of destructive interference arrives. This dynamic regime is characterized by having an oscillatory pattern which LLE is zero. Givenatemporalsignal,theattractorofthesystemcanbebuiltbytakingthesignalatdiffer- entperiodictimes(arbitraryperiodicseparationτ)andconstructingthevector{I(x,t),I(x,t+ τ,x),I(x,t+2τ),···} with x as a fixed position, phase space reconstruction [39]. The three differentattractorsthatcanbereconstructedusingthisembeddingmethodareafixedpoint,a torusandastrangeattractor.Forlowvoltageafixedpointcanbeseen(stationarypattern).In- creasingthetensionV ,thephasespacereconstructionexhibitsatorus(quasi-periodicpattern) 0 andstrangeattractor(spatiotemporaltexture)[28]. 5. Conclusions Our study provides clear evidence that the LCLV with optical feedback is spatiotemporally chaoticinacertainrangeofparameters.TheLLEsareexperimentallyaccessibleandallowus tocharacterizethetransitionsfromstationarytocomplexspatiotemporaldynamics.Certainly new concepts in the theory of dynamical systems must be developed to achieve a better ex- perimentalcharacterizationofspatiotemporalcomplexbehaviors.Notwithstanding,jointlythe LLEsandpowerspectrumallowusdistinguishingwell-establisheddynamicalbehaviorssuch asamplitudeturbulenceandspatiotemporalchaos,whichareoftenmergedandconfused. Acknowledgments MGCandMWacknowledgethesupportofFONDECYTN◦1150507andN◦3140387respec- tively.VOacknowledgesthesupportofthe‘Re´gionNord-Pas-de-Calais’.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.