ebook img

Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: the effect of stacking faults in the reduction of the internal electric field PDF

0.34 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: the effect of stacking faults in the reduction of the internal electric field

/ Optical properties of wurtzite GaN AlN quantum dots grown on non-polar planes: the ff e ect of stacking faults in the reduction of the internal electric field J.A.Budagosky,N.Garro,A.Cros,andA.Garc´ıa-Cristo´bal InstitutdeCie`nciadelsMaterials(ICMUV),UniversitatdeVale`ncia,E-46071Vale`ncia,Spain S.FountaandB.Daudin CEA,INAC-SP2M,”Nanophysiqueetsemiconducteurs”group,F-38000Grenoble,France 6 1 0 2 Abstract n aThe optical emission of non-polar GaN/AlN quantum dots has been investigated. The presence of stacking faults inside these Jquantumdotsisevidencedinthedependenceofthephotoluminescencewithtemperatureandexcitationpower.Atheoreticalmodel 9fortheelectronicstructureandopticalpropertiesofnon-polarquantumdots,takingintoaccounttheirrealisticshapes,ispresented 1which predicts a substantial reduction of the internal electric field but a persisting quantum confined Stark effect, comparable to that ofpolar GaN/AlN quantumdots. Modeling theeffect ofa 3 monolayerstacking faultinside the quantumdot, whichacts as ] lzinc-blendeinclusionintothewurtzitematrix,resultsinanadditional30%reductionoftheinternalelectricfieldandgivesabetter l aaccountoftheobservedopticalfeatures. h -Keywords: s e m .1. Introduction these systems [9]. The absorption spectrum is calculated us- t a ingaplane-waveexpansionmethodanda8×8k·pmodel. The m Thecurrentinterestingroup-IIInitridequantumdots(QDs) comparison of polar and non-polar QD absorption shows that -ismostlyrelatedtothepossibilityofdevelopinganewgenera- thelatterarestilldominatedbyQCSE,inagreementwithpre- d tionofoptoelectronicdevicesoperatingintheultravioletwave- vious theoretical models [10, 11, 12, 13], not fitting, however, n olengthrange[1]. Asamatteroffact,self-assembledGaN/AlN our experimental observations. The influence of basal plane cQDsgrownintheStranski-Krastanovmodebymolecularbeam stacking faults on the QD optical properties is revealed in the [epitaxy(MBE),whichpresenthexagonalwurtzite(WZ)struc- temperatureandpowerdependenceoftheiremission. Weshow 1 ture preferably, are free of structural defects, such as disloca- howsuchstackingfaults,actingaszinc-blende(ZB)inclusions, vtions [2]. The great potential of these systems is somehow modifytheelectricpolarizationinsidetheQDsandcanaccount 2frustratedbythepresenceofstrongbuilt-inelectrostaticfields for additional electric field reductions. Such reduction, united 4which induce the quantum confined Stark effect [3] (QCSE), totheeffectsofCoulombcorrelation[12]ortherealisticshape 9 i.e. the emission exhibits large red-shifts and the oscillator of the dots [9, 13], could complete the picture of the QCSE 4 0strengthsoftheopticaltransitionsarereducedconsiderablydue suppressioninnon-polarQDs. .to electron and hole spatial separation. These fields are origi- 1 natedbythedifferenceinthemacroscopicpolarizationbetween 0 2. Experimentalresults 6thedotandthebarriermaterialsandaremainlyparalleltothe 1polar c-axis of the WZ structure [4]. Non-polar heterostruc- We have investigated a sample consisting of a 18-period v:tureshavebeengrownwiththeaimofreducingorsuppressing multi-layer of GaN/AlN QDs grown by MBE on commercial ithe internal electric field. In the case of non-polar quantum a-plane 6H-SiC substrate. Self-assembled GaN QDs (a-QDs) X wells,wherethemacroscopicpolarizationlaysontheplaneof formed by the Stranski-Krastanow growth method at 700 ◦C rthewellandundergoesnodiscontinuity,built-inelectricfields under Ga-rich atmosphere. The mean diameter and height of a are completely suppressed [5]. The lack of electric field ef- the GaN QDs are 20 nm and 3 nm, respectively. More details fectsreportedforGaN/AlNQDsgrownonthea-planebyMBE aboutthegrowthofthissamplecanbefoundelsewhere[7]. is more intriguing. These QDs present strong emission in the The spectral content and the dynamics of the emission of UVwithfastlifetimesindicatinganeffectivesuppressionofthe the a-QDs have been explored by time-integrated and time- QCSE[6,7,8]. resolved photoluminescence (PL) spectroscopy. Figure 1 (a) In this paper we study the emission of a-plane GaN/AlN showsthea-QDPLspectrarecordedbetween30and300K.We QDsandcompareitwiththepredictionsofatheoreticalmodel observe that the emission peaks above the GaN band-gap en- which takes into account the realistic arrow-head shapes of ergyindicatinganeffectivesuppressionoftheQCSE,inagree- PreprintsubmittedtoMaterialScienceinSemiconductorProcessing January20,2016 whicharecommonina-planeAlN,asshowninTEMimageof 30 K theupperinsetofFig. 1(a). 60 K BSFs are ZB inclusions in the WZ matrix and can be re- 90 K s) 120 K gardedastype-IIquantumwellsforelectrons. Holesareinthe ituni 322022000 KKK surrounding WZ area and stay bound to the electrons thanks b. to Coulomb attraction. Therefore, transition I in Fig. 1 cor- ar 1.0 1 nsity (nten II1 X ormalized INo100..05 rtionesngpsto.hneTdhesexrtcmoitoathlne.exArcacidttauiataitloilvnye,ctrahenecodamcetlbiovicanataliitozinoenetnhoeefrhgsoyulceohsbtbtayyipndee-idsIIseoxecpxiecarit--- I 0.01 0.02 0.03 imentally, 30±3 meV, matches the binding energy of the ex- 1/T(K-1) (a) citon[14]. Increasingtheexcitationpower, ontheotherhand, 33..66 33..77 33..88 33..99 44..00 44..11 44..22 leadstotheband-fillingoftheelectronsubbandsandthepartial Energy (eV) screening of the electric field in the inclusion, which is orig- LIow T inated by the discontinuity of the polarization at the WZ/ZB nits) 104 RX1T interface[15]. Thiscanexplaintheblue-shiftoftheI1PLpeak b. uy (arb 1033 showninFig. 1(c). ensit 102 (b) 3. Theoreticalresults nt I 3.1. Descriptionofthemodel 3.82 LIo1w T RXT We have implemented a model for the optical properties of gy (eV) 3.80 GpoalNar/AorliNenQtaDtisonwsi.thTahrebfiitrrsatrystgeepoimneoturyrmanoddbeloitshtphoelacralacnudlantoionn- ere En 3.78 (c) of the three-dimensional strain and built-in potential distribu- tions in the dot and the surrounding barrier. Our approach to 0.1 1 10 the strain distribution is based in a reformulation of Eshelby’s Power (mW) inclusions model [16]. The displacement, u(r), associated to therelaxationoftheQDinclusionwithintheinfinitematrixis Figure1:(Coloron-line)(a)PLspectraoftheGaNa-QDsasafunctionofthe calculatedfromtheelasticequilibriumequation, sampletemperature. Theupperinsetshowsa100×80nm2 plan-viewTEM (cid:34) (cid:35) imagewhereBSFscrossingtheAlNbarriersandmostofthea-QDsappearas ∂ ∂ ∂ (cid:104) (cid:105) verticallines,asextractedfromRef.[9].ThelowerinsetcontainsanArrhenius ∂x Cijkl(r)∂x uk(r) =−∂x σ(i0j)χ(r) , (1) plotoftheintensityofthe I1 peakprovidinganactivationenergyof30±3 j l j meV.Thedependenceofthepeakintensity(b)andenergy(c)ontheexcitation whereχ(r)isthecharacteristicshapefunctionoftheinclusion, poweroftheI1 andX transitions. Thedashedlinein(b)correspondstothe lineardependence. Cijkl(r)aretheelasticconstantsoftheinhomogeneoussystem, andσ(0) theinitialstress, relatedtothemismatchbetweenthe ij latticeparametersofthematrixandtheinclusion. Theanalysis ment with previous reports [6, 7, 8]. On the other hand, two is simplified by taking the same elastic constant values in the transitions can be identified (labeled as I and X) peaking at dot and matrix, which is a good approximation for GaN and 1 3.785 eV and 3.87 eV at 30 K, which evolve differently with AlN. Since the shape of the non-polar QDs can be crucial for temperature. While I dominatestheemissionatlowtempera- theiropticalproperties[13],weturntotheFourierspacewhere 1 tures, its intensity decays rapidly as the temperature is raised, itisalwayspossibletoobtaintheanalyticalsolutionsforu˜i(q) asshownbytheArrheniusplotinsettedinFig. 1(a). Atroom foranyQDshape. Finally,thebuilt-inelectrostaticpotentialis temperature,justonegaussianpeakcorrespondingtotransition computed considering the spontaneous, Psp = (0,0,Pszp), and X is observed. The dynamics of the PL (not shown) is also piezoelectric, Ppz = (Ppxz,Ppyz,Ppzz), contributions for the total different for X and I with decay times of 1.23 and 2.38 ns, materialpolarization.Thelatterarecalculatedassuminghomo- 1 respectively. Inordertostudythedependenceofthetwotran- geneous piezoelectric constants for the inclusion and the ma- sitionsontheexcitationpower, experimentshavebeencarried trix. Then,weusethesepolarizationsandthePoissonequation outatlowandroomtemperature,whenthePLisdominatedby tocomputethebuilt-inelectrostaticpotential, I and X, respectively. Thepowerdependenceoftheintensity 1 i andthePLpeakenergiesareexemplifiedinFigs. 1(b)and(c). φ˜(q)=− q·P˜tot(q) . (2) q2(cid:15) (cid:15) The integrated intensities increase with power almost linearly 0 r in both cases. The peak energy, however, blue-shifts clearly The electronic structure is calculated within the multi-band withincreasingpowerforthe I transition, whilebeingnearly envelopefunctionapproximationbasedonthe8×8k·pHamil- 1 constantforX. Theoverallphenomenologyreportedfortransi- tonianderivedbyChuangetal[17]takingintoaccountthecon- tionI iscompatiblewiththatattributedtobasalstackingfaults tribution of the strain field and the built-in electrostatic poten- 1 (BSFs)[14,15]. Non-polarQDscanbeoftencrossedbyBSFs tial. Aplane-waveexpansionwithinthefirstBrillouinzoneis 2 performed [18]. Excitonic correlation has been taken into ac- 2 countperturbatively. Then,foreachelectron-holepairthecor- ((aa)) ((bb)) φpiezo respondingexcitonenergyisgivenbyEX,ij =(Ecj−Eiv)−Eb,ij, 1 φspont where Eb,ij is calculated from the direct matrix element of the φpiezo+φspont electron-holeCoulombinteraction 0 Eb,ij =−4eπ2εr (cid:90)re(cid:90)rh (cid:112)(xe−xh|)ψ2cj+(r(ey)|e2|−ψviy(hr)h2)|+2 (ze−zh)2 .(3 (eV)φ) -1 yy zz α D D Here,ψc (Ec)andψv (Ev)arethewavefunctions(energies)of -2 x y 1 j j i i D the jth electron state and the ith hole state, respectively. We 22 finally obtain the absorption spectrum from the exciton ener- -3 z yy h x z h gies and the computed polarization dependent dipolar matrix elements -4 -6 -4 -2 0 2 4 6 -10 -5 0 5 10 α((cid:126)ω)= C (cid:88) f Γ , (4) z (nm) z (nm) (cid:126)ω i,j T,ij(cid:16)EX,ij−(cid:126)ω(cid:17)2+Γ2 Figure2: (Coloron-line)Variationoftheelectrostaticpotentialcomponents whereCisaconstant,(cid:126)ωthephotonenergy,Γprovidesaphe- alongthewurtzitec-axisofa(a)c-QDanda(b)a-QD.TheshapesoftheQDs nomenological description of the line broadening, and fT rep- foreachorientationaresketchedintheinsets.Thedimensionsofthec-QDare resentsthetransitionoscillatorstrength,definedas D=20nmandh=4nm;andofthea-QD,D1 =24nm,D2 =16nm,h=3 nm, andα = 30◦. Thedashedarrowsindicatethelineswherethepotential fT = m2(cid:126)E2 (cid:12)(cid:12)(cid:12)(cid:104)ψcj|eˆ·p|ψvi(cid:105)(cid:12)(cid:12)(cid:12)2 . (5) profilesaretakenfrom. 0 X Finally, an important property of the confined electron-hole value. The value obtained for the potential can be partially transitionsistheirradiativelifetime,τ [8] r understood through geometrical arguments: the GaN-AlN in- 3m c32π(cid:126)2(cid:15) terface along z in the a-QD is not perpendicular to the c-axis, τr = n0e2E2 f 0 , (6) leadingtoareductioninthepolarizationcharge. Additionally, X T the magnitude of the potential does not increase linearly with wherenistherefractionindexofthematerial. Theparameters distance, since the a-QD geometry hardly resembles a planar usedinourcalculationsarethoseofRef[19]. capacitor. AsecondstrikingdifferencebetweenFigs. 2(a)and (b) arises from the piezoelectric contribution to the potential 3.2. Comparative study of the optical properties of polar and induced by strain which has now opposite sign due to the dif- non-polarGaN/AlNQDs ferences in the strain distribution [7]. As a consequence, the TwodifferentQDorientationsarestudied,whichinvolvetwo totalpotentialisconsiderablyreduced. distinctiveQDgeometries. PolarQDs,withthedotaxisparal- Theabsorptionspectraofpolarandnon-polarQDsarecom- lel to the c-axis (c-QDs), are modeled as truncated hexagonal paredinFig3. Thelabelsindicatetheelectronandholestates basedpyramids[2],asdepictedinFig2(a). Ontheotherhand, involvedinthetransitionsforbothorientations. Forthec-QD, a-QDs have the truncated trapezoidal based pyramidal shape theabsorptionpeakscorrespondingtothegroundstatearewell [9]showninFig2(b). Weshalltakethez-axisalwaysparallel belowtheGaNband-gapenergy(2.922eVand2.930eV).The tothecrystal[0001]direction. Figure2showsthevariationof smallenergydifferencebetweenbothpeaksisattributedtothe theelectrostaticpotentialalongthez-directionforbothtypesof bandcouplingincludedinthemodel. Remarkably, theoptical QDs. Thecontributionsfromthepiezoelectricandthesponta- transitionsofthea-QDarejust20meVhigherthanthoseofthe neouspolarizationsareexplicitlydisplayed. Forthec-QD,the c-QD,whichcanbeexplainedbythesmallervolumeofthea- piezoelectricandspontaneouscontributionsarefoundtobeof QDwithrespecttothepolarcaseandtheconsequentincrease similarmagnitudeand,moreimportantly,ofthesamesign,re- ofthequantumconfinementenergy. Despitethesimilaritiesin sultinginatotalpotentialthatchangesalmost2.4Vinalength termsofenergyrange,wefindprofounddifferencesinthetwo ofonly4nm. Noticethat, fromtheelectrostaticpointofview, spectra. Firstofall,theabsorptionspectrumofa-QDsisthree a QD of this geometry resembles a planar capacitor, with its ordersofmagnitudeweakerthanthatofthec-QDs. Suchade- oppositelychargedsheetsseparatedadistanceequaltotheQD creaseintheoscillatorstrengthisduetothelargerspatialsep- height. Therefore,thepotentialdifferencebetweenthetopand arationbetweentheelectronandholestatesinnon-polarQDs, bottomoftheQDincreasesalmostlinearlywithheight. Asim- ascanbeobservedintheinsetsofFig. 3forthegroundstates ilaranalysisforthea-QD,seeFig. 2(b),conveysverydifferent of electrons and holes confined in such QDs. In relation with results. First, we notice that the contribution to the potential that, the calculated lifetime of the radiative recombination of arisingfromthespontaneouspolarizationhasalmostthesame thegroundtransitionis18msfora-QDs. Thisvalueisfouror- magnitudethanthatforthec-QD.However,withtheimageof dersofmagnitudegreaterthanthelifetimeofthegroundtransi- the planar capacitor in mind, we would expect a much larger tioninc-QDs,(2.3µs). Fromthetheoreticalsimulationwecan 3 X (a) ×103 (b) Y e (a) X (b) Intensity (arb.units)2.900 e-h200. 9Z25e-h01 2.95e-h005 e-hh0620.0975 2.900 2.925 e-hhe00200.9e-h5001 e-h022e-h.90375 es (eV)Band Edge)nd Edges (eV)Ban 1000...6450005 C.B. aaa--QQQDDD++BBSSFF arb. units)Intensity (a I x10-7 ZZY -he000e-he-h0102-he030 V.B. Energy (eV) -0.5 -10 -5 0 5 10 33.992255 33.995500 33.997755 44.000000 z (nm) Energy (eV) Figure3: (Coloron-line)Firsttransitionsoftheopticalabsorptionspectraof (a)thec-QDand(b)a-QDasafunctionofthelightpolarization.Thelabeling Figure4:(Coloron-line)(a)Conductionandvalenceband-edgeprofilesforthe foreachtransitionsisrealizedbytheuseoftheelectronandholelevels. The a-QDcorrespondingtothefirststatesforelectronsandholescontaininga3 insetsshowthewavefunctionsoftheelectronandholegroundstatesforthetwo mono-layerZBinclusioninthez=0plane. (b)Firsttransitionsoftheoptical geometries. absorptionspectrumofelectricfield-freea-QD.Thescaleoftheintensityisthe sameasinFig.3. concludethattheQCSEendsupbeinghigherina-QDsthanin c-QDs. importantly,theoscillatorstrengthissevenordersofmagnitude largerthanthoseobtainedforc-QDs. In conclusion, the optical properties of GaN/AlN non-polar 4. Discussion quantum dots show a drastic suppression of the quantum con- fined Stark effect in these systems. Theoretical calculations The almost full suppression of the QCSE evidenced exper- predict a strong reduction of the internal electric field which imentally cannot be explained by our theoretical simulations. doesnotensure,however,aneffectivesuppressionofthequan- This puts forward the need for other mechanisms that should tum confined Stark effect due to the orientation of non-polar accountforadditionalreductionsoftheinternalelectricfieldsin quantumdots. Thecomputationofthepotentialprofileofbasal non-polarQDs.Whilesomeauthorshavedemonstratedthatthe stackingfaultsinsidethequantumdotsprovidesadditionalre- shapeofthedots[13]orthepresenceoffreecarriers[20]can ductionoftheinternalelectricfield. Excitonictransitionsasso- increasetheoscillatorstrengthofthetransitionsorscreenbuilt- ciatedtostackingfaultscandominatetheemissionspectrumat inelectricfields,noattentionhasbeenpaidtotheexistenceof lowtemperaturesandmoderateexcitationpowers. structural defects, such as BSFs, revealed in the PL spectra of Fig. 1. TheeffectofBSFsistwofold: firstofall,thebandoff- References sets between the WZ matrix and the ZB inclusion generates a thin type-II quantum well (∆EC = 122 meV and ∆EV = −62 [1] S.Nakamura,S.Pearton,andG.Fasol,Thebluelaserdiode(Springer, meV)whereonlyelectronsshouldbeconfined[14]; secondly, BerlinHeidelberg,2000). [2] B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. the lack of spontaneous polarization of the ZB phase (piezo- Rouvie`re,Phys.Rev.B56,R7069(1997). electricpolarizationsarecomparableinbothphases)yieldsan [3] D.A.B.Miller,D.S.Chemla,T.C.Damen,A.C.Gossard,W.Wieg- additional contribution to the electric field. Thus the band- mann,T.H.Wood,andC.A.Burrus,Phys.Rev.Lett.53,2173(1984). edge profiles of BSFs are those of a triangular quantum well, [4] F.Bernardini,V.Fiorentini,andD.Vanderbilt,Phys.Rev.B56,R10024 (1997). assketchedintheinsetofFig. 4(a)fora3mono-layerZBin- [5] P.Waltereit,O.Brandt,A.Trampert,H.T.Grahn,J.Menniger,M.Ram- clusion,reproducingthecalculationsofRef. [15]. Ifasimilar steiner,M.Reiche,andK.H.Ploog,Nature406,865(2000). inclusionwaslocatedinthecenterofana-QD,theband-edge [6] S.Founta,F.Rol,E.Bellet-Amalric,J.Bleuse,B.Daudin,B.Gayral,and profiles of the QD would be modified by the BSF potential. H.Mariette,Appl.Phys.Lett.86,171901(2005). [7] N.Garro,A.Cros,J.A.Budagosky,A.Cantarero,A.Vinattieri,M.Guri- Figure 4 (a) shows the comparison of the a-QD confinement oli,S.Founta,H.Mariette,andB.Daudin,submittedtoAppl.Phys.Lett. potential with (solid line) and without (dashed line) the BSF. 87,011101(2005). The presence of the ZB inclusion reduces the internal electric [8] F. Rol, S. Founta, H. Mariette, B. Daudin, L. S. Dang, J. Bleuse, D. field in the WZ area by around 30%. Even more substantial Peyrade,J.-M.Grard,yB.Gayral,Phys.Rev.B75,125306(2007). [9] S.Founta,C.Bougerol,H.Mariette,B.Daudin,yP.Venne´gue`s,J.Appl. reductionsofthebuilt-inelectricfieldareexpectedforthicker Phys.102,074304(2007). ZBinclusions[15]. Thereforewecanjustifythesuppressionof [10] S.Schulz, A.Barube, andE.P.O’Reilly, Phys.Rev.B79, 081401(R) the QCSE by a combination of effects, including the presence (2009). ofBSFs. Thecalculatedabsorptionspectrumofana-QDwith [11] O.Marquardt,T.Hickel,abdJ.Neugebauer,J.Appl.Phys.106,083707 (2009). zerointernalelectricfieldisdisplayedinFig. 4(b). Theenergy [12] K.Schuh,S.Bartherl.O.Marquardt,T.Hickel,J.Neugebauer,G.Czy- of the transitions now matches that of the PL peak and, more choll,andF.Jahnke,Appl.Phys.Lett.100,092103(2012). 4 [13] S.Schulz,M.A.Caro,andE.P.O’Reilly,Appl.Phys.Lett.101,113107 (2012). [14] P.Corfdir,P.Lefebvre,J.Levrat,A.Dussaigne,J.D.Ganie`re,D.Martin, J.Ritic´,T.Zhu,N.Grandjean,andB.Deveaud-Ple´dran,J.Appl.Phys. 105,043102(2009). [15] G.Jacopin,L.Rigutti,L.Largeau,F.Fortuna,F.Furtmayr,F.H.Julien, M.Eickhoff,andM.Tchernycheva,J.Appl.Phys.110,064313(2011). [16] Eshelby,J.D.Proc.R.S.SeriesA-Math.Phys.Sc.241,376-396(1957). [17] S.L.ChuangyC.Chang,Phys.Rev.B54,2491-2504(1996). [18] L.C.LewYanVoonandM.Willatzen,Thekpmethod:electronicstruc- tureofsemiconductors(Springer,Berlin,2009). [19] A.D.AndreevandE.P.O’Reilly,Phys.Rev.B62,15851(2000);ibit, Appl.Phys.Lett.79,521(2001). [20] P.Hille,J.Mu¨ßener,P.Becker,M.delaMata,N.Rosemann,C.Mage´n, J.Arbiol,J.Teubert,S.Chatterjee,J.Scho¨rmann,andM.Eickhoff,Appl. Phys.Lett.104,102104(2014). 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.