ebook img

Optical observations of GRB 060124 afterglow: A case for an injection break PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical observations of GRB 060124 afterglow: A case for an injection break

Astronomy&Astrophysicsmanuscriptno.6539˙misra˙manuscript (cid:13)c ESO2008 February5,2008 Optical observations of GRB 060124 afterglow: A case for an injection break 7 0 KuntalMisra1,D.Bhattacharya2,D.K.Sahu3,RamSagar1,G.C.Anupama4,A.J.Castro-Tirado5,S.S.Guziy5,6 0 andB.C.Bhatt3 2 n a 1 AryabhattaResearchInstituteofObservationalSciences,ManoraPeak,Nainital263129,India J e-mail:kuntal,[email protected] 5 2 RamanResearchInstitute,Bangalore560080,India 1 e-mail:[email protected] 3 CenterforResearchandEducationinScience&Technology,Hosakote,Bangalore562114,India 1 e-mail:dks,[email protected] v 4 IndianInstituteofAstrophysics,Bangalore,560034,India 3 e-mail:[email protected] 1 5 InstitutodeAstrof´ısicadeAndaluc´ıa(IAA-CSIC),POBox03004,18080Granada,Spain 4 e-mail:ajct,[email protected] 1 0 6 NikolaevStateUniversity,Nikolskaya24,54030Nikolaev,Ukraine 7 0 / Received;accepted h p - ABSTRACT o r Aims.Wepresent broadband optical afterglowobservations of along durationGRB060124 using the1.04-mSampurnanand Telescopeat t s ARIES,Nainitalandthe2.01-mHCTatIAO,Hanle,includingtheearliestgroundbasedobservationsinRbandforthisGRB.Wedetermine a thedecayslopeofthelightcurveatdifferentbandsandexaminetherealityofaproposedjetbreak. : v Methods.Weusedatafromourobservationsaswellasothersreportedintheliteraturetoconstructlightcurvesindifferentbandsandmake i powerlawfitstothem.Thespectralslopeoftheafterglowemissionintheopticalbandisestimated. X Results.OurfirstR-bandobservationsweretaken∼0.038dafterburst.Wefindthatallavailableopticaldataafterthisepocharewellfitbya r a singlepowerlaw,withatemporalfluxdecayindexα∼0.94.Wedonotfindanyevidenceofajetbreakwithinourdata,whichextendtill∼2d aftertheburst.TheX-raylightcurve,however,showsadistinctbreakaround0.6day.Weattributethisbreaktoasteepeningoftheelectron energyspectrumathighenergies. Conclusions.Weconcludethattheabovemeasurementsareconsistentwiththepictureofastandardfireballevolutionwithnojetbreakwithin t∼2daysaftertheburst.Thissetsalowerlimitof3×1050ergtothetotalenergyreleasedintheexplosion. Keywords.gammaraybursts–photometry–observations–temporalindex–spectralindex 1. Introduction BAT energy range is ∼ 7 x 10−6 erg/cm2 in the 15-150 keV bandafterscalingthefluenceoftheprecursor. GRB060124(Swifttrigger=178750),alongdurationgamma Swift-XRTbeganobservingthefield106secaftertheBAT rayburst,wasdetectedon2006January24atT=15:54:52UT trigger.AnalysisofthefirstorbitofXRTdatashowsthepres- bytheSwift-BAT(Hollandetal.2006a).TheBATlightcurve ence of an X-ray source at a position α = 05h08m27s.27, shows a precursor from T-3 to T+13 sec, followed by three 2000 δ = +69◦44′25′′.7 which is 2.4 arcmin from the BAT po- majorpeaksfromT+520toT+550sec,T+560toT+580sec, 2000 sition and 9 arcsec from the optical afterglow candidate re- whichhasthelargestflux,andT+690toT+710sec(Fenimore portedbyKann(2006).TheX-raylightcurveintheWindowed etal.2006).ThetotaldurationoftheGRBis,thus,thelongest Timing mode shows an initial flat behaviorfollowedby three everrecordedbyBATSEorSwift.Thefluenceoftheprecursor emissioninthe15-150keVbandis(4.6±0.5)x10−7erg/cm2. brightflaresafterthefirst100sofobservation(Manganoetal. 2006). The peak flux in the 15-150 keV band was about 4.5 ± 0.5 counts/cm2/sec at T+570. The estimated total fluence in the An optical afterglow candidate of the GRB 060124 was discovered by Kann (2006) at α = 05h08m25s.5, δ = 2000 2000 Sendoffprintrequeststo:KuntalMisra +69◦44′26′′.V-bandexposurestaken184and629secafterthe 2 KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow BATtriggerbySwift-UVOTalso showthepresenceofanop- InthispaperwepresentthebroadbandBVRI photometric ticaltransient(Hollandetal. 2006b).Noopticalflare wasde- observationsoftheopticalafterglowofGRB060124including tected at the position of the optical afterglow (Torii 2006). A theearliestobservationsinRbandfromanygroundbasedtele- low-resolutionspectrumoftheafterglowofGRB060124was scope. A secure photometric calibration has been carried out obtained by Mirabal and Halpern (2006) on 2006 Jan 25.13. by imaging the Landolt (1992) Standard SA 104 field along Itspreliminaryanalysisshowsthepresenceofasignificantab- with the GRB 060124field. A brief descriptionaboutthe ob- sorption feature at 5105 Å, possibly a doublet corresponding servations and data reduction is presented in the next section to Mg II 2795 Å, 2802 Å (z=0.82) or C IV 1548 Å, 1550 Å whereasthemulti-bandopticallightcurveoftheafterglowfol- (z=2.30). The presence of doublet feature is later confirmed lowinsection3.Thediscussionsandconclusionsformthelast by Cenko et al. (2006). However, the Mg II feature has been sectionofthepaper. ruled out on the basis of their separation and is identified as CIV feature by Prochaska et al. (2006). They also identified 2. ObservationsandDataReduction a weak absorption feature consistent with this redshift corre- spondingtoAlII1670Åandanabsorptionlineat 4000Åcon- Optical observations of the GRB 060124 afterglow were car- sistent with Lyα absorption and indicating log N(HI) < 20.5. ried out using the 1.04-m Sampurnanand Telescope (ST) AccordingtoProchaskaetal.(2006)theafterglowspectrumis at Aryabhatta Research Institute of observational sciencES notable for exhibiting very weak low-ion features (e.g. non- (ARIES), Nainital and the 2.01-m Himalayan Chandra detections of FeII 1608, OI 1302, CII 1334) and relatively Telescope (HCT) at Indian Astronomical Observatory (IAO), low HI column density. In this respect, the spectrum of GRB Hanleduring2006January24to26.ACCDchipofsize2048 060124afterglowis similar tothe afterglowsof GRB 050908 × 2048 pixel2 was used at ST covering a field of ∼ 13′ × and GRB 021004. Assuming a standard cosmological model 13′ on the sky. The gain and readout noise of the CCD cam- withH =70km/s/Mpc,Ω =0.3,Ω =0.7andaredshiftof era are 10 e−/ADU and 5.3 electrons respectively. The filters 0 M Λ z=2.297andafluenceofabout7x10−6erg/cm2,theisotropic- used at ST are the Johnsons BV and Cousins RI. The frames equivalent gamma ray energy is 8.9 x 1052 erg (Cenko et al. werebinnedin2×2pixel2 toimprovethesignal-to-noisera- 2006). tio of the source. The CCD used at HCT was a 2048 × 4096 The most intense peak of the burst as seen by Swift SITe chip mounted on Himalayan Faint Object Spectrograph BAT triggered Konus-Wind 558.9 s after the BAT trigger Camera(HFOSC).Thecentral2048×2048regionoftheCCD (Golenetskii et al. 2006). The Konus-Wind light curve shows was used for imaging which covers a field of 10′ × 10′ on the presence of the precursors and the three major peaks as the sky. It has a gain of 1.22 e−/ADU and readout noise of wereseenbySwiftBAT.Golenetskiietal.(2006)makeapre- 4.8 electrons. Filters used are Bessells R and V. The frames liminary estimate of the total burst fluence in the 20 keV - 2 obtainedusingHCTwereunbinned.Severaltwilightflatfield MeV energyrangeto be ∼ 2.80× 10−5 erg/cm2/sec. The ma- andbiasframeswereobtainedfortheCCDimagesatboththe jor peak of GRB 060124 was intense enough to trigger the telescopes. Severalshort exposures,with exposure time vary- FREGATEinstrumentonHETEII557.7saftertheSwifttrig- ingfrom300secto1800sec,weretakenindifferentfiltersto gertime(Lambetal.2006). imagetheopticaltransient(OT)ofGRB060124. GRB060124hasbeenthefirstwellstudiedeventbySwift MIDAS,IRAFandDAOPHOTsoftwareswereusedtopro- in the prompt and the afterglow emission phase (Romano et cesstheCCDframesinstandardfashion.Thebiassubtracted, al. 2006).The promptemission was simultaneously observed flat fielded and cosmic ray removed CCD frames were co- by XRT and UVOT. GRB 990123 was one such event for addedwheneverfoundnecessary. which the flare in the promptphase was observedby ROTSE Landolt(1992)StandardfieldSA104regionwasimagedto (Akerlofetal.1999)whichshowedarapiddecline.Thisemis- calibratethefieldofGRB060124.Atmosphericextinctionval- sioninthepromptphasewasinterpretedasreverseshockemis- uesandthe transformationcoefficientsin B, V, R andI filters sion. The Konus-Wind light curve resembles the light curves weredeterminedusingthe6standardbrightstarsintheSA104 of two long duration bursts: GRB 041219A (Vestrand et al. region.The6standardstarsintheSA104regioncoverarange 2005)andGRB050820A(Golenetskiietal.2005).TheIRaf- of0.518< (B−V) <1.356incolorand13.484< V <16.059 terglow of GRB 041219A was observed while the GRB was inbrightness.Usingthesetransformation,BVRImagnitudesof still going on. Optical imaging of GRB 050820A, 5.5 s after 25secondarystarsweredeterminedinGRB060124fieldand the trigger alert, with the RAPTOR telescope clearly shows theiraveragevaluesarelistedinTable1.Figure1showsthepo- theemergenceoffaintopticalemissionwhichsuddenlyflares sitionoftheopticalafterglowinRbandandthe25secondary andfadesawayduringthefirstonehour(Vestrandetal.2006). starsusedforcalibration.Thesestarshaveinternalphotometric ThepromptopticalemissioninboththeselongdurationGRBs accuracybetterthan0.01mag.The(X,Y)CCD pixelcoordi- (GRB041219AandGRB050820A)hasbeenattributedtoin- nateswereconvertedtoα ,δ valuesusingtheastromet- 2000 2000 ternal shocks in the ultra-relativistic outflow (Vestrand et al. ric positionsgivenbyHenden(2006).A comparisonbetween 2005,Vestrandetal.2006),thesamesourcethatisthoughtto photometryofHenden(2006)andthatofoursyieldszeropoint generatethe gammaray emissionin the burst.Theopticalaf- differencesof 0.04± 0.03,0.04± 0.03,0.03± 0.02and 0.04 terglow of GRB 060124 was extensively followed by ground ±0.03inB,V,R,Ifiltersrespectively.Thesezeropointdiffer- basedtelescopeswiththeearliestobservationsreportedbyour ences are based on the comparison of 14 common secondary group(Misra2006). starsinthefieldofGRB060124. KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow 3 Fig.1.AR-bandimageofGRB060124opticalafterglowwith Fig.2. A R-band image of the field of GRB 060124taken on the1.04-mSampurnanandTelescope(ST)atARIES,Nainital. 2006February16(22daysaftertheburst)withthe2.5-mIssac Theopticalafterglowisindicatedbyanarrow.Markedarethe Newton Telescope (INT) at La Palma, Spain which does not 25secondarystarsusedforcalibration.NorthisupandEastis showanythingatthepositionoftheopticalafterglow.Northis totheleft.Theapproximatescaleisshowntowardsthebottom upandEastistotheleft.Theapproximatescaleisshowninthe rightcorner. figure. Table1.Theidentificationnumber(ID),(α,δ)forepoch2000, TheobservationsofthefieldofGRB060124werecarried standardV,(B−V),(V−R)and(R−I)photometricmagnitudes out towards a later epoch on 2006 February 16 with the 2.5- ofthesecondarystandardsintheGRB060124field mIssacNewtonTelescope(INT)atLaPalma,Spain.Figure2 showsthezoomedareaofthefieldofGRB060124whichdoes ID α δ V (B−V) (V−R) (R−I) 2000 2000 notrevealanyafterglowcandidateatthelocationoftheoptical (hms) (degms) (mag) (mag) (mag) (mag) transient. 1 050741 694102 16.99 1.41 0.92 0.83 A full compilation of BVRI magnitudes of the optical af- 2 050759 694148 18.83 1.61 1.19 1.42 terglow differentially calibrated with respect to the secondary 3 050757 694221 15.45 0.99 0.53 0.49 4 050754 694252 17.05 1.08 0.63 0.59 stars numbered 1, 2, 3, 4, 5 and 6 as listed in Table 1 is pre- 5 050808 694112 17.06 0.82 0.45 0.45 sented in Table 2. The photometric magnitudes reported by 6 050811 694151 16.66 0.86 0.49 0.47 Masettietal.(2006)wereconvertedtothepresentphotometric 7 050815 694232 17.12 0.74 0.39 0.41 scaleusingthesecondarystarslistedinTable1. 8 050812 694316 18.08 0.82 0.45 0.44 9 050833 694342 16.78 0.95 0.51 0.46 10 050827 694451 16.83 1.42 0.89 0.77 3. MultibandOpticalLightCurve 11 050825 694514 15.27 0.77 0.42 0.41 12 050835 694510 14.93 0.72 0.39 0.39 Figure3showsthetemporalevolutionoftheGRB060124af- 13 050831 694428 18.09 0.95 0.53 0.46 terglow in BVRI bands based on the data presented here and 14 050850 694343 16.56 0.88 0.49 0.46 those available in the literature. The published magnitudesin 15 050856 694352 16.34 0.86 0.47 0.45 the optical bands were brought to our photometry level us- 16 050915 694351 19.18 1.49 1.04 1.07 ing the 6 secondary standard stars as mentioned in Section 17 050901 694525 15.71 0.69 0.38 0.39 2. The frequency distribution of our data in BVRI bands is 18 050847 694550 17.41 0.67 0.37 0.39 N(B,V,R,I) = (6, 13, 20, 9). It is to be noted here that we 19 050832 694616 17.89 0.75 0.43 0.43 present the earliest ground based R band observations which 20 050825 694629 18.18 0.85 0.48 0.49 have placed important constraints on the overall evolution of 21 050817 694744 16.09 0.93 0.51 0.48 theafterglow.TheX-axishererepresentslog∆t(=t−t )where 22 050811 694716 16.01 0.67 0.38 0.38 0 23 050802 694608 16.64 1.07 0.58 0.57 tisthetimeofobservationandt =2006January24.6331UT 0 24 050758 694444 15.40 0.63 0.35 0.38 istheburstepoch. 25 050754 694340 17.18 0.99 0.56 0.53 Since we havethe R bandobservationsfrom∆t = 0.03to 2.0day,wenoticedthattheRbandfluxdecayoftheafterglow of GRB 060124 can be well characterized by a single power 4 KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow a few other GRB afterglowssuch as GRB 000301C(Sagaret 1144 al.2000),GRB021004(Pandeyetal.2003,Bersieretal.2003, Bjo¨rnsson et al. 2004), GRB 021211 (Li et al. 2003), GRB 1166 050319(Wozniaketal.2005)andGRB051028(Castro-Tirado et al. 2006). While some of the reported flicker could arise fromvariableobservingconditions(Wozniaketal2005),most 1188 of the observed flickering appears to be real. Short timescale variabilitycould,inmanycases,beattributedtodensityvaria- 2200 tionsintheexternalmedium(Wang&Loeb2000).However,in somecaseslateinjectionofenergyfromthecentralenginepro- 2222 videabetterexplanation(e.g.ZhangandMeszaros2002,Liet al.2003).Gravitationalmicrolensinghasbeenproposedasthe 2244 cause of achromatic variability in GRB 000301C (Garnavich et al. 2000),butthis interpretationremainsambiguous.In the case of GRB 060124,the flickering is observedin all the op- 2266 ticalbandsaswellasinX-rays.Timescalesofthisvariability areshortcomparedtotheelapsedtimesinceburst,andthereis 2288 --11..66 --11..22 --00..88 --00..44 00 00..44 00..88 11..22 11..66 noevidenceseenofpersistentincreaseinthelightcurvelevel followingtheflickerepisodes.Thisnatureismoreakintothe variability expected due to inhomogeneities in the density of Fig.3. Optical light curve of the GRB 060124 afterglow in thecircumburstmaterial. BVRI bands. The light curvesin differentbandsare offset by a numberas indicated to avoid overlapof the data. Filled cir- clesrepresentthedatafromthepresentmeasurementswhereas 4. DiscussionsandConclusions unfilledcirclesrepresentthedatatakenfromtheliterature.The We present in this paper the broad-band BVRI optical obser- solidlineindicatestheleastsquarebestfittedvalueofthetem- vationsusingthe1.04-mSampurnanandTelescopeatARIES, poral index. Also shown is the upper limit derived using the Nainital and the 2.01-m HCT at IAO, Hanle during 2006 observationsatalaterepoch. January 24 to 26. We report the earliest optical observations in the R band at ∆t < 1 hr. The X-ray light curve showed a “flaring”promptemission.Thepromptemissionwasalsoob- lawwrittenas servedatopticalwavelengthsbutnoflaringactivitywasseen. The availabledata in the opticalband(Swift UVOT+ ground F(t)∝t−α basedobservations)isnotsufficienttocomparethepromptop- ticalemissionwiththatingammarayandX-raybands. where F(t) is the flux of the optical afterglow at time t since We study the optical afterglowevolutionfrom 0.03 to 2.0 the burst and α is the temporal flux decay index. The above day. The optical afterglow is well characterized with a single function was fitted to the R band data using the least square powerlaw decaywith a flux decayindexof 0.94± 0.01.The regression method. This yields the value of α = 0.94 ± 0.01. late INT upper limit shows that any contaminationfrom pos- We assumed the same power law decay for B, V and I bands siblesteadysourcescoincidentwiththeafterglowisfainterby and fitted the above function which seems to agree with the atleast2magnitudescomparedto thelastobservedafterglow observeddata points. The linear least square fit to the data in magnitudeat∼2days.Thisensuresthatsteepeningoftheop- thedifferentbandsisshowninfigure3. ticallightcurve,ifany,within2dayscouldnotbemaskedby Our observations extend upto ∆t = 2 days after the burst asteadysourcecontribution.Table3liststhecolorsoftheaf- includingtheearliestRbanddataat∆t=0.03dayanditdoes terglow at ∆t ∼ 1 and 2 days after the burst. The spectral in- not show any noticeable steepening in the light curve during dex(β )oftheafterglowofGRB060124intheopticalband opt thisentireperiodofobservations. is estimated using the flux normalizationat differentfrequen- Towards a later epoch on 2006 February 16, the field of cies from the light curves. The estimated value of Galactic GRB 060124 was observed with the 2.5-m INT at La Palma, Interstellar Extinction in the direction of the burst, using the Spain.Wedonotseetheopticalafterglowinaco-addedframe reddening map provided by Schlegel et al. (1998) is E(B-V) of3×600secexposureatthelocationoftheopticaltransient =0.135mag.Theapparentmagnitudes,correctedforGalactic andthusputan upperlimitof 22.5mag atthe locationof the extinctiononly as the extinctiondue to the host galaxyis un- afterglow.There is also no sign of any galaxyat the location. known, were convertedto flux using the normalizationin the Thedisappearanceoftheafterglowisapparentinfigure2when BVRIbandsbyBesseletal.(1998).Thespectrumisdescribed comparedtofigure1. bya single powerlaw F ∝ ν−β, where F isthe fluxata fre- ν ν Both optical and X-ray light curves of GRB 060124 ob- quencyνandβisthespectralindex.Thevalueofβ obtained opt tainedfromSwiftshowaremarkableflickeringwhichcanalso inthiswayis0.73±0.08. beseenatlatetimesinouropticalobservationsatallthepass- Romanoetal.(2006)triedtofittheXRTlightcurvebeyond bands.Achromaticflickeringinopticalbandshasbeenseenin 104secwithasinglepowerlawwhichgivesafluxdecayindex KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow 5 ofα=1.36±0.02.Buttheyfindasignificantimprovementin Wei and Lu (2002)proposethatthe multi-wavelengthspectra thefitwithabrokenpowerlawwithabreaktimet =1.05+0.17 of GRB afterglowsmay notbe made ofexactpowerlaw seg- b −0.14 ×105sec,α =1.21±0.04andα =1.58±0.06(∆α=0.37). ments but with a smooth change in slope and some breaksin 1 2 Romanoetal.(2006)considerthisbreakintheXRTlightcurve theGRBafterglowlightcurvesmaybecausedbysuchcurved tooshallowtobeinterpretedasajetbreak.TheopticalUVOT spectra. datafromSwiftisavailableonlyfort<105sandhencecannot Foraninjectionbreak(γ)intheelectronenergyspectrum i beusedtoexamineapossiblebreakaroundthisepoch. evolvingasγ ∝ Γq, whereΓisthebulkLorentzfactorofthe i Curranetal.(2006)alsomentionabreakintheX-rayand shock(seeBhattacharya2001),wecandescribethefluxevolu- opticallightcurveat0.77daybuttheydonotquotethequality tionatagivenobservingfrequencyν as obs ofthefit.Theyalsomentionthattheachromaticbreakseenin theX-rayandopticallightcurvesdiffersignificantlyfromthe (t)−23β1 F ∝ ti (1) utismuealtejemtpboreraalkdwechaicyhraisteasprpeaproernttedinbGyRCBuraraftneregtlaolw.s(2.0T0h6e)laartee νobs 1+(tti)34(1+q)(β2−β1) unequalinX-rayandopticalbands,andbothareshallowerthan which is a generalisation of the expression of Wei and Lu expectedinthecaseofaregularjetbreak. (2002) who use the evolution of a regular cooling break for Withourcoverageofopticaldata,wealsotrytocheckfora whichq=-1/3.β andβ aretheradiationspectralindicesbe- 1 2 possiblejetbreakbyfittingadoublepowerlawtotheobserved lowandabovetheinjectionbreakrespectively. data.However,combiningtheearlyandlatetimeobservations Based on this model,we havefitted the X-rayand optical in R band we do not find any convincing evidence for a jet afterglowlightcurveofGRB060124.Foranassumedq=-1/3, breakaround105sasseenintheX-raylightcurvebyRomano thebestfitvaluesobtainedfortheX-raylightcurvearet =0.55 i et al. (2006) and there is no considerable steepening seen in ±0.11d,β =0.59±0.07andβ =1.95±0.70withχ2/d.o.f.= 1 2 the light curve till ∼ 2 days after the burst. Using the same 2.1.FitstotheRbandlightcurvewiththesamevaluesoft,β i 1 values of α , α and t as in the X-ray band (Romano et al. andβ isruledoutatahighconfidencelevelwithaχ2 /d.o.f. 1 2 b 2 2006),we attempt a broken power law fit to the R band light = 225.Thus, the breakwhichis seen in the X-raylightcurve curve.Thisyieldsaveryhighvalueofχ2 /d.o.f.=269which is not an achromatic break. A good fit with the same β and 1 clearlyrulesoutthepossibilityofasimilarbreakintheoptical β isobtainedfortheRbandopticallightcurvewithχ2/d.o.f. 2 lightcurve.Eventheinclusionofapossiblecontributionfrom = 3.8 if the optical bandbreak time is assumed to be t >> 2 i a steadysource,consistentwiththeINTupperlimit, doesnot day, resulting in a single power law evolution with slope α = improvethebrokenpowerlawfitappreciably.Similarlyusing 3β /2.ThefitstotheX-rayandRbandlightcurvesareshown 1 thevaluesreportedbyCurranetal.(2006)fortheopticaldata, infigure4.Thevalueofα=0.89±0.11obtainedthiswayis ofbreaktime t = 0.77day,α = 0.77andα = 1.30we fit a consistentwiththesinglepowerlawfittothelightcurveofall b 1 2 broken power law to the R band light curve. This fit is ruled optical bandspresented above. We conclude that the break in outatahighconfidencelevelwithaχ2 /d.o.f.=15.Thus,we theX-raybandat∼105secmentionedbyRomanoetal.(2006) concludethattheopticallightcurveiswellcharacterizedbya is not a jet break, but is possibly due to the steepening of the singlepowerlaw. electron energy spectrum at high energies. The derived value BasedonthefitsmadetotheXRTlightcurvebyRomano of the high energyradiation spectral index β dependson the 2 et al. (2006) and optical light curve (present work), we see a valueofqforwhichnoindependentmeasurementexistsinthis breakwhichispresentintheXRTlightcurvebutnotintheop- case since thepassageofthe injectionbreakthroughmultiple ticallightcurve.Thus,thisisafrequencydependentbreakand frequency bands has not been monitored. The dependence of is therefore not of dynamical origin. Steepening of this kind derivedβ onthe assumedvalueofq in the range-1/3to 1 is 2 reflectsabreakintheenergydistributionoftheradiatingelec- displayedinfigure5. trons. Such a break, most commonly, is attributed to the ef- Theexistenceofaninjectionbreakwithintheobservedfre- fectofsynchrotroncooling.Synchrotroncoolingresultsinthe quencybandshavebeeninferredforseveralotherGRB after- steepening of the slope of the electron energy distribution by glowstoo(see,forexample,PanaitescuandKumar2002).This oneandacorrespondingchangeinthelightcurveslopeby0.25 providesanimportantcluetotheparticleaccelerationprocess (beforethejetbreak).The breakthatisseen in theXRT light operating in these afterglows. The steepening of the injected curve is however much steeper than 0.25. We tried to fit the electron energy spectrum indicates an upper cutoff, or reduc- XRTlightcurvebyfixingalightcurveslopeof0.25(similarto tion in efficiency, of the particle acceleration, which may be thatrequiredbyacoolingbreak)andruleoutsuchafitwitha dueeithertoradiationlosseswithintheaccelerationcycletime highconfidencelevel(bestfitχ2 /d.o.f.=31).Thesteepening orsimplythelimitedresidencetimeofelectronswithintheac- observed in the XRT light curve must therefore be attributed celeration zone (Gallant and Achterberg 1999; Gallant et al. to a different cause. It might be that the energy spectrum of 1999).TheappearanceoftheinjectionbreakintheX-rayband the injected electrons steepens beyond a certain high energy around ∼ 1 day after the burst implies that the upper cutoff limit(see,eg.PanaitescuandKumar2001).Suchan“injection Lorentz factor in this case lies in the range 106–108, depend- break”asitpassesthroughanobservingfrequency,leadsto a ingonthefractionofthetotalenergyinthemagneticfieldand correspondingbreakintheradiationspectrum,andtoasteep- otherphysicalparametersoftheafterglow.Inthepresentcase, eningofthelightcurve.Wemaymodelsuchanevolutionusing goodconstraintscanunfortunatelynotbeobtainedonthephys- a generalform of the expressionused by Wei and Lu (2002). ical parameters, in the absence of extensive multiwavelength 6 KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow ∼2daysaftertheburst,nojetbreakhasoccurredinthisafter- glow.Whilemanyafterglowsexhibitjetbreakrelativelyearly, thosewithjetbreakbeyond∼2daysarenotrare.Examplesin- 3.6 cludewellknownafterglowsofGRB 000301C,GRB 011211 and GRB 021004. In fact in a sample of 59 GRB afterglows 2.4 examined by Zeh et al. (2006),five had jet break around ∼ 2 daysandsixhadjetbreakbetween3to8daysaftertheburst. Thelowerlimittothejetbreaktimementionedabovecan 1.2 be used to put constraints on the jet opening angle and total energycontentintheafterglow.Usingtheisotropicequivalent 0.0 energyof8.9×1052ergderivedfromγ-rayfluencebyCenko etal. (2006)anda lowerlimitto the jetbreaktime of2 days, -1.2 weestimatethelowerlimittothejetopeningangletobe∼4.75 degreefor anassumedambientdensityof 1atom cm−3 andγ -2.4 -rayefficiencyof0.2.This,inturn,yieldsalowerlimittothe total energy output of 0.31 × 1051 erg, close to the estimated -3.6 meanenergyoutputinGRBs(Frailetal.2001). -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 It is interesting to note that using the empirical relation (Ghirlandaetal.2005,Liang&Zhang2005)betweenisotropic equivalentphotonenergyoutputintheburst,thepeakenergyin Fig.4. The R band and X-ray light curve of GRB 060124af- theburstandthejetbreaktime,Romanoetal.(2006)predicted terglow.ThefilledcirclesrepresenttheX-rayfluxandtheopen ajetbreaktimeof(2.1±1.2)×105sforthisafterglow,which circlestheRbandflux.Thesolidlineshowsthebestfitassum- isconsistentwiththelowerlimittothejetbreaktimediscussed ingthemodeldescribedbyWeiandLu(2002). byus. The above discussion demonstrates that observations of GRBafterglowscontinuetounveilsurprisingfeaturesintheir evolutionandrevealaspectsofunderlyingphysicsthatremain 2.2 tobeunderstood. 2 Acknowledgements. We thank the HCT and ARIES observers for kindly sparing their observing time for these observations. We ac- 1.8 knowledgeK.Viirone(IAC),J.A.Caballero(IAC,ING)andL.Sabin (ING) for obtaining the INT image on 15/16 February 2006. This 1.6 research has made use of data obtained through the High Energy Astrophysics ScienceArchive Research Center Online Service,pro- 1.4 videdbytheNASA/GoddardSpaceFlightCenter.TheGCNsystem, managed and operated by Scott Barthelmy, is gratefully acknowl- edged.Oneoftheauthors(KM)thanksL.ResmiandBrijeshKumar 1.2 forseveralusefuldiscussionswhiledraftingthemanuscript.Wethank theanonymousrefereeforconstructivecommentswhichimprovedthe 1 manuscript. 0.8 References -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Akerlof,C.,Balsano,R.,Barthelemy,S.,etal.,1999,Nature,398,400 Bersier,D.,Stanek,K.Z.,Winn,J.N.,etal.,2003,ApJ,584,L43 Fig.5. The value of the derived radiation spectral index β2 Bessell,M.S.,Castelli,F.,Plez,B.,1998,A&A,333,231 above the injection break is plotted against q, the assumed Bhattacharya,D.,2001,BASI,29,107 powerlaw indexof dependenceof the breakenergyonshock Bjo¨rnsson, G.,Gudmundsson, E.H. &Jo´hannesson, G., 2004, ApJ, Lorentzfactor. 615,L77 Castro-Tirado,A.J.,Jel´ınek,M.,Pandey,S.B.,etal.,2006,A&A, 459,763 coverage.Betterconstraintsontheaccelerationprocesswillbe Cenko,S.B.,Berger,E.&Cohen,J.,2006,GCNCircular4592 possible if routine, sensitive monitoring of afterglows is per- Curran,P.A.,Kann,D.A.,Ferrero,P.,etal.,2006,astro-ph/0610067 Fenimore, E.,Barbier,L.,Barthelmy,S.,et al.,2006, GCNCircular formed at high energies including gamma rays, supported by 4586 extensivelongwavelengthcoverage.Itislikelythatthesoon- Frail,D.A.,Kulkarni,S.R.,Sari,R.,etal.,2001,ApJ,562,55 to-be-launched GLAST mission will be able to make signifi- Garnavich,P.M.,Loeb,A.&Stanek,K.Z.,2000,ApJ,544,L11 cantimpactinthisarea,particularlyforbrightafterglows. Ghirlanda,G.,Ghisellini,G.&Firmani,C.,2005,MNRAS,361,L10 TheabovedescriptionoftheX-rayandopticallightcurves Gallant,Y.A.&Achterberg,A.,1999,MNRAS,305,L6 impliesthatwithintheperiodofavailableobservations,i.e.till Gallant,Y.A.,Achterberg,A.&Kirk,J.G.,1999,A&AS,138,549 KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow 7 Golenetskii, S., Aptekar, R., Mazets, E., et al., 2005, GCN Circular Table2.LogofGRB060124Afterglowobservations 3852 Golenetskii, S., Aptekar, R., Mazets, E., et al., 2006, GCN Circular Date(UT) Timesince Magnitude Exposure Tel. 4599 2006January burst(days) (mag) Time(s) Henden,A.,2006,GCNCircular4607 B-passband Holland, S. T., Barthelmy, S., Burrows, D. N., et al., 2006a, GCN 25.6434 0.9802 20.58±0.048 1200 ST Circular4570 25.6925 1.0294 20.69±0.042 1200 ST Holland,S.T.,Smith,P.,Huckle,H.,etal.,2006b,GCNCircular4580 25.7279 1.0648 20.67±0.051 1200 ST Kann,D.A.,2006,GCNCircular4577 25.7624 1.0993 20.78±0.043 1200 ST Lamb,D.,Ricker,G.,Atteia,J-L.,etal.,2006,GCNCircular4601 26.6542 1.9911 21.30±0.075 1800 ST Landolt,A.R.,1992,AJ,104,340 26.7194 2.0563 21.54±0.070 1800 ST Li,W.,Filippenko,A.V.,ChornockR.&Jha,S.,2003,ApJ,586,L9 V-passband Liang,E.&Zhang,B.,2005,ApJ,633,611 25.6314 0.9683 20.14±0.037 600 ST Mangano,V.,Cusumano,G.,LaParola,V.etal.,2006,GCNCircular 25.6372 0.9741 20.15±0.029 600 HCT 4578 25.6420 0.9789 20.13±0.032 600 HCT Masetti,N.,Palazzi,E.,Maiorano,E.,etal.,2006,GCNCircular4587 25.6653 1.0022 20.19±0.045 600 ST Mirabal,N.&Halpern,J.P.,2006,GCNCircular4591 25.6771 1.0140 20.20±0.036 1200 ST Misra,K.,2006,GCNCircular4589 25.7161 1.0530 20.25±0.057 600 ST Panaitescu,A.&Kumar,P.,2001,ApJ,554,667 25.7506 1.0875 20.28±0.053 600 ST Panaitescu,A.&Kumar,P.,2002,ApJ,571,779 25.7830 1.1199 20.36±0.032 600 HCT Pandey,S.B.,Sahu,D.K.,Resmi,L.,etal.,2003,BASI,31,19 26.6190 1.9559 20.96±0.052 1200 ST Prochaska,J.X.,Foley,R.,Tran,H.,etal.,2006,GCNCircular4593 26.6306 1.9675 20.89±0.038 3x600 HCT Rhoads,J.,Burud,I.&Fruchter,A.,2002,GCNCircular1601 26.6729 2.0098 21.17±0.071 1200 ST Romano, P.,Campana, S.,Chincarini, G., et al.,2006, A &A, 456, 26.7418 2.0787 21.00±0.064 1800 ST 917 26.8806 2.2175 20.89±0.048 3x600 HCT Sagar,R.,Mohan,V.,Pandey,S.B.,etal.,2000,BASI,28,499 R-passband Schlegel,D.J.,Finkbeiner,D.P.&Davia,M.,1998,ApJ,500,525 24.7017 0.0386 16.83±0.007 300 ST Torii,K.,2006,GCNCircular4596 24.7069 0.0438 16.93±0.006 300 ST Vestrand,W.T.,Wozniak,P.R.,Wren,J.A.,etal.,2005,Nature,435, 24.7114 0.0483 17.02±0.008 300 ST 178 24.7201 0.0570 17.23±0.015 600 HCT Vestrand,W.T.,Wren,J.A.,Wozniak,P.R.,etal.,2006,Nature,442, 24.7288 0.0657 17.37±0.011 600 HCT 172 24.7373 0.0742 17.48±0.010 600 HCT Wang,X.&Loeb,A.,2000,ApJ,535,788 25.5594 0.8963 19.80±0.029 2x600 HCT Wei,D.M.&Lu,T.,2002,A&A,381,731 25.5820 0.9189 19.61±0.055 300 ST Wozniak,P.R.,Vestrand,W.T.,Wren,J.A.,etal.,2005, ApJ,627, 25.5871 0.9240 19.77±0.042 300 ST L13 25.6083 0.9452 19.67±0.050 2x600 HCT Zeh,A.,Klose,S.&Kann,D.A.,2006,ApJ,637,889 25.6113 0.9482 19.83±0.055 300 ST Zhang,B.&Meszaros,P.,2002,ApJ,566,712 25.6264 0.9633 19.86±0.020 600 HCT 25.6581 0.9950 19.93±0.065 300 ST 25.7089 1.0458 19.88±0.056 400 ST 25.7432 1.0801 19.84±0.071 400 ST 25.7576 1.0945 19.85±0.033 600 HCT 25.7660 1.1029 19.97±0.025 600 HCT 26.5615 1.8984 20.58±0.030 3x600 HCT 26.6308 1.9677 20.66±0.071 600 ST 26.7647 2.1016 20.55±0.047 1800 ST Feb16.5146 22.9086 22.50 3x600 INT I-passband 25.5918 0.9287 19.52±0.122 300 ST 25.6002 0.9371 19.20±0.061 300 ST 25.6049 0.9418 19.07±0.068 300 ST 25.6533 0.9902 19.25±0.071 300 ST 25.7030 1.0399 19.27±0.079 400 ST 25.7379 1.0748 19.67±0.112 300 ST 25.7729 1.1098 19.49±0.145 400 ST 26.6391 1.9760 20.19±0.158 600 ST 26.7000 2.0369 20.56±0.208 1200 ST 8 KuntalMisraetal.:OpticalObservationsofGRB060124Afterglow Table3.ColorsoftheGRB060124Afterglowatδt=1.04and 1.99day δt (B−R) (B−V) (V−R) (R−I) days mag mag mag mag 1.04 0.79±0.05 0.41±0.05 0.37±0.06 0.61±0.06 1.99 0.64±0.08 0.13±0.08 0.51±0.07 0.47±0.09

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.