ebook img

Optical Networks: A Practical Perspective. Solutions Manual for Instructors PDF

85 Pages·00.415 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical Networks: A Practical Perspective. Solutions Manual for Instructors

Optical Networks: A Practical Perspective Third Edition Solutions Manual for Instructors Rajiv Ramaswami, Kumar N. Sivarajan and Galen Sasaki c 2009 Morgan Kaufmann Publishers. 1 (cid:13) December 2009 1. This material may not be used or distributed for any commercial purpose without the express written consentofMorganKaufmannPublishers. Preface Inmanycases,theproblemsinthebookrequirefurtherexplorationofthetopicsindetailasopposed tosimplypluggingnumbersintoequations. Instructorsmaythereforewanttoreviewthesolutions beforeassigningproblems. Seethebook’swebpagehttp://www.elsevierdirect.com/9780123740922 for the current errata of the book, as well as this solutions manual. If you discover an error that is not listed there, we would very much appreciate your letting us know about it. You can email [email protected],[email protected]@hawaii.edu. Notethatallequationandfigurenumbersusedinthismanualrefertothoseinthethirdedition ofthebook. i 2 c h a p t e r Propagation of Signals in Optical Fiber 2.1 FromSnell’sLawwehave, n sinθmax n sinθmax. 0 0 = 1 1 Usingthedefinitionofθmax fromFigure2.3,wehave 0 n sin π/2 θmax n , 1 − 1 = 2 (cid:0) (cid:1) or, n cosθmax n , 1 1 = 2 or, n2 sinθmax 1 2. 1 =s − n2 1 Therefore, 1 n2 n sinθmax n − 2 n2 n2 0 0 = 1 s n2 = 1− 2 1 q whichis(2.2). 2.2 From(2.2), δT 1n2 11 10ns/km. L = cn = 2 Therefore, n cδT n21 2 . 1 = L 1 2 Propagation of Signals in Optical Fiber Wehave, NA n √21 2n cδT/L 2 1.45 3 105 10 8 0.093. = 1 = 2 = × × × × − = p p Themaximumbitrateisgivenby 0.5 2.5Mb/s. 10ns/km 20km = × (cid:0) (cid:1) 2.3 Wehave ∂D H J . ∇× = + ∂t UsingJ 0andtakingthecurlofbothsides,weget = ∂( D) ∂ ∂( P) H ∇× (cid:15)0( E) ∇× . ∇×∇× = ∂t = ∂t ∇× + ∂t HerewehaveusedtherelationD (cid:15) E P. Using(2.13),thissimplifiesto 0 = + ∂2B ∂( P) ∇×∇×H =−(cid:15)0 ∂t2 + ∇∂×t . TakingFouriertransforms,wehave H (cid:15) ω2B iω( P) ∇×∇× ˜ = 0 ˜ − ∇× ˜ (cid:15) ω2µ H iω(cid:15) χ( E) = 0 0 ˜ − 0˜ ∇× ˜ (cid:15) ω2µ H iω(cid:15) χ(iωµ H) = 0 0 ˜ − 0˜ 0 ˜ (cid:15) µ ω2(1 χ)H (cid:15) µ ω2n2(ω)H = 0 0 + ˜ ˜ = 0 0 ˜ ω2n2 H. = c2 ˜ Using H ( H) 2H,weget ∇×∇× ˜ =∇ ∇· ˜ −∇ ˜ ω2n2 2H H ( H) 0, since B 0. ∇ ˜ + c2 ˜ =∇ ∇· ˜ = ∇· = 2.4 Using 2π a n2 n2 <2.405, λ 1− 2 q 2πa 2πa λ n2 n2 n √21. cutoff = 2.405 1− 1 ≈ 2.405 1 q Fora 4µmand1 0.003,λ 1.214µm,assumingn 1.5. cutoff 1 = = = = 2.5 (a) Wehave 2πa λ n2 n2. cutoff = 2.405 1− 2 q 3 Usinga 4µm,n 1.45,andλ 1.2µmyields 2 cutoff = = = 2.405 1.2 2 n1 × 1.452 1.45454. =s 2 π 4 + = (cid:18) × × (cid:19) Therefore1.45<n <1.45454forthefibertobesinglemodedforλ>1.2µm. 1 (b) Wehave 2πa V n2 n2. = λ 1− 2 Usinga 4µqm,λ 1.55µm,n 1.45andV 2.0,wehave 2 = = = = Vλ 2 n n2 1.4552. 1 =s 2πa + 2 = (cid:18) (cid:19) Using 0.9960 2 b(V) 1.1428 , ≈ − V (cid:18) (cid:19) weobtainb(2.0) 0.41576. Wealsohave n2 n2= b eff− 2. = n2 n2 2− 2 Therefore,wecancalculaten 1.45218. Thus eff 2πn = eff β 5.887/µm. = λ = 2.6 Thespecifiednominalvalueofa mustsatisfy 2π(1.05a) λ < n √2 1.1 0.005 cutoff 1 2.405 × × forλ 1.2µmandn 1.5. Thusthelargestvaluethatcanbespecifiedis cutoff 1 = = 1.2 2.405 a × 2.78µm. = 2π 1.05 1.5 √2 1.1 0.005 = × × × × × Notethatwehaveusedthepropertythatλ increaseswithincreaseinaor1sothatthelargest cutoff possiblevaluesofa and1areusedincalculatingthecutoffwavelength. 2.7 Wehave ∂A i ∂2A β 0. ∂z + 2 2 ∂t2 = TakingFouriertransforms,weget ∂A i ˜ β ( iω)2A 0, or, ∂z + 2 2 − ˜ = ∂A iβ ω2 ˜ 2 A 0. ∂z − 2 ˜ = SolvingthisforA(z,ω),weget ˜ iβ ω2 2 A(z,ω) A(0,ω) exp z . ˜ = ˜ 2 " # 4 Propagation of Signals in Optical Fiber Notethat ∞ ∞ A˜(0,ω) = A(0,t)eiωt dt = A0e−t2/2T02 eiωtdt Z Z −∞ −∞ A0 ∞ e−12 (cid:18)Tt022−2iωt+(iωT0)2(cid:19) e21(iωT0)2 dt = Z −∞ A0e−ω2T02/2 ∞ e−21 Tt0−iωT0 2 dt = (cid:16) (cid:17) Z −∞ = A0e−ω2T02/2 2πT02. q Therefore, iβ ω2 A˜(z,ω)=A0T0√2πe−ω2T02/2 exp i 22 z . ! Usingthis,weobtain A(z,t) = 21π ∞ A˜(z,ω)e−iωt dω= A√02Tπ0 ∞ e−ω22T02 eiβ22ω2z e−iωtdω Z Z −∞ −∞ A0T0 ∞ e−21(cid:20)ω2 T02−iβ2z +2iωt+T02(−it)iβ22z(cid:21)e−t2/2(T02−iβ2z) dω = √2π (cid:0) (cid:1) Z −∞ 2 = A√02Tπ0 ∞ e−21 qω2(cid:0)T02−iβ0z(cid:1)+√T0i2t−iβz! e−t2/2(T02−iβ2z) dω Z −∞ 2 A0T0 e−2(T02t−2iβ2z) ∞ e−21(T02−iβ2z)(cid:18)ω+T02−itiβ2z(cid:19) dω = √2π Z−∞ 1 A0T0e−t2/2(T02−iβ2z) . = T2 iβ z 0 − 2 q Notethatinthelaststepweusedtheformulagivenintheproblemwith 1 T iβ z 0 2 α + , = T0−iβ2z = T02+β22z2 with T 0 Re(α) >0. = T2 β2z2 0 + 2 5 2.8 From(E.8),wederive(E.9)and(E.10)asdiscussedinAppendixE.(2.13)nowfollowsfrom(E.10). 2.9 From(2.28),withκ 0, = A T 1 (t β z)2 0 0 2 A(z,t) exp − , = T02−iβ2z −2 (T02−iβ2z)! q which is the envelope of a Gaussian pulse for all z. Letting t t β z (so that we choose a 0 1 = = referenceframemovingwiththepulse),wehave A T 1 t2 0 0 0 A(z,t ) exp 0 = T02−iβ2z −2 (T02−iβ2z)! q A0T0 exp 1 t02(T02+iβ2z) . = T02−iβ2z −2 T04+(β2z)2 ! q Thephaseofthispulseis β zt2 2 0 ω t . 0 0+ 2(T4 (β z)2) 0 + 2 Hencethechirpfactoris,comparingwith(2.26), κ β2zT02 β2z/T02 sgn(β2)z/LD. = T04+(β2z)2 = 1+ βT22z 2 = 1+ LzD 2 (cid:18) 0 (cid:19) (cid:16) (cid:17) 2.10 AGaussianpulseisdescribedby A(t) A0e−21t2/T02. = Itsrms widthisgivenby ∞ t2 A(t)2 dt Trms −∞ | | . =vuR ∞ A(t)2dt u −∞ | | t R Wehave T A2 ∞ A(t)2dt ∞ A2e t2/T2 dt √2π 0 0 T √πA2, | | = 0 − = √2 = 0 0 Z−∞ Z−∞ and T T2 ∞ t2|A(t)|2dt =A20 ∞ t2e−t2/T02dt =A20√02√2π 20 . Z−∞ Z−∞ 6 Propagation of Signals in Optical Fiber Therefore, T2 T Trms 0 0 . =s 2 = √2 2.11 From(2.13), 2 2 T κβ z β z z 2 2 | | 1 . T0 =vu + T02 ! + T02 ! u t Forpositiveκ andnegativeβ , 2 T κz 2 z 2 z | | 1 . T0 =s(cid:18) − LD(cid:19) +(cid:18)LD(cid:19) (a) Differentiating the equation above, the minimum pulse width occurs for z z which min = solves κz z κ 1 0. − − LD + LD = (cid:18) (cid:19) Thisyields κ z L . min = 1 κ2 D Forκ 5, + = 5 z L 0.192L . min D D = 26 = (b) Thepulsewidthequalsthatofanunchirpedpulseif κz 2 z 2 z 2 1 1 , − LD + LD = + LD (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) thatis,if 2L D z . = κ Forκ 5,wegetz 0.4L . D = = 2.12 Weleavethistothereadertogothroughthealgebraandverify. 2.13 Forafirstordersoliton, γP N2 0 1. = β /T2 = | 2| 0 Usingγ 1/W-km,β 2ps2/km,andP 50mW, 2 0 = = = β 2 T0 | | 6.32ps. =sγP0 = Recallthatasolitonpulseisdescribedby t 2 sech (cid:18)T0(cid:19)= e−t/T0 +et/T0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.