ebook img

Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators PDF

276 Pages·2002·9.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators

OPTICAL MICROSCANNERS AND MICROSPECTROMETERS USING THERMAL BIMORPH ACTUATORS MICROSYSTEMS Volume 8 Series Editor Stephen D. Senturia Massachusetts Institute of Technology Editorial Board Roger T. Howe, University of California, Berkeley D. Jed Harrison, University ofA lberta Hiroyuki Fujita, University of Tokyo Jan-Ak:e Schweitz, Uppsala University OTHER BOOKS IN THE SERIES: Methodology for the Modelling and Simulation of Microsystems Bartlomiej F. Romanowicz Hardbound, ISBN 0-7923-8306-0, October 1998 Microcantilevers for Atomic Force Microscope Data Storage Benjamin W. Chui Hardbound, ISBN 0-7923-8358, October 1998 Bringing Scanning Probe Microscopy Up to Speed Stephen C. Mione, Scott R. Manalis, Calvin F. Quate Hardbound, ISBN 0-7923-8466-0, February 1999 Micromachined Ultrasound-Based Proximity Sensors Mark R. Hornung, Oliver Brand Hardbound, ISBN 0-7923-8508-X, April1999 Microfabrication in Tissue Engineering and Bioartiticial Organs Sangeeta Bhatia Hardbound, ISBN 0-7923-8566-7, August 1999 Microscale Heat Conduction in Integrated Circuits and Their Constituent Films Y. Sungtaek Ju, Kenneth E. Goodson Hardbound, ISBN 0-7923-8591-8, August 1999 Scanning Probe Lithography Hyongsok T. Soh, Kathryn Wilder Guarini, Calvin F. Quate Hardbound, ISBN 0-7923-7361-8, June 2001 Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators Gerhard Lammel Sandra Schweizer and Philippe Renaud EPFL, Swiss Federal Institute of Technology Lausanne SPRINGER SCIENCE+BUSINESS MEDIA, LLC A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4419-4946-2 ISBN 978-1-4757-6083-5 (eBook) DOI 10.1007/978-1-4757-6083-5 ABOUT THE COVER Left: Scanning electron microscope (SEM) picture of a wafer with an array of 2D micromirrOIs with "L" -shaped actuator beams, developed by Sandra Schweizer. The dry-release process leads to a high production yield. Right (series of four pictures): Tunable optical tilter of porous silicon in motion, developed by Gerhard Larnmel. Under a voltage of O to 2.1 voit the plate turns by 90° and changes the filter wavelength. Printed an acid-free paper AU Rights Reserved © 2002 Springer Science+Business Media New York Originally published by Kluwer Academic Publishers, Boston in 2002 No part of the material protected by this copyright notice may be reproduced or utilized in any form OI by any means, electronic OI mechanical, including photocopying, recording or by any information storage and retrieval system, without written permis sion from the copyright owner. TABLE OF CONTENTS Preface ........................................................ xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MEMS ..................................................... 2 1.3 MOEMS .................................................... 3 1.3.1 Display technologies ..................................... 3 1.3.2 Printers and industrial machining ............................ 9 1.3.3 Imaging scanners ........................................ 9 1.3.4 Telecommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.5 Adaptive or corrective optics .............................. 12 1.3.6 Spectroscopy applications ................................ 13 1.3.7 Medical applications ..................................... 15 1.4 MOEMS actuation principles ................................... 16 1.4.1 Electrostatic actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.2 Piezoelectric actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4.3 Magnetic actuation ...................................... 23 1.4.4 Thermal actuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Basics for a thermally actuated micromirror . . . . . . . . . . . . . . . . . . . . 27 2.1 Microactuator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Principle of the presented microscanner . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 The thermal bimorph actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Thermal expansion ...................................... 29 2.3.2 Stress in bimorph cantilevers and initial rest position ........... 29 2.3.3 Thermal bimorph actuator design ........................... 41 2.4 Static temperature distribution in the microscanner. . . . . . . . . . . . . . . . . . 46 2.4.1 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.2 Determination of constants ................................ 51 2.4.3 Influence of the different constants on the temperature distribution 55 v 2.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.5 Response time of the bimorph beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5.1 Thermal cut-off. ........................................ 59 2.5.2 Measurements of the cut-off frequency of the bimorph actuator ... 60 2.5.3 Conclusion ............................................ 61 2.5.4 Dynamic temperature distribution in the bimorph beam ......... 62 2.6 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 Microscanner technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1 Fabrication process ........................................... 67 3.2 Process improvements ........................................ 70 3.2.1 Dry mirror release .................................... 70 3.2.2 Mirror stiffness and flatness improvement. ................... 70 3.2.3 Mirror reflectivity ....................................... 76 3.3 Conclusions ................................................ 76 4 One-dimensional microscanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Test Set-up ................................................. 77 4.2 Static characterization of Chromium based actuators . . . . . . . . . . . . . . . . 78 4.2.1 Single device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.2 Comparing angular deflection among various devices . . . . . . . . 80 4.2.3 Resistance variation of Cr layer with temperature . . . . . . . . . . . . . . 84 4.3 Static characterization of Nickel based actuators. . . . . . . . . . . . . . . . . . . . 86 4.3.1 Angle vs. temperature .................................... 86 4.3.2 Resistance vs. temperature ................................ 86 4.3.3 Angle vs. power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.4 Summary ............................................. 88 4.4 Dynamic characterization ...................................... 88 4.4.1 Fundamental resonance frequency calculation. . . . . . . . . . . . . . . . . 89 4.4.2 Experimental comparison of the resonance frequency. . . . . . . . . . . 94 4.4.3 Influence of damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.4 Thermal cut-off ........................................ 98 4.4.5 Dynamic microscanner performances . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.6 Lateral suspension mirror ................................ 100 4.4. 7 Dynamics of the tunable optical filter with Ni based actuator. . . . 102 4.4.8 Summary ............................................ 104 vi 4.5 1D scanner applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5.1 Barcode reader ........................................ 105 4.5.2 Micromechanical detector for molecular beams .............. 109 4.6 Conclusions ................................................ 111 5 Two-dimensional microscanner ............................... 113 5.1 Principle ................................................... 113 5.2 Design and modelling of the raster natural frequency ................ 113 5.2.1 Analytical model ....................................... 113 5.2.2 Simulations ........................................... 119 5.3 Dynamic measurements ...................................... 120 5.3.1 2D-microscanner type 1 ................................. 120 5.3.2 2D-microscanner type 2 ................................ 122 5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.4 Microprojector application .................................... 123 5.4.1 Scanner requirements ................................... 123 5.4.2 Pixel resolution ........................................ 124 5.4.3 Static and dynamic mirror deformations .................... 126 5.4.4 Experimental results .................................... 127 5.5 Conclusions ............................................... 133 6 Advanced Optical Filters of Porous Silicon. . . . . . . . . . . . . . . . . . . . . 135 6.1 Principle .................................................. 135 6.2 History of porous silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3 Fabrication of porous silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1 Single etch cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.2 Double etch cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4 Parameters determining the structure of porous silicon .............. 139 6.4.1 Why porous silicon is porous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.4.2 Substrate doping ....................................... 140 6.4.3 Illumination .......................................... 141 6.4.4 Electrolyte concentration ................................ 141 6.4.5 Current densities ....................................... 142 6.5 Electropolishing ............................................ 144 6.6 Porous silicon as sacrificial layer ............................... 145 6.7 Calculation of optical interference filters ......................... 145 vii 6. 7.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.7.2 General theory for simulation of optical multilayer filters ....... 146 6. 7.3 Bragg band reflectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.7.4 Fabry-Perot bandpass filters .............................. 150 6.7.5 Multi band reflectors ................................... 151 6.7.6 Edge filters ........................................... 152 6.7.7 Angular dependence .................................... 153 6.8 Fabrication of optical filter of porous silicon ...................... 153 6.8.1 Effective media theory .................................. 153 6.8.2 Lateral homogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.8.3 Depth homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.8.4 Oxidation and aging .................................... 161 6.9 Summary ................................................. 163 7 Micromachining using porous Silicon ......................... 165 7.1 Goals for the technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.2 Metal masks ............................................... 166 7.3 Nitride masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.4 Free-standing porous silicon films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.5 Mask removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.6 Thermal actuator design ...................................... 169 7 .6.1 Calculation of optimum layer thicknesses . . . . . . . . . . . . . . . . . . . 173 7.6.2 Calculation of beam length ............................... 180 7.6.3 Electrical heater resistance ............................... 180 7. 7 Mechanical filter plate suspension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7. 7.1 Shape and size of filter plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.7.2 Ways of suspension .................................... 181 7.8 Homogeneity of the optical filter. .............................. 184 7.8.1 Frontside mask only .................................... 185 7.8.2 Frontside and backside mask ............................. 186 7.8.3 Experimental comparison ................................ 187 7.8.4 Electropolished well .................................... 189 7.9 Process flow ............................................... 190 7.1 OSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 viii 8 Thnable Optical Filter and IR Gas Spectroscopy . • • . • • • • • • • • • • • . 195 8.1 Overview of devices ........................................ 195 8.2 Optical characterization ...................................... 198 8.2.1 Visible light .......................................... 198 8.2.2 Infrared light .......................................... 200 8.3 Chip separation and packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.3.1 Cleaving ............................................. 202 8.3.2 Bonding on PCB ....................................... 204 8.3.3 Encapsulation ......................................... 204 8.3.4 Protection by a fusible link ............................... 205 8.4 System integration for gas sensing .............................. 205 8.4.1 Principle of infrared gas absorption spectroscopy . . . . . . . . . . . . . 205 8.4.2 Set-up ............................................... 208 8.4.3 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8.5 Summary ................................................. 210 9 Conclusions and outlook .....................................2 11 9.1 Conclusions ................................................2 11 9.1.1 Micromirror ...........................................2 11 9.1.2 Tunable optical filter ................................... 213 9.2 Outlook ................................................... 215 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 A.1 Complement to the curvature calculation due to residual stress .... 217 A.2 Complement to the static temperature distribution calculation . . . . 221 A.3 Large deflections . . • • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . 225 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Symbols and Abbreviations. • . . • . . . • • . . • • . • • . • • . . • • . • • • • • • . • . • . • 255 Glossary of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 ix X

Description:
Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators shows how to design and fabricate optical microsystems using innovative technologies and and original architectures. A barcode scanner, laser projection mirror and a microspectrometer are explained in detail, starting from
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.