ebook img

Optical lock-in particle tracking in optical tweezers PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical lock-in particle tracking in optical tweezers

Optical lock-in particle tracking in optical tweezers MichaelATaylor,JoachimKnittelandWarwickPBowen ∗ CentreforEngineeredQuantumSystems,UniversityofQueensland,StLucia,Queensland 4072,Australia 3 [email protected] 1 ∗ 0 2 Abstract: We demonstrate a lock-in particle tracking scheme in optical n tweezersbasedonstroboscopicmodulationofanilluminatingopticalfield. a Thisschemeisfoundtoevadelowfrequencynoisesourceswhileotherwise J producinganequivalentpositionmeasurementtocontinuousmeasurement. 5 2 This was demonstrated, and found to yield on average 20 dB of noise suppressioninthefrequencyrange10–5000Hz,wherelowfrequencylaser ] noise andelectronicnoise was significant,and 35 dB of noise suppression s c in the range 550–710 kHz where laser relaxation oscillations introduced i lasernoise.Thesetupissimple,andcompatiblewithanytrappingoptics. t p o © 2013 OpticalSocietyofAmerica s. OCIScodes:(140.7010)Lasertrapping;(350.4855)Opticaltweezersoropticalmanipulation. c i s Referencesandlinks y h 1. A.AshkinandJ.Dziedzic,“Opticaltrappingandmanipulationofvirusesandbacteria,”Science235,1517–1520 p (1987). [ 2. M.A.Taylor,J.Knittel,andW.P.Bowen,“Fundamentalconstraintsonparticletrackingwithopticaltweezers,” arXiv:1208.0657(2012). 1 3. F.GittesandC.F.Schmidt,“Interferencemodelforback-focal-planedisplacementdetectioninopticaltweezers,” v Opt.Lett. 23,7–9(1998). 5 4. I.Chavez,R.Huang,K.Henderson,E.-L.Florin,andM.G.Raizen,“Developmentofafastposition-sensitive 7 laserbeamdetector,”Rev.Sci.Instrum. 79,105104(2008). 9 5. J.R.Moffitt,Y.R.Chemla,S.B.Smith,andC.Bustamante,“Recentadvancesinopticaltweezers,”Annu.Rev. 5 Biochem.77,205-228(2008). 6. J.T.Finer, R.M.Simmons,andJ.A.Spudich, “Single myosinmolecule mechanics: piconewton forces and . 1 nanometresteps,”Nature 368,113–119(1994). 0 7. A.Jannasch,A.F.Demiro¨rs,P.D.J.vanOostrum,A.vanBlaaderen, andE.Scha¨ffer, “Nanonewton optical 3 forcetrapemployinganti-reflectioncoated,high-refractive-index titaniamicrospheres,”NaturePhoton.6,469- 1 473(2012). : 8. K.Svoboda,C.F.Schmidt,B.J.Schnapp,andS.M.Block1993“Direct observation ofkinesinsteppingby v opticaltrappinginterferometry,”Nature 365,721–727(1993). Xi 9. C.Bustamante,Y.R.Chemla,N.R.Forde,andD.Izhaky,“Mechanicalprocessesinbiochemistry,”Annu.Rev. Biochem.73,705-748(2004). r 10. C.Bustamante,“UnfoldingsingleRNAmolecules:bridgingthegapbetweenequilibriumandnon-equilibrium a statisticalthermodynamics,”Q.Rev.Biophys. 38,291–301(2005). 11. W.J.GreenleafandS.M.Block,“Single-molecule, motion-basedDNAsequencingusingRNApolymerase,” Science 313,801(2006). 12. P.Kukura,H.Ewers,C.Mu¨ller,A.Renn,A.Helenius,andV.Sandoghdar,“High-speednanoscopictrackingof thepositionandorientationofasinglevirus,”Nat.Methods6,923–929(2009). 13. M.A.Taylor,J.Janousek,V.Daria,J.Knittel,B.Hage,H.-A.Bachor,andW.P.Bowen,“Biologicalmeasurement beyondthequantumlimit,”arXiv:1206.6928(2012). 14. S.Yamada, D.Wirtz, andS.C.Kuo,“Mechanics ofliving cells measuredbylasertracking microrheology,” Biophys.J.78,1736–1747(2000). 15. E.N.SenningandA.H.Marcus,“ActinpolymerizationdrivenmitochondrialtransportinmatingS.cerevisiae,” Proc.Natl.Acad.Sci.USA 107,721–725(2010). 16. I.M.Tolic´-Nørrelykke,E.-L.Munteanu,G.Thon,L.OddershedeandK.Berg-Sørensen,“Anomalousdiffusion inlivingyeastcells,”Phys.Rev.Lett. 93,078102(2004). 17. T.Franosch,M.Grimm,M.Belushkin,F.M.Mor,G.Foffi,L.Forro´,andS.Jeney,“Resonancesarisingfrom hydrodynamicmemoryinBrownianmotion,”Nature 478,85–88(2011). 18. R.Huang,I.ChavezI,K.M.Taute,B.Lukic´,S.Jeney,M.G.Raizen,andE.-L.Florin,“Directobservationof thefulltransitionfromballistictodiffusiveBrownianmotioninaliquid,”NaturePhys. 7,576-580(2011). 19. D.E. Chang, C. A.Regal, S.B. Papp, D.J. Wilson, J.Ye, O.Painter, H.J. Kimble, and P.Zoller, “Cavity opto-mechanicsusinganopticallylevitatednanosphere,”Proc.Natl.Acad.Sci.USA 107,1005–1010(2010). 20. T.Li,S.Kheifets,andM.G.Raizen,“Millikelvincoolingofanopticallytrappedmicrosphereinvacuum,”Nature Phys. 7,527-530(2011). 21. M.A.Taylor,J.Knittel,M.T.L.Hsu,H.-A.Bachor,andW.P.Bowen,“Sagnacinterferometer-enhancedparticle trackinginopticaltweezers,”J.Opt. 13,044014(2011). 22. J.W.Tay,M.T.L.Hsu,andW.P.Bowen,“Quantumlimitedparticlesensinginopticaltweezers,”Phys.Rev.A 80063806(2009). 23. P.KweeandB.Willke,“Automaticlaserbeamcharacterization ofmonolithicNd:YAGnonplanarringlasers,” Appl.Opt.476022–6032(2008) 1. Introduction In optical tweezers, small particlesare trapped by the electric field gradientat the focusof a tightlyfocusedlaserbeam[1].Afterthelightinteractswiththeparticle,itencodesinformation abouttheparticleposition[2],whichistypicallyextractedwithaquadrantdetectorattheback- focalplaneofacondenserlens[3].Thisallowsparticletrackingwithsub-nanometersensitiv- ity[4]asforcesrangingfromsubpiconewton[5,6]tonanonewton[7]arecontrollablyapplied. Suchexperimentshaveuncoveredimportantphenomenainbiophysics,includingboththedy- namics and magnitudeof the forcesapplied by biologicalmotors [6,8,9], the stretching and foldingpropertiesofDNAandRNA[9–11],thedynamicsofvirus-hostcoupling[12],thestrain onanenzymeduringcatalysis[9],andtherheologicalpropertiesofcellularcytoplasm[13–16]. Furthermore,opticaltweezersprovidea significanttoolforstudyingthefundamentalphysics ofBrownianmotion[17,18]andquantumoptomechanics[19,20]. While shot-noise establishes the fundamental sensitivity limit for optical tweezers based measurements [2,21,22], real experiments are generally limited by technical noise sources suchaslasernoise,electronicnoiseinthedetector,ordriftsofmirrorsintheexperiment.These technical sources of error can be a significant hindrance to precision measurement, so much efforthasgoneinto reducingthem[4,5,12,21].Recently,an opticallock-inparticletracking schemewasdevelopedwhichallowedevasionoflow-frequencytechnicalnoisewithoutneed- ing to remove the noise sources from the experiment. This was applied in conjunction with quantum correlated light to break the shot-noise limit in particle tracking sensitivity [13]. In principle,thisopticallock-inparticletrackingschemeoffersnearimmunityto lowfrequency lasernoiseandelectronicnoise,whichcouldmakeitahighlypracticalmethodforawiderange of experiments. In the initial demonstration,however,the noise suppression attained through use of the optical lock-intracking was notcharacterized[13]. Furthermore,the experimental setupinthatdemonstrationwasmorecomplicatedthannecessaryforclassicalparticletracking and incompatible with short working distance objectives. Here we demonstrate optical lock- in particle tracking with a simple optical setup which can be applied with any objectives. It is shown that lock-in based particle tracking has superior sensitivity to continuous measure- ment at all frequencieswhere the continuousmeasurementis limited by technicalnoise, and achievesequivalentsensitivitywherethedominantnoisesourceisfundamentalshot-noise.The reductionin laser noise and electronicnoise yieldson average20 dB of noise suppressionin thefrequencyrange10–5000Hz,wherelowfrequencylasernoiseandelectronicnoiseissig- nificant, and 35 dB of noise suppression in the range 550–710 kHz where the laser crystal relaxationoscillationsintroducealargenoisefeature. y y c c n n e e u u q q e e ser fr ser fr Msidoed-ublaantidosn a a L L Particle Laser noise motion Frequency Frequency Fig.1. Aprobeopticalfieldismodulatedbyitsinteractionwiththeparticle(red).Inorder tomeasurethis,itismixedwithanotherbrightlocaloscillatorfield(darkblue).However, thelocaloscillatoralsohassomelow-frequencynoisepresent.Iftheprobefieldfrequency matchesthelocaloscillatorfrequency,asshownontheleft,thenthelow-frequencynoise competeswiththelow-frequencyparticlemotionsignal.However,iftheprobeisinampli- tudemodulatedside-bands,asshownontheright,thenthelow-frequencyparticlemotion canbeisolatedfromthelow-frequencynoise,therebyimprovingthemeasurementsensi- tivity. 2. Basicconcept Thelock-inbasedparticletrackingmeasurementdemonstratedhereisqualitativelysimilarto acontinuouspositiontrackingexperiment.Inopticaltweezersbasedmeasurements,scattering particlesareilluminatedandthespatialdistributionoftheresultingscatteredfieldismeasured to infer particle position [2,3]. Any modulation on the incident illumination is carried onto the scattered field, shifting some of the optical power from the laser carrier frequency into modulationside-bands.Oncethescatteredfieldismeasured,theopticalmodulationtranslates intoamodulationontheelectricalsignal,withtheparticlepositioninformationcenteredabout themodulationfrequency(seeFig.1).Theparticlepositioncanberecoveredbydemodulating thissignal. We mayaskhowthe expectedsensitivity ofsucha measurementcomparesto a usualcon- tinuousmeasurement.Whenopticalfieldsaremeasured,theresultingphotocurrentattimet is givenby I(t)=G U(X,Y)E(t)2dXdY+N (t) (1) Z | | E whereN istheelectronicnoise,Gisthedetectorgain,Eisthetotalelectricfieldatthedetector E atthecoordinatesX andY,andU(X,Y)representsthespatialgainofthedetector;forinstance, if the photocurrent from two halves of a split detector are subtracted from one another, this isrepresentedasU(X,Y)=sign(X),whileabulkdetectorhasU(X,Y)=1.Hereweassume that the fields presentare a scattered field E which dependson particle position, and a local s oscillatorE withwhichthescatteredfieldinterferes,suchthatE=E O+E .Inmostoptical LO L s tweezers experiments, the local oscillator is simply given by the component of the trapping fieldwhichhasnotscatteredfromtheparticle.Forlock-inexperiments,thefieldsareseparated to allow the particle illumination to be modulated independently of the local oscillator. The scattered field is assumed to be much smaller than the local oscillator (E E ) as is s LO | |≪| | typicallythecase,suchthatthemeasuredphotocurrentisgivenby I(t)=G U(X,Y)E (t)2+2U(X,Y)Re E (t)E (t) dXdY+N (t). (2) Z | LO | { LO s∗ } E The explicit time dependence of the scattered field may be separated from the spatial mode shape as E =(A (t)+x (t))y (X,Y), where A (t) and x (t) are respectively the real expec- s s s s tation value of the field amplitude from which the particle tracking signal originates, and its fluctuationswhichcontributenoisesuchasshotnoise. y (X,Y)isthecomplexspatialmode- s shapeofthescatteredfield;thisdoesnothaveexplicittimedependence,butismodifiedasthe particlemoves.Itisthisspatialmodificationwhichisultimatelymonitoredtoretrieveaparticle trackingsignal.Tofindthedependenceofthescatteredfield onasmallparticledisplacement x(t),itcanbeexpandedtofirstorderas dE dy (X,Y) E =E +x(t) s =(A (t)+x (t))y (X,Y) +x(t)(A (t)+x (t)) s . s s|x=0 dx x=0 s s |x=0 s dx x=0 (cid:12) (cid:12) (cid:12) (cid:12) (3) SubstitutingthisexpressionintoEq.2,thecomponentofthephotocurrentwhichgivesalinear particletrackingsignalcanbeseentobe dy (X,Y) I = 2Gx(t)A (t) U(X,Y)Re E s∗ dXdY, (4) sig s Z { LO dx x=0} (cid:12) = gx(t)A (t) (cid:12) (5) s whereforbrevitywedefineagaing=2G U(X,Y)Re E dy s∗(X,Y) dXdY.Theposition { LO dx x=0} sensitivityisoptimizedwhenthisgainismRaximized,asoccurswhen(cid:12)boththephaseandshape (cid:12) ofthelocaloscillatorfieldareoptimizedtoperfectlyinterferewiththescatteredfieldcompo- nent dEs [13,22].SubstitutingthisintoEq.2,wecanrepresentthemeasuredphotocurrent dx x=0 as (cid:12) (cid:12) I(t)=N (t)+N (t)+gA (t)x(t), (6) opt E s whereallthetermsintheintegrandwhichdidnotcontributetothetrackingsignalareincluded asopticalnoiseN .Foracontinuousmeasurement,theexpectationvalueofthescatteredfield opt amplitudeA (t)shouldbeconstant.Alternatively,wecanperformlock-inmeasurementifwe s modulatethescatteredfieldamplitudeatfrequencyw suchthatA (t)=√2A¯ cos(w t),where s s themodulatedamplitudehasanRMSvalueofA¯ .Providedthemodulationfrequencyismuch s fasterthanthemechanicalmotion,thepositioncanthenbeextractedbydemodulation; I =√2Icos(w t)=√2 N (t)+N (t) cos(w t)+gA¯ x+gA¯ xcos(2w t). (7) lock in opt E s s − (cid:0) (cid:1) Thus, the effect of the lock-in is to shift the low frequency noise to high frequencies, and generate a second harmonic term proportionalto x while leaving the signal term unchanged. The second harmonic term and the low frequencynoise can then be removedvia a low-pass filter, such that only the noise originally near the modulation frequency enters the measure- ment.Whereverlow-frequencynoiseisdominant,lock-inmeasurementallowssuppressionof thenoisefloor.Thisdoesnotinfluencewhitenoisesourcessuchasshot-noise,sincetheseare equallypresentatlowfrequenciesandaroundthemodulationfrequency.Thus,thefundamen- talshot-noiselimitonpositionsensitivityisnotinfluencedbyachoicebetweencontinuousor lock-in measurement. The two schemes have equivalentshot-noise limits to sensitivity when thelock-inscatteredamplitudeA¯ matchestheamplitudeA ofathecontinuousmeasurment, s s orequivalently,whenthesamenumberofscatteredphotonsinmodulationside-bandsarecol- lectedforthelock-inmeasurementasarecollectedforacontinuousmeasurement. 3. Experiment Theopticallock-inparticletrackingexperimentshowninFig.2wasbuilt,andthesensitivity attainable with continuous and lock-in measurements characterized. A particle is trapped in waterbetweentwoobjectiveswith0.4numericalaperture(NA)by1064nmlightproducedby alownoise[23]InnolightPrometheusNd:YAGlaser.DuetothelowNAobjectivesused,trap- pingisnotpossiblewithasinglebeam.Twoorthogonallypolarizedcounter-propagatingfields Fiber out-coupler Imaging Detector CCD field e b o Trapping field r DM DM p M A λ/2 Phase plate 50/50 PBS Local PBS PBS λ/2 Oscillator Fig.2. Layoutoftheopticallock-intrackingschemeusedhere.PBS:polarizingbeamsplit- ter,DM:dichroicmirror.Thelocaloscillatorisshapedwithaphaseplatewhichimpartsap phaseshifttoonehalfofthespatialprofile.Particlesaretrappedbythecounter-propagating probeandtrapfields.Thetrapfieldisisolatedfromthedetection,andifitisnotrequired forstabletrapping,canberemovedaltogether.Theprobefieldscattersfromtrappedpar- ticles,andtheparticlemotiontrackedviatheinterferencebetweenthisscatteredlightand thelocaloscillator.Theprobeisamplitudemodulatedat2MHzinafiberMach-Zehnder modulator.Aseparategreenfieldisusedtoimagetheparticlesinthetrap. areusedinsteadtoconfineparticles,withonlyoneofthesecontributingtothemeasurement.It isimportanttonotethatalthoughadualbeamopticaltrapisusedhere,lock-inparticletracking isfullycompatiblewithsingle-beamtraps.Oneofthetrappingfields(referredtoastheprobe) is amplitudemodulatedat 2 MHz, which is sufficientlyhigh that the resulting modulationof the trap strength does not measurably disturb the particle motion. The back-scatterfrom this modulatedprobefieldiscombinedwithalocaloscillatorfieldwhichalsopropagatesthrough the trap. The local oscillator is shaped with a phase plate so that particle motion modulates thespatialoverlapbetweenthelocaloscillatorandscatteredfield.Providedthephasebetween thelocaloscillatorandscatteredfieldiscorrectlychosen,theinfluenceoftheparticlemotion on the interference between these fields directly maps the position onto the transmitted light intensity [13], which is then measuredon a New Focus1811bulk detector.Demodulationof theresultingsignalattheamplitudemodulationfrequencyallowsbothtrackingofascattering particleandalsomonitoringoftherelativeopticalphases.Thescatteredlightincludesalarge stationaryterm(E inEq.2),andthephasebetweenthisandthelocaloscillatorcanbede- s x=0 | terminedfromtheamplitudeofthemeasuredmodulation.Thismeasuredphasewasprocessed with a PID controller and locked by feedback to a piezo-mounted mirror in the path of the probefield.Thisapproachextendstheschemefirstdevelopedforopticallock-inparticletrack- ing[13]toamoretypicalopticaltrappingsetup.Therethescatteredfieldwasproducedfrom side-illuminationwhereasherethemodulatedprobeactsasatrappingfield.Side-illuminationis onlypossibleifthereisroomforafree-spaceprobefieldtoreachthetrapcenter,whichrequires useoflongworkingdistanceobjectives(inRef.[13],6mm)whicharenottypicallyusedfor optical trapping. Furthermore, the probe can only be weakly focused with side-illumination. Focusing the probe field through the objective increases its intensity by approximately 103, whichresultsinacorrespondingincreaseinthescatteredfieldamplitudeandanimprovement inthepositionsensitivityasdescribedinEq.7. The amplitude modulation on the probe is chosen to leave approximately equal power in the central laser frequency and the first modulation side-band. This allows the continuous andpulsedmeasurementsto occursimultaneouslywitha singledetector,andwith equivalent 10−16 a: Continuous b: Lock-in Hz)10−18 2m / nt (10−20 e m e ac10−22 pl s Di 10−24 101 102 103 104 105 106 102 103 104 105 106 Frequency (Hz) Frequency (Hz) c d 104 nt or improveme 110032 anical signal o h e fl 101 Mec s oi N 100 101 102 103 104 105 106 0 2 4 6 8 10 Frequency (Hz) Time (ms) Fig.3. Particletrackingspectraareshownfromsimultaneouscontinuous(a)andlock-in (b)measurements.Thelightyellowtraceshowsthenoisefloorpresentintheabsenceofa trappedparticlewhichcorrespondstothemeasurementimprecision,andtheblueshowsthe measuredsignalwitha1m mpolystyrenebeadheldinthetrap.Thethickdarkerblueline fitsthebeadmotionandtheflatshot-noisefloor.Thismatchesthelock-indatawellsince itisshot-noiselimitedfrom500Hz,butdoesnotfollowthecontinuousspectraasthiswas limitedby low frequency lasernoise until 1MHz. Thisnoise includes averyprominent spectral peak around 630 kHz from the laser diode relaxation oscillations. Because the fittedfloorcorrespondstotheshot-noiselevel,itdropsbelowthemeasureddatabetween 10 kHzand1 MHz.Thetrapwasveryweak, asweused 0.4NA objectiveswithatotal of 30 mWtrapping field.Assuch, thecorner frequency isslightlybelow 10 Hzand not visibleinthedisplayeddata.Byexcludinglowfrequencynoise,thelock-inmeasurement yields a measurement precision which is improved by the factor shown in c. Subplot d shows the continuous (light) and lock-in (medium) time-traces after a low-pass filter at 1MHz,revealingtheclearnoiseimprovementfromlock-inmeasurement,andalsoshows thecontinuousdatawithalow-passfilterat10kHz(dark),whichcloselyfollowsthehigher bandwidthlock-inresults. recordingconditions.Somenon-linearityinthemodulatorresultedinanumberofhigherhar- monicsbeinggenerated,whichweresuppressedinthedataacquisitionwithanalogelectronic filters. Usingthissetup,theBrownianmotionofa1m mpolystyrenebeadwassimultaneouslymeas- uredbothcontinuouslyandfromside-bandsaroundthe2MHzmodulation,withspectrashown in Fig. 3a and b respectively.The backgroundnoise was characterizedby performingequiv- alent measurementsin the absence of a trapped bead. As expected, the lock-in measurement isverysimilartothecontinuousmeasurement,butwithareductionintheincludedelectronic and laser noise. The reduction in included noise (shown in Fig. 3c) causes the measurement imprecisiontoimprovemarkedlyatthefrequencieswherelaserandelectronicnoisearedomi- nant.Between10and5000Hz,theimprecisionisimprovedbyanaverageof20dB,witheven greatersuppressionof35dBinthefrequencyrange550–710kHzwherethelasercrystalrelax- ation oscillationsproducea prominentlasernoise peakcentredat630kHz.A comparisonof thetwomeasurementsinthetimedomainalsorevealsboththeclearsuppressionofnoiseonthe lock-intraceandtheotherwisecloseagreementbetweenthemeasureddisplacements(Fig.3d). Theseresultsverifythatthelock-inmeasurementisequivalentto acontinuousmeasurement, exceptthatitevadeslowfrequencytechnicalnoise. Withtheopticallayoutusedhere,particlemotionwastrackedinaself-homodynemeasure- mentonasinglebulkdetectorratherthanaquadrantphotodiode.Thisisnotrequiredforlock-in particletracking,whichshouldworkwithanydetectionapparatus.However,itcanbeveryad- vantageous;quadrantdetectorsareavoidedinsomehigh-speedexperimentsbecausetheytyp- icallyhavelowbandwidth[4,20].Furthermore,thequantum limitonsensitivityisaccessible onlywithperfectinterferencebetweenthelocaloscillatorandscatteredfields,whichrequires the local oscillator to be spatially engineered, as it is in a homodyne measurement such as this [2,22]. A difficulty with the layout used here was that some of the probe field reflected fromthesamplechamberintothedetector.Thisback-reflectionwasofagreaterintensitythan the back-scatterfrom the particle, and phase shifts between the local oscillator and scattered fields generateda measured signal, but this was primarily below 5 Hz. In that low frequency range,ourlock-inmeasurementperformedworsethanthecontinuousmeasurement,although eliminatingtheback-reflectionwithanti-reflectioncoatingswouldresolvethis.Also,itshould be noted that evasion of laser noise and electronic noise can only improve sensitivity to the particle position relative to the opticalfields. As with all otherparticle trackingexperiments, thismeasurementremainssensitivetomirrordriftsoraircurrentsoutsidethetrapwhichcause thetrapcentertodrift,andconventionalmethodsareneededtostabilizethesenoisesources. We have demonstrated that a lock-in measurement scheme provides a simple and robust technique to reduce technical noise in an optical tweezers setup. This can yield a substantial improvementinsensitivitywhichcouldbepracticalformanyopticaltweezersapplications. Acknowledgments ThisworkwassupportedbytheAustralianResearchCouncilDiscoveryProjectContractNo. DP0985078.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.