Optical lock-in particle tracking in optical tweezers MichaelATaylor,JoachimKnittelandWarwickPBowen ∗ CentreforEngineeredQuantumSystems,UniversityofQueensland,StLucia,Queensland 4072,Australia 3 [email protected] 1 ∗ 0 2 Abstract: We demonstrate a lock-in particle tracking scheme in optical n tweezersbasedonstroboscopicmodulationofanilluminatingopticalfield. a Thisschemeisfoundtoevadelowfrequencynoisesourceswhileotherwise J producinganequivalentpositionmeasurementtocontinuousmeasurement. 5 2 This was demonstrated, and found to yield on average 20 dB of noise suppressioninthefrequencyrange10–5000Hz,wherelowfrequencylaser ] noise andelectronicnoise was significant,and 35 dB of noise suppression s c in the range 550–710 kHz where laser relaxation oscillations introduced i lasernoise.Thesetupissimple,andcompatiblewithanytrappingoptics. t p o © 2013 OpticalSocietyofAmerica s. OCIScodes:(140.7010)Lasertrapping;(350.4855)Opticaltweezersoropticalmanipulation. c i s Referencesandlinks y h 1. A.AshkinandJ.Dziedzic,“Opticaltrappingandmanipulationofvirusesandbacteria,”Science235,1517–1520 p (1987). [ 2. M.A.Taylor,J.Knittel,andW.P.Bowen,“Fundamentalconstraintsonparticletrackingwithopticaltweezers,” arXiv:1208.0657(2012). 1 3. F.GittesandC.F.Schmidt,“Interferencemodelforback-focal-planedisplacementdetectioninopticaltweezers,” v Opt.Lett. 23,7–9(1998). 5 4. I.Chavez,R.Huang,K.Henderson,E.-L.Florin,andM.G.Raizen,“Developmentofafastposition-sensitive 7 laserbeamdetector,”Rev.Sci.Instrum. 79,105104(2008). 9 5. J.R.Moffitt,Y.R.Chemla,S.B.Smith,andC.Bustamante,“Recentadvancesinopticaltweezers,”Annu.Rev. 5 Biochem.77,205-228(2008). 6. J.T.Finer, R.M.Simmons,andJ.A.Spudich, “Single myosinmolecule mechanics: piconewton forces and . 1 nanometresteps,”Nature 368,113–119(1994). 0 7. A.Jannasch,A.F.Demiro¨rs,P.D.J.vanOostrum,A.vanBlaaderen, andE.Scha¨ffer, “Nanonewton optical 3 forcetrapemployinganti-reflectioncoated,high-refractive-index titaniamicrospheres,”NaturePhoton.6,469- 1 473(2012). : 8. K.Svoboda,C.F.Schmidt,B.J.Schnapp,andS.M.Block1993“Direct observation ofkinesinsteppingby v opticaltrappinginterferometry,”Nature 365,721–727(1993). Xi 9. C.Bustamante,Y.R.Chemla,N.R.Forde,andD.Izhaky,“Mechanicalprocessesinbiochemistry,”Annu.Rev. Biochem.73,705-748(2004). r 10. C.Bustamante,“UnfoldingsingleRNAmolecules:bridgingthegapbetweenequilibriumandnon-equilibrium a statisticalthermodynamics,”Q.Rev.Biophys. 38,291–301(2005). 11. W.J.GreenleafandS.M.Block,“Single-molecule, motion-basedDNAsequencingusingRNApolymerase,” Science 313,801(2006). 12. P.Kukura,H.Ewers,C.Mu¨ller,A.Renn,A.Helenius,andV.Sandoghdar,“High-speednanoscopictrackingof thepositionandorientationofasinglevirus,”Nat.Methods6,923–929(2009). 13. M.A.Taylor,J.Janousek,V.Daria,J.Knittel,B.Hage,H.-A.Bachor,andW.P.Bowen,“Biologicalmeasurement beyondthequantumlimit,”arXiv:1206.6928(2012). 14. S.Yamada, D.Wirtz, andS.C.Kuo,“Mechanics ofliving cells measuredbylasertracking microrheology,” Biophys.J.78,1736–1747(2000). 15. E.N.SenningandA.H.Marcus,“ActinpolymerizationdrivenmitochondrialtransportinmatingS.cerevisiae,” Proc.Natl.Acad.Sci.USA 107,721–725(2010). 16. I.M.Tolic´-Nørrelykke,E.-L.Munteanu,G.Thon,L.OddershedeandK.Berg-Sørensen,“Anomalousdiffusion inlivingyeastcells,”Phys.Rev.Lett. 93,078102(2004). 17. T.Franosch,M.Grimm,M.Belushkin,F.M.Mor,G.Foffi,L.Forro´,andS.Jeney,“Resonancesarisingfrom hydrodynamicmemoryinBrownianmotion,”Nature 478,85–88(2011). 18. R.Huang,I.ChavezI,K.M.Taute,B.Lukic´,S.Jeney,M.G.Raizen,andE.-L.Florin,“Directobservationof thefulltransitionfromballistictodiffusiveBrownianmotioninaliquid,”NaturePhys. 7,576-580(2011). 19. D.E. Chang, C. A.Regal, S.B. Papp, D.J. Wilson, J.Ye, O.Painter, H.J. Kimble, and P.Zoller, “Cavity opto-mechanicsusinganopticallylevitatednanosphere,”Proc.Natl.Acad.Sci.USA 107,1005–1010(2010). 20. T.Li,S.Kheifets,andM.G.Raizen,“Millikelvincoolingofanopticallytrappedmicrosphereinvacuum,”Nature Phys. 7,527-530(2011). 21. M.A.Taylor,J.Knittel,M.T.L.Hsu,H.-A.Bachor,andW.P.Bowen,“Sagnacinterferometer-enhancedparticle trackinginopticaltweezers,”J.Opt. 13,044014(2011). 22. J.W.Tay,M.T.L.Hsu,andW.P.Bowen,“Quantumlimitedparticlesensinginopticaltweezers,”Phys.Rev.A 80063806(2009). 23. P.KweeandB.Willke,“Automaticlaserbeamcharacterization ofmonolithicNd:YAGnonplanarringlasers,” Appl.Opt.476022–6032(2008) 1. Introduction In optical tweezers, small particlesare trapped by the electric field gradientat the focusof a tightlyfocusedlaserbeam[1].Afterthelightinteractswiththeparticle,itencodesinformation abouttheparticleposition[2],whichistypicallyextractedwithaquadrantdetectorattheback- focalplaneofacondenserlens[3].Thisallowsparticletrackingwithsub-nanometersensitiv- ity[4]asforcesrangingfromsubpiconewton[5,6]tonanonewton[7]arecontrollablyapplied. Suchexperimentshaveuncoveredimportantphenomenainbiophysics,includingboththedy- namics and magnitudeof the forcesapplied by biologicalmotors [6,8,9], the stretching and foldingpropertiesofDNAandRNA[9–11],thedynamicsofvirus-hostcoupling[12],thestrain onanenzymeduringcatalysis[9],andtherheologicalpropertiesofcellularcytoplasm[13–16]. Furthermore,opticaltweezersprovidea significanttoolforstudyingthefundamentalphysics ofBrownianmotion[17,18]andquantumoptomechanics[19,20]. While shot-noise establishes the fundamental sensitivity limit for optical tweezers based measurements [2,21,22], real experiments are generally limited by technical noise sources suchaslasernoise,electronicnoiseinthedetector,ordriftsofmirrorsintheexperiment.These technical sources of error can be a significant hindrance to precision measurement, so much efforthasgoneinto reducingthem[4,5,12,21].Recently,an opticallock-inparticletracking schemewasdevelopedwhichallowedevasionoflow-frequencytechnicalnoisewithoutneed- ing to remove the noise sources from the experiment. This was applied in conjunction with quantum correlated light to break the shot-noise limit in particle tracking sensitivity [13]. In principle,thisopticallock-inparticletrackingschemeoffersnearimmunityto lowfrequency lasernoiseandelectronicnoise,whichcouldmakeitahighlypracticalmethodforawiderange of experiments. In the initial demonstration,however,the noise suppression attained through use of the optical lock-intracking was notcharacterized[13]. Furthermore,the experimental setupinthatdemonstrationwasmorecomplicatedthannecessaryforclassicalparticletracking and incompatible with short working distance objectives. Here we demonstrate optical lock- in particle tracking with a simple optical setup which can be applied with any objectives. It is shown that lock-in based particle tracking has superior sensitivity to continuous measure- ment at all frequencieswhere the continuousmeasurementis limited by technicalnoise, and achievesequivalentsensitivitywherethedominantnoisesourceisfundamentalshot-noise.The reductionin laser noise and electronicnoise yieldson average20 dB of noise suppressionin thefrequencyrange10–5000Hz,wherelowfrequencylasernoiseandelectronicnoiseissig- nificant, and 35 dB of noise suppression in the range 550–710 kHz where the laser crystal relaxationoscillationsintroducealargenoisefeature. y y c c n n e e u u q q e e ser fr ser fr Msidoed-ublaantidosn a a L L Particle Laser noise motion Frequency Frequency Fig.1. Aprobeopticalfieldismodulatedbyitsinteractionwiththeparticle(red).Inorder tomeasurethis,itismixedwithanotherbrightlocaloscillatorfield(darkblue).However, thelocaloscillatoralsohassomelow-frequencynoisepresent.Iftheprobefieldfrequency matchesthelocaloscillatorfrequency,asshownontheleft,thenthelow-frequencynoise competeswiththelow-frequencyparticlemotionsignal.However,iftheprobeisinampli- tudemodulatedside-bands,asshownontheright,thenthelow-frequencyparticlemotion canbeisolatedfromthelow-frequencynoise,therebyimprovingthemeasurementsensi- tivity. 2. Basicconcept Thelock-inbasedparticletrackingmeasurementdemonstratedhereisqualitativelysimilarto acontinuouspositiontrackingexperiment.Inopticaltweezersbasedmeasurements,scattering particlesareilluminatedandthespatialdistributionoftheresultingscatteredfieldismeasured to infer particle position [2,3]. Any modulation on the incident illumination is carried onto the scattered field, shifting some of the optical power from the laser carrier frequency into modulationside-bands.Oncethescatteredfieldismeasured,theopticalmodulationtranslates intoamodulationontheelectricalsignal,withtheparticlepositioninformationcenteredabout themodulationfrequency(seeFig.1).Theparticlepositioncanberecoveredbydemodulating thissignal. We mayaskhowthe expectedsensitivity ofsucha measurementcomparesto a usualcon- tinuousmeasurement.Whenopticalfieldsaremeasured,theresultingphotocurrentattimet is givenby I(t)=G U(X,Y)E(t)2dXdY+N (t) (1) Z | | E whereN istheelectronicnoise,Gisthedetectorgain,Eisthetotalelectricfieldatthedetector E atthecoordinatesX andY,andU(X,Y)representsthespatialgainofthedetector;forinstance, if the photocurrent from two halves of a split detector are subtracted from one another, this isrepresentedasU(X,Y)=sign(X),whileabulkdetectorhasU(X,Y)=1.Hereweassume that the fields presentare a scattered field E which dependson particle position, and a local s oscillatorE withwhichthescatteredfieldinterferes,suchthatE=E O+E .Inmostoptical LO L s tweezers experiments, the local oscillator is simply given by the component of the trapping fieldwhichhasnotscatteredfromtheparticle.Forlock-inexperiments,thefieldsareseparated to allow the particle illumination to be modulated independently of the local oscillator. The scattered field is assumed to be much smaller than the local oscillator (E E ) as is s LO | |≪| | typicallythecase,suchthatthemeasuredphotocurrentisgivenby I(t)=G U(X,Y)E (t)2+2U(X,Y)Re E (t)E (t) dXdY+N (t). (2) Z | LO | { LO s∗ } E The explicit time dependence of the scattered field may be separated from the spatial mode shape as E =(A (t)+x (t))y (X,Y), where A (t) and x (t) are respectively the real expec- s s s s tation value of the field amplitude from which the particle tracking signal originates, and its fluctuationswhichcontributenoisesuchasshotnoise. y (X,Y)isthecomplexspatialmode- s shapeofthescatteredfield;thisdoesnothaveexplicittimedependence,butismodifiedasthe particlemoves.Itisthisspatialmodificationwhichisultimatelymonitoredtoretrieveaparticle trackingsignal.Tofindthedependenceofthescatteredfield onasmallparticledisplacement x(t),itcanbeexpandedtofirstorderas dE dy (X,Y) E =E +x(t) s =(A (t)+x (t))y (X,Y) +x(t)(A (t)+x (t)) s . s s|x=0 dx x=0 s s |x=0 s dx x=0 (cid:12) (cid:12) (cid:12) (cid:12) (3) SubstitutingthisexpressionintoEq.2,thecomponentofthephotocurrentwhichgivesalinear particletrackingsignalcanbeseentobe dy (X,Y) I = 2Gx(t)A (t) U(X,Y)Re E s∗ dXdY, (4) sig s Z { LO dx x=0} (cid:12) = gx(t)A (t) (cid:12) (5) s whereforbrevitywedefineagaing=2G U(X,Y)Re E dy s∗(X,Y) dXdY.Theposition { LO dx x=0} sensitivityisoptimizedwhenthisgainismRaximized,asoccurswhen(cid:12)boththephaseandshape (cid:12) ofthelocaloscillatorfieldareoptimizedtoperfectlyinterferewiththescatteredfieldcompo- nent dEs [13,22].SubstitutingthisintoEq.2,wecanrepresentthemeasuredphotocurrent dx x=0 as (cid:12) (cid:12) I(t)=N (t)+N (t)+gA (t)x(t), (6) opt E s whereallthetermsintheintegrandwhichdidnotcontributetothetrackingsignalareincluded asopticalnoiseN .Foracontinuousmeasurement,theexpectationvalueofthescatteredfield opt amplitudeA (t)shouldbeconstant.Alternatively,wecanperformlock-inmeasurementifwe s modulatethescatteredfieldamplitudeatfrequencyw suchthatA (t)=√2A¯ cos(w t),where s s themodulatedamplitudehasanRMSvalueofA¯ .Providedthemodulationfrequencyismuch s fasterthanthemechanicalmotion,thepositioncanthenbeextractedbydemodulation; I =√2Icos(w t)=√2 N (t)+N (t) cos(w t)+gA¯ x+gA¯ xcos(2w t). (7) lock in opt E s s − (cid:0) (cid:1) Thus, the effect of the lock-in is to shift the low frequency noise to high frequencies, and generate a second harmonic term proportionalto x while leaving the signal term unchanged. The second harmonic term and the low frequencynoise can then be removedvia a low-pass filter, such that only the noise originally near the modulation frequency enters the measure- ment.Whereverlow-frequencynoiseisdominant,lock-inmeasurementallowssuppressionof thenoisefloor.Thisdoesnotinfluencewhitenoisesourcessuchasshot-noise,sincetheseare equallypresentatlowfrequenciesandaroundthemodulationfrequency.Thus,thefundamen- talshot-noiselimitonpositionsensitivityisnotinfluencedbyachoicebetweencontinuousor lock-in measurement. The two schemes have equivalentshot-noise limits to sensitivity when thelock-inscatteredamplitudeA¯ matchestheamplitudeA ofathecontinuousmeasurment, s s orequivalently,whenthesamenumberofscatteredphotonsinmodulationside-bandsarecol- lectedforthelock-inmeasurementasarecollectedforacontinuousmeasurement. 3. Experiment Theopticallock-inparticletrackingexperimentshowninFig.2wasbuilt,andthesensitivity attainable with continuous and lock-in measurements characterized. A particle is trapped in waterbetweentwoobjectiveswith0.4numericalaperture(NA)by1064nmlightproducedby alownoise[23]InnolightPrometheusNd:YAGlaser.DuetothelowNAobjectivesused,trap- pingisnotpossiblewithasinglebeam.Twoorthogonallypolarizedcounter-propagatingfields Fiber out-coupler Imaging Detector CCD field e b o Trapping field r DM DM p M A λ/2 Phase plate 50/50 PBS Local PBS PBS λ/2 Oscillator Fig.2. Layoutoftheopticallock-intrackingschemeusedhere.PBS:polarizingbeamsplit- ter,DM:dichroicmirror.Thelocaloscillatorisshapedwithaphaseplatewhichimpartsap phaseshifttoonehalfofthespatialprofile.Particlesaretrappedbythecounter-propagating probeandtrapfields.Thetrapfieldisisolatedfromthedetection,andifitisnotrequired forstabletrapping,canberemovedaltogether.Theprobefieldscattersfromtrappedpar- ticles,andtheparticlemotiontrackedviatheinterferencebetweenthisscatteredlightand thelocaloscillator.Theprobeisamplitudemodulatedat2MHzinafiberMach-Zehnder modulator.Aseparategreenfieldisusedtoimagetheparticlesinthetrap. areusedinsteadtoconfineparticles,withonlyoneofthesecontributingtothemeasurement.It isimportanttonotethatalthoughadualbeamopticaltrapisusedhere,lock-inparticletracking isfullycompatiblewithsingle-beamtraps.Oneofthetrappingfields(referredtoastheprobe) is amplitudemodulatedat 2 MHz, which is sufficientlyhigh that the resulting modulationof the trap strength does not measurably disturb the particle motion. The back-scatterfrom this modulatedprobefieldiscombinedwithalocaloscillatorfieldwhichalsopropagatesthrough the trap. The local oscillator is shaped with a phase plate so that particle motion modulates thespatialoverlapbetweenthelocaloscillatorandscatteredfield.Providedthephasebetween thelocaloscillatorandscatteredfieldiscorrectlychosen,theinfluenceoftheparticlemotion on the interference between these fields directly maps the position onto the transmitted light intensity [13], which is then measuredon a New Focus1811bulk detector.Demodulationof theresultingsignalattheamplitudemodulationfrequencyallowsbothtrackingofascattering particleandalsomonitoringoftherelativeopticalphases.Thescatteredlightincludesalarge stationaryterm(E inEq.2),andthephasebetweenthisandthelocaloscillatorcanbede- s x=0 | terminedfromtheamplitudeofthemeasuredmodulation.Thismeasuredphasewasprocessed with a PID controller and locked by feedback to a piezo-mounted mirror in the path of the probefield.Thisapproachextendstheschemefirstdevelopedforopticallock-inparticletrack- ing[13]toamoretypicalopticaltrappingsetup.Therethescatteredfieldwasproducedfrom side-illuminationwhereasherethemodulatedprobeactsasatrappingfield.Side-illuminationis onlypossibleifthereisroomforafree-spaceprobefieldtoreachthetrapcenter,whichrequires useoflongworkingdistanceobjectives(inRef.[13],6mm)whicharenottypicallyusedfor optical trapping. Furthermore, the probe can only be weakly focused with side-illumination. Focusing the probe field through the objective increases its intensity by approximately 103, whichresultsinacorrespondingincreaseinthescatteredfieldamplitudeandanimprovement inthepositionsensitivityasdescribedinEq.7. The amplitude modulation on the probe is chosen to leave approximately equal power in the central laser frequency and the first modulation side-band. This allows the continuous andpulsedmeasurementsto occursimultaneouslywitha singledetector,andwith equivalent 10−16 a: Continuous b: Lock-in Hz)10−18 2m / nt (10−20 e m e ac10−22 pl s Di 10−24 101 102 103 104 105 106 102 103 104 105 106 Frequency (Hz) Frequency (Hz) c d 104 nt or improveme 110032 anical signal o h e fl 101 Mec s oi N 100 101 102 103 104 105 106 0 2 4 6 8 10 Frequency (Hz) Time (ms) Fig.3. Particletrackingspectraareshownfromsimultaneouscontinuous(a)andlock-in (b)measurements.Thelightyellowtraceshowsthenoisefloorpresentintheabsenceofa trappedparticlewhichcorrespondstothemeasurementimprecision,andtheblueshowsthe measuredsignalwitha1m mpolystyrenebeadheldinthetrap.Thethickdarkerblueline fitsthebeadmotionandtheflatshot-noisefloor.Thismatchesthelock-indatawellsince itisshot-noiselimitedfrom500Hz,butdoesnotfollowthecontinuousspectraasthiswas limitedby low frequency lasernoise until 1MHz. Thisnoise includes averyprominent spectral peak around 630 kHz from the laser diode relaxation oscillations. Because the fittedfloorcorrespondstotheshot-noiselevel,itdropsbelowthemeasureddatabetween 10 kHzand1 MHz.Thetrapwasveryweak, asweused 0.4NA objectiveswithatotal of 30 mWtrapping field.Assuch, thecorner frequency isslightlybelow 10 Hzand not visibleinthedisplayeddata.Byexcludinglowfrequencynoise,thelock-inmeasurement yields a measurement precision which is improved by the factor shown in c. Subplot d shows the continuous (light) and lock-in (medium) time-traces after a low-pass filter at 1MHz,revealingtheclearnoiseimprovementfromlock-inmeasurement,andalsoshows thecontinuousdatawithalow-passfilterat10kHz(dark),whichcloselyfollowsthehigher bandwidthlock-inresults. recordingconditions.Somenon-linearityinthemodulatorresultedinanumberofhigherhar- monicsbeinggenerated,whichweresuppressedinthedataacquisitionwithanalogelectronic filters. Usingthissetup,theBrownianmotionofa1m mpolystyrenebeadwassimultaneouslymeas- uredbothcontinuouslyandfromside-bandsaroundthe2MHzmodulation,withspectrashown in Fig. 3a and b respectively.The backgroundnoise was characterizedby performingequiv- alent measurementsin the absence of a trapped bead. As expected, the lock-in measurement isverysimilartothecontinuousmeasurement,butwithareductionintheincludedelectronic and laser noise. The reduction in included noise (shown in Fig. 3c) causes the measurement imprecisiontoimprovemarkedlyatthefrequencieswherelaserandelectronicnoisearedomi- nant.Between10and5000Hz,theimprecisionisimprovedbyanaverageof20dB,witheven greatersuppressionof35dBinthefrequencyrange550–710kHzwherethelasercrystalrelax- ation oscillationsproducea prominentlasernoise peakcentredat630kHz.A comparisonof thetwomeasurementsinthetimedomainalsorevealsboththeclearsuppressionofnoiseonthe lock-intraceandtheotherwisecloseagreementbetweenthemeasureddisplacements(Fig.3d). Theseresultsverifythatthelock-inmeasurementisequivalentto acontinuousmeasurement, exceptthatitevadeslowfrequencytechnicalnoise. Withtheopticallayoutusedhere,particlemotionwastrackedinaself-homodynemeasure- mentonasinglebulkdetectorratherthanaquadrantphotodiode.Thisisnotrequiredforlock-in particletracking,whichshouldworkwithanydetectionapparatus.However,itcanbeveryad- vantageous;quadrantdetectorsareavoidedinsomehigh-speedexperimentsbecausetheytyp- icallyhavelowbandwidth[4,20].Furthermore,thequantum limitonsensitivityisaccessible onlywithperfectinterferencebetweenthelocaloscillatorandscatteredfields,whichrequires the local oscillator to be spatially engineered, as it is in a homodyne measurement such as this [2,22]. A difficulty with the layout used here was that some of the probe field reflected fromthesamplechamberintothedetector.Thisback-reflectionwasofagreaterintensitythan the back-scatterfrom the particle, and phase shifts between the local oscillator and scattered fields generateda measured signal, but this was primarily below 5 Hz. In that low frequency range,ourlock-inmeasurementperformedworsethanthecontinuousmeasurement,although eliminatingtheback-reflectionwithanti-reflectioncoatingswouldresolvethis.Also,itshould be noted that evasion of laser noise and electronic noise can only improve sensitivity to the particle position relative to the opticalfields. As with all otherparticle trackingexperiments, thismeasurementremainssensitivetomirrordriftsoraircurrentsoutsidethetrapwhichcause thetrapcentertodrift,andconventionalmethodsareneededtostabilizethesenoisesources. We have demonstrated that a lock-in measurement scheme provides a simple and robust technique to reduce technical noise in an optical tweezers setup. This can yield a substantial improvementinsensitivitywhichcouldbepracticalformanyopticaltweezersapplications. Acknowledgments ThisworkwassupportedbytheAustralianResearchCouncilDiscoveryProjectContractNo. DP0985078.