ebook img

Optical configuration and analysis of the AMBER/VLTI instrument PDF

15 Pages·2007·2.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical configuration and analysis of the AMBER/VLTI instrument

A&A464,13–27(2007) Astronomy DOI:10.1051/0004-6361:20065432 & (cid:1)c ESO2007 Astrophysics Special feature AMBER:Instrumentdescriptionandfirstastrophysicalresults Optical configuration and analysis of the AMBER/VLTI instrument S.Robbe-Dubois1,S.Lagarde2,R.G.Petrov1,F.Lisi3,U.Beckmann4,P.Antonelli2,Y.Bresson2, G.Martinot-Lagarde2,7,A.Roussel2,P.Salinari3,M.Vannier1,6,13,A.Chelli5,M.Dugué2,G.Duvert5,S.Gennari3, L.Glück5,P.Kern5,E.LeCoarer5,F.Malbet5,F.Millour1,5,K.Perraut5,P.Puget5,F.Rantakyrö6,E.Tatulli5, G.Weigelt4,G.Zins5,M.Accardo3,B.Acke5,14,K.Agabi1,E.Altariba5,B.Arezki5,E.Aristidi1,C.Baffa3, J.Behrend4,T.Blöcker4,S.Bonhomme2,S.Busoni3,F.Cassaing8,J.-M.Clausse2,J.Colin2,C.Connot4,L.Delage10, A.Delboulbé5,A.DomicianodeSouza1,2,T.Driebe4,P.Feautrier5,D.Ferruzzi3,T.Forveille5,E.Fossat1,R.Foy9, D.Fraix-Burnet5,A.Gallardo5,E.Giani3,C.Gil5,15,A.Glentzlin2,M.Heiden4,M.Heininger4,O.HernandezUtrera5, K.-H.Hofmann4,D.Kamm2,M.Kiekebusch6,S.Kraus4,D.LeContel2,J.-M.LeContel2,T.Lesourd7,B.Lopez2, M.Lopez7,Y.Magnard5,A.Marconi3,G.Mars2,P.Mathias2,P.Mège5,J.-L.Monin5,D.Mouillet5,16,D.Mourard2, E.Nussbaum4,K.Ohnaka4,J.Pacheco2,C.Perrier5,Y.Rabbia2,S.Rebattu2,F.Reynaud10,A.Richichi11,A.Robini1, M.Sacchettini5,D.Schertl4,M.Schöller6,W.Solscheid4,A.Spang2,P.Stee2,P.Stefanini3,M.Tallon9, I.Tallon-Bosc9,D.Tasso2,L.Testi3,F.Vakili1,O.vonderLühe12,J.-C.Valtier2,andN.Ventura5 (Affiliationscanbefoundafterthereferences) Received13April2006/Accepted28August2006 ABSTRACT Aims.ThispaperdescribesthedesigngoalsandengineeringeffortsthatledtotherealizationofAMBER(AstronomicalMultiBEamcombineR) andtotheachievementofitspresentperformance. Methods.Onthebasisofthegeneralinstrumentalconcept,AMBERwasdecomposedintomoduleswhosefunctionsanddetailedcharacteristics aregiven.Emphasisisputonthespatialfilteringsystem,akeyelementoftheinstrument.Weestablishedabudgetfortransmissionandcontrast degradationthroughthedifferentmodules,andmadethedetailedopticaldesign.Thelatterconfirmedtheoverallperformanceoftheinstrument anddefinedtheexactimplementationoftheAMBERoptics. Results.TheperformancewasassessedwithlaboratorymeasurementsandcommissioningsattheVLTI,intermsofspectralcoverageandreso- lution,instrumentalcontrasthigherthan0.80,minimummagnitudeof11inK,absolutevisibilityaccuracyof1%,anddifferentialphasestability of10−3radoveroneminute. Keywords.instrumentation:highangularresolution–instrumentation:interferometers–methods:analytical–methods:numerical– methods:laboratory–techniques:highangularresolution 1. Introduction – Minimum magnitude: K = 11, H = 11 (goals: K = 13, H =12.5,J =11.5). AMBER (Petrov et al. 2007) is the near infrared focal – Absolutevisibilityaccuracy:3σ =0.01(goal:σ =10−4). V V beam combiner of the Very Large Telescope Interferometric – Differential phase stability: 10−3 rad (goal: 10−4 rad) over mode (VLTI). A consortium of French, German, and oneminuteintegration.Thisallowsustocomputephaseclo- Italian institutes is in charge of the specification, design, surethatisnecessaryinthesearchofbrowndwarfsandextra construction, integration, and commissioning of AMBER solarplanets(Segransanetal.2000). (http://amber.obs.ujf-grenoble.fr). This instrument is designed to combine three beams coming from any combina- Thesespecificationshavebeenthestartingpointofaglobalsys- tionofUnit8-mTelescopes(UT)orAuxiliary1.8-mTelescopes tem analysis (Malbet et al. 2003) initiated by a group of inter- (AT).Thespectralcoverageisfrom1to2.4µm withapriority ferometristsfromseveralFrenchinstitutesandcompletedbythe totheK band. InterferometricGRoup(IGR)ofAMBER.Thisworkledtothe AMBERisageneraluserinstrumentwithaverywiderange currentdefinition of the AMBER instrumentwhose broad out- of astrophysical applications, as is shown in Richichi et al. linesarerecalledintheparagraphsbelow. (2000) and Petrov et al. (2007). To achieve the ambitious pro- To reach a sufficient sensitivity, ESO provided a 60 ac- grams, Petrov et al. (2001) presented the associated specifica- tuator curvature sensing system MACAO (Multi-Application tionsandgoals,suchas: CurvatureAdaptiveOptics) (Arsenaultetal. 2003)specifiedto deliver at least a 50%Strehl ratio @ 2.2 µm for on-axisbright – Spectralcoverage:J,H,andKbands,from1.0µmto2.3µm sources (V = 8) under median seeing conditions (0.65(cid:2)(cid:2)) and (goal:upto2.4µm). a 25% Strehl ratio @ 2.2 µm for faint sources (V = 15.5) un- – Spectralresolutions:minimumspectralresolution30 < R < der the same seeing conditions. The required high accuracy of 50,mediumspectralresolution500<R<1000,andhighest the absolute visibility measurements implies the use of spatial spectralresolution10000<R<15000. filters (Mège et al. 2000; Tatulli et al. 2004) with single mode Article published by EDP Sciences and available at http://www.aanda.orgor http://dx.doi.org/10.1051/0004-6361:20065432 14 S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument fibersbasedontheexperienceofothersmaller,successfulinter- ferometerssuchasIOTA/FLUOR(CoudéduForesto1997).The atmosphericnoiseisreducedtophotometricfluctuations,which canbemonitored,andtoOpticalPathDifference(OPD)fluctu- ationsbetweenthedifferentpupils,whichcanbefrozenbyvery shortexposuresoradaptivelycorrectedbyafringetracker. Thesimultaneousobservationofdifferentspectralchannels isensuredbydispersedfringes.Thisverysignificantlyincreases the number and the quality of the measurements and subse- quently the constraints imposed on the atmospherical models. The modularity of the concept was a strong argument in fa- Fig.1.SchemeoftheAMBERconfiguration:(1)multiaxialbeamcom- vor of the multi-axial scheme, as carried out on the Grand biner;(2)cylindricaloptics;(3)anamorphosedfocalimagewithfringes; Interferomètreà 2 Télescopes (GI2T) of the Plateau de Calern (4) “long slit spectrograph”; (5) dispersed fringes on 2D detector; (Mourardetal.2000).Inaddition,itwasdemonstratedthatthe (6)spatialfilterwithsinglemodeopticalfibers;(7)photometricbeams. instrument must correct the atmospheric transversal dispersion in J and H (Tallon-Bosc 1999). The need of an image cold stopwasassessedbyMalbet(1999)toreducethethermalback- the beam size and position, flux optimization, OPD equal- groundcomingfromtheblackbodyemissionofthefiberheads, ization,polarizationcontrol,andcombinationofthespectral whichcanbegreaterthanthedetectorRON,especiallyforlong bands. timeexposuresinthe K-Band.Apupilmaskalsoactsasacold – ANamorphosisSystem(ANS)tocompressthebeamsinone stop.Toperformthedatareduction,theABCDalgorithm(Chelli directionwithoutperturbingthepupillocation. 2000;Millouretal.2004),asusedwithco-axialconfigurations – CooledSPectroGraph(SPG).Thiselementincludes:disper- with a temporal coding, was chosen. The associated complete sionwithdifferentresolutions,thermalnoisereduction,pupil datacalibrationprocedurewasthenfullydefined(Hofman1999; configuration,photometriccalibration,andspectralfiltering. Chelli2000;Tatullietal.2007). – Cooled DETector (DET), which detects the dispersed On the basis of the general instrumental concept resulting fringes. from the global system analysis, we defined the main mod- Theauxiliarymodulesare: ules and necessaryaccessories (suchas the alignmentunits) of – System to correct the atmospheric transversal dispersion AMBER. We established a budget for throughputand contrast degradation through the different modules, made the detailed (ADC)in JandH. – CalibrationandAlignmentUnit(CAU)necessarytoperform optical design,and performeda completeopticalanalysis. The the contrast calibration (Millour et al. 2004; Tatulli et al. latterconfirmedtheexpectedoverallperformanceoftheinstru- 2007). mentintermsofsignal-to-noiseratio(SNR).Thisentireprocess – Remote Artificial Sources (RAS) allowing for the align- isdescribedinthepresentpaper.Theproceduredescribedhere to allocate the specifications of the different modules of an in- ments,thespectralcalibration,andfeedingtheCAUforthe contrastcalibration. terferometer could be used, after some changes, for the design – MatrixCalibrationSystem(MCS)scheduledtocalibratethe ofotherinterferometricalinstruments,suchas,forexample,the contrasttoachievespecificscientificgoals. VLTIsecondgenerationinstruments. – ABYPass(BYP)oftheSPFtoalignthewarminstrumentin thevisible(forcontrollingthepupil,theimagelocation,and 2. OverviewoftheAMBERimplementation the beamseparationandheight),andtoinjectlightdirectly toSPG. The concept of AMBER is illustrated by Fig. 1. Each input beam is fed into a single mode fiber that reducesall chromatic We will describe each module in detail in the following para- wavefront perturbations to photometric and global OPD fluc- graphs, from the entrance of AMBER to the detector, starting tuations (6). At the output of the fibers, the beams are colli- withthemainmodulesandcontinuingwiththeauxiliaryones. mated,maintainedparallel,andthenfocusedinacommonAiry disk (1). The latter contains Young fringes with spacings spe- cifictoeachbaseline,allowingustoseparatetheinterferograms 3. Thespatialfilters in the Fourier space. This Airy disk goes through the spectro- ThethreeVLTIbeamsattheentranceofAMBERhaveadiam- graphslit(3)afterbeinganamorphosedbycylindricaloptics(2). eter of 18 mm and equal separations of 240 mm (see Fig. 2). Thespectrograph(4)formsdispersedfringesonthedetector(5), The three AMBER beams are separated by 70 mm at the fiber whereeachcolumnallowsustoanalysetheinterferogramsina differentspectralchannel.A fractionof eachbeam is collected entrance.Theseparationsattheentranceareachievedbyadjust- ing theVLTI beaminjectionoptics, allowingusto compensate before the beam combinationto monitorthe photometryvaria- fortheopticalpathdifferencewithadditionalpathlengths.The tions(7). chosenconfigurationensuresperfectsymmetrybetweenthein- Figure2showstheglobalimplementationofAMBER, and terferometricpathsandallowsfortheuseofsmallsizeoptics. Fig. 3showsa pictureoftheinstrumenttakenattheendofthe integrationatParanal(March2004).Thecoreoftheinstrument iscomposedofthefollowingmodules,fillingspecificfunctions: 3.1.Characteristicsofthespatialfiltering – SPatial Filters (SPF) to spatially filter the wavefront per- Single mode fibers cannot be efficient over a too large wave- turbationandreach high-visibilityprecisionmeasurements. length domain.The full J, H, K rangefrom1 to 2.4µm needs The functionsof this elementare also: spectralband selec- atleasttwodifferentfibers.Themostefficientwayistouseone tion(J, H,andK),interferometricarmselection,controlof spatial filter by spectral band, avoiding dividing the H-band in S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument 15 Fig.2.GeneralimplementationofAMBER.ThetopschemeshowsthelightpathfromtheVLTItothedetector.Detailedconfigurationbelow. TheVLTIbeamsarriveinthelowerleftcorner.OPM-CAU:CalibrationandAlignment Unit.OPM-BCD:beaminvertingdevice(Petrovetal. 2003).OPM-POL:polarizationselectingdevice.OPM-SFK(SFH,SFJ):spatialfiltersfortheK-,H-,andJ-bands.OPM-ADC:correctorforthe atmosphericdifferentialrefractionin H and J.OPM-ANS:cylindricalafocalsystemforimageanamorphosis. OPM-OSI:periscopetoco-align thewarmandthecoldoptics.OPM-BYP:movablebypassdirectlysendingtheVLTIbeamstowardstechnicaltoolsortowardsthespectrograph tocheckVLTIalignmentandacquirecomplexfields.SPG-INW:inputwheelwithimagecoldstopanddiaphgraminsidethespectrograph(SPG). SPG-PMW:pupilmaskwheel.SPG-IPS:beamsplitterallowingtheseparationbetweeninterferometricandphotometricbeams.SPG-DIU:light dispersion(gratingsorprism).SPG-CHA:SPGcamera.DET-IDD:chip.SPG-CSYandDET-CSY:cryostatsoftheSPGandoftheHawaiidetector (DET).Duringfinaloperation,thetwocryostatsareconnectedbyacoldtunnelandsharethesamevacuum. two,whichwouldresultinthelossofapartoftheH-band.The Thespecificationsonspatialfilteringaredrivenbythequal- spatial filtering modules SFJ (H, K) (Fig. 4) receive the light ity of the optical fibers. The fiber length of about 1.30 m en- fromdichroics.Parabolicmirrorsinjectthelightinsilicatebire- suresagoodtransmissionwhilemaintaininga10−3 attenuation fringent single-mode fibers. At the exit of the fibers the same of the high order propagationmodes (Malbet et al. 2003). The opticalsystemisrepeated. polarization-maintainingisachievedbyfiberswithanelliptical core causing the so-called “form birefringence”, or by strong birefringence caused by two stress members applied on oppo- 3.1.1. Theopticalfibers site sidesofthecore(bowtie-andpanda-type).Thefiberscre- ate an intensity modulationin some of the images recordedby LAOGprovidedequalized J-fibers, H-fibers,and K-fiberswith AMBER.Figure5showsthismodulationforopticalfibersused a maximal accuracy of ±20 µm. The characteristics of the previouslytothoseofTable1.Thiseffect,fainternow,ispresent presentlyusedfibersaregiveninTable1. 16 S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument Fig.5. Left: illustration of photometric images (extreme) and in- terferometric image (center) produced with the artificial source (H-band, ∆λ = 150 nm). The zero OPD is not exact. Note the intensity modulation generated by the fibers. Right: cross-sections of polarization maintaining fibres: elliptical core, bow tie, and panda fibers (http://www.highwave-tech.com/; http://www.fibercore.com/). Fig.3.PictureoftheAMBERinstrumentattheendoftheintegration atParanalinMarch2004(byA.Delboulbé,LAOG). Fig.4. Pictures of the K-spatial filter entrance. Left (picture by Y.Bresson,OCA):thethreebeamsmeetthedichroicsandtheparabolic off-axismirrorsbeforetheinjectionthroughtheSibirefringentsingle- modefibers;Right(picturebyA.Delboulbé,LAOG):theopticalcon- figurationisrepeated attheexitofthefibers.Diaphragms control the beamsizeattheexitofthefibersandshuttersselecttheinterferometric arms. Fig.6.Aboveisthesurfaceprofileasmeasuredwiththemicro-sensor of SAVIMEX on a test element: maximum roughness of 60 nm PTV Table1.ManufacturerandcharacteristicsofthefibersintheK-,H-,and andrmsroughnessofRa6.5nmandRq8.2nm;Belowisthepicture J-bands.NA:numericalaperture,λ :cut-offwavelength,(cid:3):diameters, ofthemirrorallowingthemanufacturingofthethreeinjectionopticsin Conc.:coreconcentricity. c theSFJasobserved through themicroscope (fieldof 400×300µm). ThePTVroughnessisabout1/4thto1/8thoffringe,i.e.,80to40nm. Thermsroughnessisabout6nm.Thesurfaceopticalqualitymeasured K-band Highwave NA=0.16;λc=1900nm withthecollimatinglunetteisbelow30nm,i.e.,λ/20PTV@633nm Silica Core(cid:3)=9.7µm;Conc.<5µm onan18-mmdiameterdisk. Ellipticalcore Coating(cid:3)=245µm Absolutelength=1.30m±0.01m Lengthdifferenceafterpolishing:≤11µm H-band Fujikura NA=0.15;λ =1150nm 3.1.2. Fiberinjection c Silica Mode(cid:3)=5.5µm@1300nm;Conc.0.2µm Pandacore Coating(cid:3)=245µm The parabolic mirrors, designed by the French company Absolutelength=1.30m±0.01m SAVIMEX (Grasse), are metallic off-axisdiamond-turnedmir- Lengthdifferenceafterpolishing:≤12µm rors.TheywerecontrolledbySAVIMEXusingaprocedurede- J-band Fibercore NA=0.14;λ =944nm veloped in collaboration with OCA using a microscope and a c Silica Mode(cid:3)=6.3µm@1060nm;Conc.0.28µm micro-sensorfortheroughness,andacollimatinglunetteforthe Bowtiecore Coating(cid:3)=245µm surfacecontrol(Fig.6).ThefocallengthFisrelatedtothefiber Absolutelength=1.30m±0.01m numericalapertureNAandthebeamdiameterD.Thebestcou- Lengthdifferenceafterpolishing:≤20µm plingefficiencywasgivenbyZemaxforNA.F/D=0.46,taking thetelescopeobstructionintoaccount. 3.1.3. OPDcontrol in the science as well as in the calibrator source and can then be reduced below the specifications in the calibration process. ThissystemwasdesignedbyOCA,andmanufacturedandtested However,it dependson the fiber temperatureand on the injec- at the Technical Division of the Institut National des Sciences tion conditions (conditioned by the Strehl ratio). As far as the de l’Univers (DT/INSU, Paris). The static OPD in K is con- highest accuracygoals are concerned(especially that of reach- trolled with a 4 µm accuracy within a few mm range. While ingveryhighaccuracydifferentialphasemeasurements),a fast thestaticOPDisadjustedforagivenwavelengthineachband, correctcalibrationofthiseffectisnecessary. thereexistsanOPDdriftbetweenwavelengths.AMBERneeds S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument 17 to correct this differential OPD in J- and K-bands respective 3.1.6. Polarizationcontrol to the H-band (ESO fringe sensor unit functioning)during the Thefollowingwasdonetominimizethepolarizations’effects: observations. This chromatic OPD due to the atmospheric re- fraction is introducedduring the telescope pointing. It is given – Use the same number of reflections/transmissions between by: Bsinz(n(λ1) − n(λ2)), where n(λ) is the refractive index the2interferometerbeams. of the atmosphere, B is the baseline, and z the zenithal an- – Requireidenticalcoatingsfortheopticswiththesamefunc- gle. Considering the extreme case for which B = 200 m and tions between 2 beams: same substrate, same structure for z=60◦,thenecessaryOPDrangeisabout30µminKand70µm thedifferentlayers,simultaneousmanufacturings. in J.Suchadjustmentsareachievedthroughdriftsoftheentire – Usepolarization-maintainingfibers. AMBER K, H, or J spatial filter entrance parts. They are per- – Selectonepolarizationdirectionatthefiberentrance. formedeveryfewminutes. – Controltheincidentangleonreflectingopticswithanaccu- racybetterthanafractionofadegree. Nevertheless, such translations cannot compensate for any chromaticOPDgappresentinsideeachspectralband(δλequal Prior to the spatial filters, the polarizersselect onepolarization to 33 nm in K, 32 nm in H, and 24 nm in J). This chromatic directiontogetridof thecross-talkinside thefibersandofthe OPDgapisintroducedwhenadifferenceintheglassthickness phasedifferencebetweenbeams(variabledifferencesduringthe or in the fiber length between two interferometric arms exists. telescope pointing). The selected direction is that which is not Limitingthisrelativethicknessto0.5mm,thecontrastfactoris affected by the multiple reflections inside the instrument (per- thus ensured of being less than 0.99. The relative fiber lengths pendiculardirectiontothebeampropagationplane). inallthespatialfilterswerecontrolledbyLAOG(Grenoble).It Eachpolarizerisassociatedwithoneblade.Theorientation was shownthatatthe minimalresolutionof AMBER, thecon- ofthetwoelementsismechanicallycontrolledtoensurethedi- trast degradation factor due to differential dispersion is better rectionofthelightbeamrelativetotheopticalaxis.Theairblade than0.99insideeachspectralband(Robbe-Duboisetal.2003). located between the two prism constituents of each polarizer mustbeparallelfortheopticalsystem torespectthechromatic dynamicOPDspecifications(seeSect.3.1.4). 3.1.4. RapidOPDvariations The relative polarization control also has an impact on the opticalcoatingquality,in particularfor the dichroicselements. Instabilities of the VLTI beams can generate rapid achromatic Alltheopticswiththesamefunctionsaresimultaneouslycoated and chromatic OPD changes. The first type of problem results bythemanufacturer,inparticularthedichroicsandtheinjection inadeviationoftheentirefringepatternsideways.Thisiscom- parabola located between the polarizersand the fiber entrance, pensatedbytheVLTIitself.Thechromaticchangesdegradethe to reach a flux difference of a few % after each reflection or interferencepattern,curvingthefringeshapeatthetimescaleof transmission and a minimal phase difference generated by the these instabilities. It leads to the presence of a blurred pattern, differentlayerthicknesses. especiallyatthesidesofeachspectralband(eveniftheOPDis At the spatial filter exits, an error on the dichroics layer wellstabilizedatthecentralwavelengthofeachspectralband). thicknesscouldgenerateacontrastdegradation.Thenumberof Themainsourceofsuchinstabilitiescomesfromthedifferential elements being small (1 reflection/arm in K, 1 reflection/arm positioningshiftsoftheVLTI beams,combinedwith thetravel and 1 transmission/arm in H, and 2 transmissions/arm in J), of light towards wedged dispersive glasses. Consequently, the the overall effect is almost null. From Puech & Gitton (2005): requirementisto ensurethatdynamicchromaticOPD rmsval- a typical 2% of error on the layer thickness generates less ues are lower than the uncertainty that comes from the funda- than1%contrastlossinK.Theneutralaxesatthefiberentrance mental noise levels. The goal is to reach the (mainly photon) are controlled with a ±3◦ accuracy to compensate for the po- noisecorrespondingtoa1-minmeasurementwitha5-magstar larizationdirectionrotationsgeneratedbytheresidualmanufac- (observing with 2 UTs and the AO of the VLTI). In terms of turing differences between dichroics and by the incident angle chromaticOPD, betweenthe centralwavelengthandthe wave- differences. This ensures the maximum coherent energy inside lengthatthesideoftheconsideredbandwidth(mostdemanding thefibers.Atthefiberexit,thedifferentialpolarizationbetween case: R = 35), this translates into OPD(noise) = 5.8 e−11 m beamsbeforecombiningiscontrolledtowithinafewdegrees. in K. Vannier et al. (2002, 2004) performed a complete study that led to the instrument requirement analysis concerning the 3.1.7. Acousticperturbations wedge angle of the prismatic optics, and the surface quality and the relative thickness of the dispersive elements located Acousticperturbations(duetostep-by-stepmotorsforinstance) prior to the fibers. This study included elements such as opti- can modify the behavior of optical fibers that are sensitive to calfibers, polarizers,anddichroics,butalso thoseof theauxil- pressurevariations.Itcanbeshownthatatypicaltalkproduces iarymodulesdescribedbelowinthispaper,suchastheNeutral a 60 dB acoustic intensity, which implies a phase instability Densities(NDN),theMatrixCalibrationSystem(MCS),andthe of10−7rad,farbelowthespecification(Perraut,internalreport). AtmosphericDispersionCorrector(ADC). ToavoiddisturbingotherVLTIequipmentintheinterferometric laboratory,each instrumentdoes notgenerateacoustic noise in excessof40dBat2minallthedirections. 3.1.5. Dichroics 4. Fromthespatialfilterstothedetector The dichroics satisfy the photometric requirements: ≥0.95 in reflection in the highest spectral band and ≥0.90 in transmis- Thegeneralparametersofthemodulesfromthespatialfiltersto sioninthelowestspectralband.Anabsorptionispresentatthe the detector are given: beam configuration, pupil diameter and endofthe H-band(transmissionfrom86%at1800nmto80% separation, spectral resolution, and signal sampling. The mod- at1850nm),butitdoesnotaffecttheglobalthroughput. ulesarethendescribedindetails. 18 S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument Fig.7. AMBER pupil configuration in J, H, and K with no anamorphosis. Fig.8.Illustration:simulatedopticaltransferfunction(OTF)inwhich thecoherentandincoherentenergypeaksarenotcompletelyseparated. The pupil separation ischosen such that thefringe peak center isnot 4.1.Generalparametersofthesystemmodules affectedbytheincoherentpeak. Beam configuration: AMBER is a “dispersed fringes” instru- ment operating in the image plane. The three-pupil configura- tion (Fig.7)isa nonredundantline set-up.Themaximalbase- spectrograph(SPG)throughaperiscopeandafocalizingoptical lineislargerthantheminimalonebyafactorthree.Thispupil componentadjustingbothaxesandimagepositionsattheinter- configuration produces three systems of fringes corresponding face between the warm optics and SPG. The anamorphoser is to the following baseline: B , 2B , B = 3B (the indices m a Chretien hypergonarmade of an afocal system of two cylin- m m M m andMmeanminimumandmaximum,respectively). drical mirrorsinserted in a parallelbeam section. The anamor- Pupil diameters and spectral resolution: the pupil size de- phosis factor, 15.6, is the ratio between the focal length of the pends on the spectral resolution and on the number of grooves twomirrors.Theanamorphosisdirectionisperpendiculartothe per mm of the grating. The central wavelength (λ = 2.2 µm baseline.Suchanafocalsystemcontainsaneutralpoint,located 0 in the K-band)involvesa limitation of the numberof lines per nearbyafterthefocalplaneofthesmallest(2nd)cylindricalmir- millimeter for the spectrograph grating (about 500 lines/mm). ror.Byputtingtheconjugateofthespectrographcoldstopatthis To optimize the recordedflux, the spectral channelis a bit un- neutral point, we avoid having the ANS introduce a difference dersampled (λ /D on one detector pixel). To obtain a spec- between the longitudinal and transverse pupil positions, mini- 0 tral resolution of 10000, the pupil diameter in the K-band is mizingtheaberrationsandimprovingthecoldstopbaffling.The D=40mm.Thefringesamplingisthesameforallthespectral difficultylayin themanufacturingofthe 1stopticsoftheANS bands.Thisimpliessmallerpupildiametersintheotherspectral shared by the 3 interferometric beams: a conic 220 × 50 mm bands(30mmforthe H-bandand23mmforthe J-band).The rectanglewitha2-mcurvatureradiusinitslengthdirection.The instrument pupil is set by a cold stop inside the spectrograph. PTVopticalqualityof633nm/5wastestedonaspecificoptical Thispupilplaneiscombinedwiththeneutralpointofthecylin- benchatOCA. drical optics, roughlysuperimposedto the pupilmasks located after the collimating parabola at the exit of the spatial filters. 4.3.Thespectrograph(SPG) Theprecisionofthisconjugationhasanegligibleimpactonthe performanceofthissinglemodeinstrumentwithafieldofview ThecoldspectrographSPGincludesthefollowingfunctions: limitedtoanAirydisk. – Filteringofthermalradiationattheinputimageplane. Pupilseparation:intheopticaltransferfunction(OTF),the – Formationofaparallelbeam. fringes with the lowest frequency produce a coherent energy – Accuratespatialfilteringofthepupils. peak close to the incoherentenergypeak(Fig. 8). To avoidthe center of this fringe peak to be affected by the central single – Separation of interferometric beams from photometric pupil peak, the minimal baseline B is: B > D(1+ λ /λ ). beams. m m M m For a full band observation in the K-band (λ = 2.0 µm and – Spectralanalysisatthreeresolvingpowervalues. m λ = 2.4 µm), B must be greater than 1.2D. For this reason, – Formation of images on the detector plane. The list of the M m SPGisgiveninTable2,withtheproducttreedefinitionsand thedistancesbetweenthethreepupilsare1.3D,2.6D,and3.9D. functions. Signal sampling: anamorphosis factor and camera focal length:consideringdata reductionrequirements,itisnecessary Theopticsandtheopticalbencharecontainedinavacuumtight to sample the fringes produced by the combination of the fur- cryostat that allows the cooling of all functionsto the working thest beamsby aboutfourpixelson the detector. Each spectral temperatureofabout77Kbymeansofliquidnitrogenatatmo- element(λ0/D) is analyzed by one pixel. The magnificationof spheric pressure. The spectrographcryostat does not lodge the the beams between the spatial direction and the spectral direc- detectorthatstaysinasecondcryostat;thetwocryostatsareme- tion must be different. This anamorphosisfactor a is given by: chanicallycoupled,theysharethesamevacuumandworkatthe a = 4BM/D = 15.6. The size p of the detector pixel, equal same temperature, but have two independent cooling systems. to 18.5 µm, is linked to the camera focal length fc by the re- The coupling is achieved by a flexible bellow and an interface lation 4 p = a fc (λ0/BM). The fc parameter is then deduced structure that allows for a certain degree of angular and linear from: fc = p/(λ0/D)≈350mm. adjustmenttoalignthedetectoritselftothespectrographoptics. TheopticaldesignofSPG(Fig.9)followsthegeneralpatternof the grating spectrograph,with the necessary modificationsdic- 4.2.Anamorphosersystem(ANS) tatedbytheopticalandmechanicalaccuracyrequestedbyinter- At the exit of the spatial filters, the beams enter the ferometry.AmoredetaileddescriptionofSPGisinLisi(2003). cylindricalopticsanamorphoser(ANS)beforeenteringthecold S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument 19 Table2.ListofAMBERspectrographmoduleswithacronymdefinition For the purpose of spectral analysis, a rotating device andfunctions. (SPG-DIU) allows forthe choiceamongthree dispersingcom- ponents: two gratings (497 g/mm and 75 g/mm for respective Opticalelements Functions resolutionsof10000and1500),andaprism.Thesupportofthe SPG-INW Inputslit. gratingsandtheprismismotorizedtoallowustoselectthespec- InputWheel Imagecoldstop. tralrangeandresolution.Theangularaccuracyofthissupportis SPG-CSY Spectrographopticscooling. about3 pixels of the detector (≈30(cid:2)(cid:2)), which impliesa spectral CoolingSystem Vacuum,temperature,andnitrogen calibrationprocedure. levelcontrol. Thermalfluxreduction. The final optical function before the detector is the camera SPG-ISD Coldstopforthespatial SPG-CHA, designed around three mirrors. It is composed of ImagingandStopping filtermode(thermalfluxreduction). twoasphericalmirrorswithatotalfocallengthof350mm(see Device Technicaloperations(widediaphragm). Sect. 4.1.4)andanapertureofaboutF/2.A planemirrorsteers Calibration(dark). the beams coming from the camera unit to send it to the DET Beamcollimation. cryostat.AspectralfilterisinsertedintheJ pupilmasktoelim- SPG-PMW Thermalfluxreduction. inatethebackgroundcomingfromtheK-band,whileobserving PupilsMasksWheel Beamsizedefinition. withthesecondspectralorderofJ. SPG-IPS Thermalfluxreduction. InterferometricPhotometric Beamsplitting. Splitter Beamsdeviation. 4.3.2. Opto-mechanicsandperformance PhotometricimagesdeflectiononDET. SPG-DIU Spectraldispersion. Therequirementsfortheopticaldesignreflecttheneedtomount DispersionUnit Spectralwavelengthselection. alltheopticsinsideacryostat,wheretheaccessibilityforalign- Spectralresolutionselection. mentis reducedandthedisplacementsofcomponentsafterthe Spectralmodulation. cooling are very large. The tolerance analysis shows a fringe SPG-CHA Beamcombination. contrast degradation factor of about 95% under the following Camera Beamfocalization. Sampling. constraints: a total positioning error of the optical elements of 0.1 mm, an angular positioning error (tilt) of 2.3 mrad, and a quality of optical surfaces better than 5 fringes in focusing and 1 fringe in irregularity.This performancedependsonly on AMB-SPG-CSY AMB-SPG-CHA theuseofthedetectorpositionalongtheopticalaxisasacom- pensator, with a total displacement of less than 2.3 mm with respect to the nominal position. The surface quality (micro- roughness) of the metallic mirrors has an impact on the effi- ciency. The machining of the aspherical and plane mirrors al- AMB-SPG-DIU AMB-SPG-PMW lowed us to produce the respective roughnesses of less than 10 nm and 5 nm rms, to ensure that the loss of light be less AMB-SPG-IPS than 1.5% on each mirror. One feature of the opto-mechanical AMB-SPG-INW design is keeping the optics aligned at room temperature and atliquidnitrogentemperaturewithoutadjustments.Testsofthe Fig.9. Optical design of the SPG. For the acronym definition see SPGopticseitheratroomoratoperativetemperatureshowedno Table2. significant differences of performance between the two sets of measurements,confirmingthedesignconcept. 4.3.1. SPGopticalconfiguration 4.3.3. Vacuumandcryogenicsystem The OPM-OSI module (Fig. 2), located at the side of the Thewholesystemislodgedinsideavacuum-tightcasemadeout SPG cryostat,injects the beam into the spectrographthrougha of weldedsteelplateswithsuitable reinforcingribs.Theliquid CaF window.Thebeamisspatiallyfilteredbytheslit,mounted 2 nitrogen vessel is a box-like structure (worked out of a single onawheelthatalsocarriesseveralcomponentsusefultothecal- aluminum block completed by a welded cover), whose bottom ibrationandalignmentoperations. plate is the cold optical bench. The external case supports the Acollimatingmirrorproducestheparallelbeam.Thecolli- coldbenchbymeansofanhexapod(composedofsixfinesteel matingmirroris a symmetricparaboloidalmirror(with respect beams),dimensionedtoallowtheSPGsystemtobeplacedona tothefocalpoint)ofthefocalizingmirror;thisconfigurationhas side withoutundergoingpermanentdeformation.Allthe optics thepurposeofminimizingtheopticalaberrations.Ithasafocal areenclosedintheradiationshield,intightthermalcontactwith lengthof700mmandanapertureofF/3. thecoldbench.Themodelofthethermalbehaviorshowsthatall The wheel SPG-PMW carries the pupil masks, located on itspointsareatmosttwodegreesoverthecoldbenchtempera- the plane of the pupilimage, which help to minimize the stray ture; this is confirmedby measurements.The SPG opticalsys- thermalbackground.TheopticalcomponentSPG-IPSisabeam temincludesatotalofthreemovingwheels,theaperturewheel, splitter that steers part of the flux coming from each telescope thepupilmaskwheel,andthegratingwheel.Tosimplifytheen- from the parallelbeam for photometriccalibration, leaving the gineering, these three functions are implemented by cryogenic largestfractionofthefluxfortheinterferences.Thebeamsthat motors (Berger Lahr 5-phase), modified according to the ESO carry the photometric information run along the same optical experience.Positioningoftheassociatedwheelsisperformedby pathastheinterferometricbeams,buttheyaresuitablydirected a worm-wheelgearthat is substantially irreversibleand acts as toformseparateimagesonthedetector. astoptotheforceexertedbythespiralspringusedtoovercome 20 S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument cable for power and RS232 J H fiber optic cable (double) K elec- detector dewar tronics housing detector LCU (SUN UltraSparc) fiber optic cable P1 P2 In P3 (single) Fig.11. Image with the CAU light: dark current, photometric sensor signals beams(P*),andinterferometricbeam(In). Fig.10.PhysicaloverviewoftheAMBERdetectorhardware. 4.4.3. Detectorcharacteristics Detectortype:RockwellHAWAII-1FPA(focalplanearray,one thebacklash.Thetemperatureofthethreemotorsisconstantly quadrantinuse) monitoredbythecontrolsystemusinglocalPt100sensors.The Detectorsize:512×512pixels nitrogen vessel can store up to 19 dm3 of liquid N , while the Pixelsize:18.5µm×18.5µm 2 massofaluminumtobecooledisabout24kg.Thedesigntotal Operatingtemperature:77K thermalloadisoftheorderof25W.Aturbo-molecularpumpes- Quantumefficiency:>50%for1−2.4µmwavelength tablishestheoperativevacuumandinnormaloperation,asmall Other properties of the detector chip were measured and are quantityofactivecharcoalkeepstheinternalpressureatthelevel listedbelow: of2×10−5mbarforseveralmonths.Theliquidnitrogensupply -detectornumber:#159; lastsforabout30h. -fullwellcapacity:63670e-; -1%nonlinearity:26289e-; -conversionfactor:4.70µV/e-; 4.4.Thedetector(DET) -readoutnoise(CDS@500kHz):11.6e-; -numberofbadpixels:1489; 4.4.1. Hardwareoverview -clustersofbadpixels(≥4):≈10. The detectoris locatedin a dewar that is cooled downto 77 K withliquidnitrogen.Thedetectorelectronicshousingisdirectly 4.4.4. Imageonthedetector attached to the dewar to avoid electronic interference resulting fromlongsignalpaths(Fig.10).Itisconnectedtothesensorby Figure 11 shows one image recorded on the detector with the twoshortcables.Inadditiontothis,itcomplieswithchallenging CAUlight.Fromlefttorightarevisualizedthedarkcurrent,two constraints concerning heat dissipation, interference, and elec- photometricbeams, the interferometricbeam,andthe 3rd pho- tromagneticcompatibility,forexample.Thepowersupplyisnot tometricbeam.Thefluxinthe J-bandwasnotoptimized. installedclosetothedetectorelectronicshousing.Adistanceof amaximumof15misallowedbetweentheelectronicshousing andthepowersupply.Theconnectionismadebyasinglepower 5. Auxiliarymodules cable. Thiscable also containsthe galvanicallyisolated RS232 5.1.Remoteartificialsources(RAS)andcalibration seriallineforcontrollingtheelectronics.Thepowersupplyrack andalignmentunit(CAU) isinstalledintheinstrumentcontrolcabinetinthestorageroom. Thedigitalimagedata istransmittedto thedetectorLCU viaa Artificial sources are provided in the module RAS for align- fiberopticscable. mentsinthevisible,fluxandOPDcontrol,contrast,andspectral calibrations. These sources are: one laser diode and one halo- gen lamp allowing alignments and calibration of the matrix of 4.4.2. Functionaloverview the “pixel to visibility” linear relation (P2VM). The halogen Thedetectorelectronicsconsistsofthefollowingmodules: source feeds two differentsingle-modefibers, one dedicatedto theK-band,theothertotheJ-andH-bands,totransportthelight 1. An infrared detector (HAWAII-1 focal plane array from up tothe CAU, whichcan simulatethe VLTIin theintegration Rockwell). and test phase (Fig. 12). The use of the same fiber in J and H 2. A sequencergeneratesclock patternsnecessary for reading is a compromisesolutionallowingustosave space andmoney and sampling the sensor. It can be configured by data sent withoutlosingtoomuch(afewtensofa%)injectedlightinboth throughthegalvanicallyisolatedserialline(RS232).Italso bands.TheexitsofthetwofiberscomingfromtheRASprovide generatesa headercontaininginformationaboutimagefor- almostpoint-likesourcesin J,H,andK. mat,readoutmode,etc. The retained optical configuration of the CAU chosen on 3. Aclockdriverbooststhedigitalsignalsfromthesequencer. the basis of generatingan achromaticpath lengthuses a wave- 4. A video amplifier supplies all necessary bias voltages and frontdivisionconfiguration.ThespectralbeamsexitingtheRAS preparestheanalogsignalfromtheIRsensorforsampling. fibersarecollimatedandrecombinedinaglobalwavefront.The 5. AnanalogtodigitalconverterADCsamplestheanalogsig- latter is magnified and divided in three parts via a set of plane nal. On the ADC board there is also digital logic for aver- mirrors to be injected inside AMBER via a movable 45◦ mir- aging several samples (subpixel sampling). A fiber optical ror. The equivalent K-magnitudeof the CAU was estimated to transmitter on the same board feeds the image data into a be −1.4 for the medium beam of AMBER and 0 for the ex- fiberopticscableconnectedtothedetectorLCU. treme beams (different because of the Gaussian distribution of 6. Apowersupply. theglobalwavefront).Theinstrumentalcontrastgeneratedwith S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument 21 Fig.13.RelativeaxialrotationofoneADCsystemrelativetotheother oneatz=0◦andatz=60◦. Fiber head 1-µm diameter z=61° H J z=50° Fig.12.CalibrationandAlignmentUnit(CAU). z=0° H H J J the CAU light is not 100%. Given that the cores of the fibers have a finite dimension, the CAU does not provide perfectun- Fig.14.CombinedopticalandpositioningerrorsoftheADC.Thespots representtheimpactsofthebeamfor3wavelengthsinsideeachband, resolvedsources.Nevertheless,thiscontrast(from0.75to 0.87 J(blackspots)andH(whitespots),for3valuesofthezenithalanglez, dependingonthespectralresolutionandbaseline)istakeninto andtakingintoaccountthefollowingerrors:prismanglesmanufactur- accountin the P2VM procedureand does not affect the instru- ing, error on the prism gluing, sensitivity of the axial rotation of the mentalcontrastofAMBERilluminatedbytheVLTI. twogluedprismsrespectivetothefirstone,tip/tiltofthisrotationaxis, The CAU light is also used to perform a calibration of tip/tiltofthe3-prismsassembly,sensitivityofthe360◦-rotationofthe the medium spectral resolution. A blade can be inserted at the two ADC prism system, and inclination induced during this rotation. spectrograph entrance generating Perot-Fabry-like interference Theworseexpectedcouplingdegradationfactoris0.85inJandH. fringeswitha30%contrastandaperiodicityofabout0.05µm. In low spectral resolution, we use the spectra as they are de- finedbythethreeJ,H,andKdichroicstransmissioncurvesand ofAMBERrequireadifferentconceptionthantheRisleyprism calibratedwithspectroscopicreferencestarsandlamps.Wesuc- generallyused.TheoriginalsystemofAMBERiscomposedof cessivelyobservedthespectrumofeachindividualspatialfilter twosetsof3prismsrotatingwithrespecttoeachother(Fig.13) byclosingtheshuttersofthetwoothers,whichyieldsasubpixel and inserted in each beam prior to the J and H spatial filters. calibrationwith an accuracyof about0.01µm, enoughfor this EachsystemiscomposedofafirstprismaticbladeinBK7and lowresolutionmode.Thehighestspectralcalibrationmodecan ofadoubletofbladesinSF14andF2gluedtogether.Duringan onlybecalibratedusingspectroscopiccalibratorsand/ortelluric observation with the UTs of objects located from 0◦ up to 60◦ lineslikeanyotherhighresolutioninfraredspectrograph. from zenith, the correctionof the transversaldispersion is per- formedbyanaxialrotationofthetwo systems.Duringthisro- tation,themaximumimageshiftduetocombinedopticalmanu- 5.2.Calibrationsystem facturingandpositioningerrorsislessthan1µmontheentrance To calibratethe P2VM itis necessaryto introducea controlled fiber heads so as not to affect the coupling efficiency by more phase delay (between60◦ and 120◦) between the interferomet- than15%in J and H (Fig.14).Thiscouplinglossistakeninto ricarms.Inthepresentstateoftheinstrument,thepiezoelectrics accountinthethroughputbudget. usedforthechromaticOPDcontrolareaccurateenough(afew nanometers)toperformthisphasedelay.Nevertheless,arequire- 5.3.1. Bypass(BYP) ment of 10−4 rad on the repeatability of the phase value was initiallydefinedtoreachsomedifferentialinterferometricgoals. A specific system (BYP) with a commutable mirror was de- To achieve this performance, a specific set-up (MCS) was de- signedtobypassthespatialfilterssothatpreliminarymechanical signed and could be used in a near future if necessary. It con- adjustmentsand opticalalignmentsin the visible couldbe per- sists of couples of slighty inclined glass blades placed in each formedwithtechnicaltools(CCD,lunette)andinjectedtowards beampath,thesecondonehavingatiltoppositetothefirstone the final detector(DET)via the spectrograph.Itis also usedto (leadingtoaVglassshapeineachbeampath).Thissystemal- ensurethattheCAUfibersfortheJH-bandandtheK-bandare lowsforverygoodtoleranceontheexactabsolutethicknessof superimposed.ItappearsthattheBYPcanbeusedonskyforac- theblades,astheirthicknessvariationswillbecompensatedfor quisitionofcomplexsourcesortechnicalcontrolsduringVLTI througha slightinclinationcontrolduringtheopticsmounting. troubleshootings.Thesamplingis23mas/skywithUTsandthe Thistypeofconfigurationenablesarepeatablephasedelayeven non-vignettedfieldabout1as. ifthesystemundergoessomeinclinationduringitspositioning. 5.3.2. Neutraldensities(NDN) 5.3.Atmosphericdispersioncorrector(ADC) TwosetsofNDNcanbeinsertedintheVLTIbeamstoavoidthe TheroleoftheADCistocorrectthedifferentialtransversaldis- detectorsaturation.Onesetischosenasafunctionofthetarget persion of the atmospherein J and H. The specific constraints brightness.Twofluxattenuationsarepossible:10and102. 22 S.Robbe-Duboisetal.:OpticalconfigurationandanalysisoftheAMBER/VLTIinstrument 6. Opticalstudyandpresentperformance TheperformanceofAMBERisgivenbythesignal-to-noisera- tio(SNR)ofthevisibilityderivedfromAMBERinterferograms. Malbet et al. (2003) showed that the instrument contrast V inst must be 80% (90%) and the optical throughput tA Ceff larger than2%(5%)toreachthemagnitudespecification(goal)defined for a fringe detection at SNR = 5. The parameter t includes A bothopticaltransmissionandthefibercouplingdegradationfac- tor due to misalignments. Ceff is the fiber coupling efficiency taken to be about 81%, considering the telescope obstruction. TheotherconsideredparametersintheSNRcalculationare: – E : flux of a zero-magnitude star at the considered 0 wavelength; – m:expectedmagnitudeoftheobservedobject; – S: telescope surface area (consideringa telescope diameter of8mfortheUTsand1.8mfortheATs); – t :VLTIopticalthroughput(20%in J,26%in H,and30% V inK); – SR: Strehl Ratio. The SR in K for an on-axis reference source is equal to 50% (when the science and reference sourcesare1arcminaway,theStrehlinKisdividedbytwo); – ∆λ:spectralbandwidth; – τ: elementary exposure time (τ = 10 ms for the high ac- curacy mode, 50 ms for the high sensitivity mode, and up to100sforthelongexposuremode); – η:detectorquantumefficiency(0.6); – n:numberofpixelsforonevisibilitymeasurement(about16 for3telescopes). The computationof the magnitudeassumes the use of a single polarization.TheintegrationtimeτdependsonAMBERobserv- ingmodes(Malbetetal.2003). In this section, we present the allocations for the contrast and throughoutof AMBER with the associated errorsbudgets. The results of the optical study and the expected instrumental stability are compared with measurements in laboratory. Then Fig.15. Contributions to the throughput and instrumental contrast theresultsofthetwocommissioningsatVLTIarediscussed. (Bsinz=51.2m). 6.1.AllocationsforthecontrastandthroughputofAMBER numericalaperture.Theerrorbudgetonfibercouplingrequire- The diagram of Fig. 15 summarizes all the identified ments was then comparedto VLTI performanceto validatethe contributions to the throughput and instrumental contrast hypotheses. It was the input for the definition of the degrees (B sinz = 51.2m).Moredetailsontheallocationsaregivenin of freedom necessary on each optical element located at the Table3.Thethroughputresultsarebasedonconservativevalues entrance of the fibers and to achieve their detailed tolerance from manufacturer information on coatings. The next sections analysis. givetheerrorbudgetsonthefibercouplingandthecontrast. 6.1.2. Contrasterrorbudget 6.1.1. Errorbudgetonthefibercoupling Results on contrast-error budget in the K-band (priority of This paragraph gives a list of the errors that can contribute to AMBER) with a 35 spectral resolution (most demandingcase) the degradation of the fiber coupling Ceff. To derive this error areshowninTable5.Thiserrorbudgetconcernsdifferentialer- budget,analyticalsimulationswere performed(Escarrat2000). rors between interferometric beams. A degradation factor ρ is TheseresultswereconfirmedwiththeraytracingtoolZemaxin suchthatthemeasuredinstrumentalcontrastV isequaltothe inst whichtheopticalinjectionoflightinsideafibercanbeestimated idealcontrastvalueV timesthisfactor(V = ρ V).Itwasas- i inst i (Wagner&Tomlinson2004). sumedinafirstapproximationthattheerrorswereindependent. Table4showstheerrorbudgetonthefibercouplinginterms Someoftherequirementsconcerningstaticerrorswereanalyti- of fiber axis inclination respective to the incident optical axis callyderived.Othersrequiringdynamicalanalysisneededsome (tilt),lateralshiftofthefiberhead,anddefocuscomparedwith simulation. The latter considered a Gaussian wavefront going thelocalizationoftheinjectionopticalfocalpoint.Couplingef- througha simple 2-telescopeinterferometerusingthe AMBER ficiencieswithoutmisalignmentswerealsoestimatedaftermod- spectral bandwidths and resolutions. Four pixels were consid- ification of the ratio F/D, where F is the injection optical fo- eredtosamplethefringes.Theconsideredpupildimensionsaf- cal length and D the pupil diameter. This ratio depends on the ter anamorphosisin the horizontaldirectionwere 40×2.6mm

Description:
Astrophysics This paper describes the design goals and engineering efforts that led to the realization of Italian institutes is in charge of the specification, design, ter chiller, isolation of water cooling pipes, use of screw-type.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.