ebook img

Optical and Electronic Process of Nano-Matters PDF

341 Pages·2001·11.647 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical and Electronic Process of Nano-Matters

OPTICAL AND ELECTRONIC PROCESS OF NANO-MATTERS Advances in Optoelectronics (ADOP) Editor-in-chief: Takeshi Kamiya (University ofTokyo) Associate Editor: Motoichi Ohtsu (Tokyo Institute of Technology) Editorial Board Members: John E. Bowers (University of California at Santa Barbara) Daniel Courjon (Institut des Microtechniques de Franche-Comte) Ernst Goebel (Physikalisch Technische Bundesanstalt) Tatsuo Izawa (NTT Electronics) Satoshi Kawata (Osaka University) Kazuroh Kikuchi (Univerisity of Tokyo) David A. M. Miller (Stanford University) David N. Payne (University of Southampton) Klaus Petermann (Technical University of Berlin) Yasuharu Suematsu (Kochi University of Technology) Yoshihisa Yamamoto (Stanford University) » o OPTICAL AND o ELECTRONIC -0 PROCESS OF NANO-MATTERS Edited by Motoichi OHTSU Tokyo Institute of Technology, Yokohama * Springer-Science+Business Media, B.V. C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5707-5 ISBN 978-94-017-2482-1 (eBook) DOI 10.1007/978-94-017-2482-1 All Rights Reserved © 2001 by Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2001 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, incIuding photo-copying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Preface Sizes of electronic and photonic devices are decreasing drastically in order to increase the degree of integration for large-capacity and ultrahigh speed signal transmission and information processing. This miniaturization must be rapidly progressed from now onward. For this progress, the sizes of materials for composing these devices will be also decreased to several nanometers. If such a nanometer-sized material is combined with the photons and/or some other fields, it can exhibit specific characters, which are considerably different from those ofbulky macroscopic systems. This combined system has been called as a mesoscopic system. The first purpose of this book is to study the physics of the mesoscopic system. For this study, it is essential to diagnose the characteristics of miniaturized devices and materials with the spatial resolution as high as several nanometers or even higher. Therefore, novel methods, e.g., scanning probe microscopy, should be developed for such the high-resolution diagnostics. The second purpose of this book is to explore the possibility of developing new methods for these diagnostics by utilizing local interaction between materials and electron, photon, atomic force, and so on. Conformation and structure of the materials of the mesoscopic system can be modified by enhancing the local interaction between the materials and electromagnetic field. This modification can suggest the possibility of novel nano-fabrication methods. The third purpose of this book is to explore the methods for such nano-fabrication. Several articles on mesocopic systems have reviewed their physics, diagnostics, and fabrication separately from the viewpoint of electronic interaction. Some of them are the reviews on the application of scanning tunneling microscopy. In contrast with them, the unique feature of this book is to introduce the concept of nano-optics, i.e., near field optics into discussions on mesoscopic systems. Intensive discussions on the three purposes presented above, including the methods of scanning tunneling microscopy, near field optics, and atomic vi Preface force microscopy, have been made by the 17 members of a working group in the Institute ofElectrical Engineers of Japan from April 1996 to March 1998, to which I have served as chairman. This book summarizes the main topics of the discussion, where most of the co-authors have been the members of this working group. Chapters 1-5 are devoted to physics. Chapters 6, 7, and 9-11 are for diagnostics, and Chapter 8 is for fabrication. Among them, reviews on electronic systems are dealt with in Chapters 2-6, and 11. Those topics on near field optical systems and on atomic force systems are mentioned in Chapters 6-8 and in Chapters 9-11, respectively. All the chapters are carefully organized so that the readers can obtain a deep understanding on the contents. I hope that this book will enable undergraduate and graduate students, junior scientists, and engineers to systematically study the physics, diagnostics, and fabrication of nano-sized materials and devices. M.Ohtsu March,2000 Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xl Chapter 1 ELECTRONIC AND ELECTROMAGNETIC PROPERTIES IN NANOMETER SCALES 1.1 Introduction .................................. . 1.2 Basic Features of Electronic and Optoelectronic Systems 3 1.3 Mesoscopic Electromagnetic Processes and Coupled-Mode Descriptions . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Quantum Measurements and Interpretations. . . . . . . . . . . 18 1.5 Measurements and Diagnosis at a Nanometer Scale . . . . . 24 1.6 Electromagnetic Signal Transport as Circuit Design at a Nanometer Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.7 Electrical Signals in Coherent/Incoherent Electronic Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.8 Near-Field Optical Microscopes and the Micro-Macro Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.9 Electron Interaction with Electromagnetic Fields in Nanometer Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Chapter 2 ELECTRON TRANSPORT IN SEMICONDUCTOR QUANTUM DOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1 Introduction................................... 57 2.2 Quantum Dot Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.3 Effects of a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4 Manipulation of the Lateral Potential Geometry of a Vertical Dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.5 Quantum Dot Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.6 Double Dot Molecules-Planar Configuration . . . . . . . . . . 79 2.7 Summary...................................... 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 viii Contents Chapter 3 ELECTRON ENERGY MODULATION WITH OPTICAL EV ANESCENT W A VES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2 Quantum Modulation of Electrons . . . . . . . . . . . . . . . . . . . 96 3.3 Micro-Gap Interaction Circuits . . . . . . . . . . . . . . . . . . . . . 97 3.4 Metal Film Gap and Dielectric Film Circuits . . . . . . . . . . . 99 3.5 Metal Micro-Slit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.6 Preliminary Experiment. . . . . . . . . . . . . . . . . . . . . . . . . .. 110 3.7 Fabrication of the Micro-Slit . . . . . . . . . . . . . . . . . . . . . . . 119 3.8 Summary...................................... 120 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Chapter 4 INTERACTIONS OF ELECTRONS AND ELECTROMAGNETIC FIELDS IN A SINGLE MOLECULE. . ... . .... ....... ..... ... 123 4.1 Single Electron Tunneling and Photon-Assisted Tunneling 123 4.2 STM-Induced Photon Emission from Single Molecules on Cu(100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Chapter 5 THEORY OF ELECTRONIC AND ATOMIC PROCESSES IN SCANNING PROBE MICROSCOPY ........................ 147 5.1 Introduction........................... . . . . . . . .. 147 5.2 Tunneling Current in STM . . . . . . . . . . . . . . . . . . . . . . . . 149 -J3 -J3 5.3 The STM Images of Si(111) x -Ag and -Sb Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 151 5.4 The Effect of a Microscopic Structure at the Tip . . . . . . . . 154 5.5 STM Images of Oxygen Chemisorbed Si(OOI) Surfaces . .. 156 5.6 Formation of Atomic Point Contact and Electron Transmission through Atom Bridges. . . . . . . . . . 158 5.7 Quantum Transport through Atom Bridges. . . . . . . . . . . .. 160 5.8 Frictional-Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . 164 5.9 Tapping-Mode Atomic Force Microscopy . . . . . . . . . . . . . 168 5.10 Theory of Noncontact-Mode Atomic-Force Microscopy 172 5.11 Summary...................................... 177 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Contents ix Chapter 6 TUNNELING-ELECTRON LUMINESCENCE MICROSCOPY FOR MULTIFUNCTIONAL AND REAL-SPACE CHARACTERIZATION OF SEMICONDUCTOR NANOSTRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 181 6.2 Limitations of Conventional Luminescence Microscopy 182 6.3 Tunneling Electron Luminescence (TL) Microscopy . . . . . 184 6.4 TL Microscopy Using Tip Collection . . . . . . . . . . . . . . . . 186 6.5 Application: Characterization of Semiconductor Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.6 Conclusions.................................... 198 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Chapter 7 NEAR-FIELD OPTICAL SPECTROSCOPY OF SINGLE QUANTUM DOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 201 7.1 Introduction......... . . . . . . . . . . . . . . . . . . . . . . . . . .. 201 7.2 Fabrication of Near-Field Fiber Probe. . . . . . . . . . . . . . . . 204 7.3 Fundamental Performance of Near-Field Probe. . . . . . . . . 205 7.4 Low-Temperature PL Spectroscopy of Single QDs . . . . . . 207 7.5 Room-Temperature PL Spectroscopy of Single QDs . . . . . 210 7.6 Time-Resolved PL Spectroscopy of Single QDs . . . . . . . . 211 7.7 Modulated Absorption Spectroscopy of Single QDs . . . . . 214 7.8 Summary...................................... 216 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Chapter 8 CHEMICAL V APOR DEPOSITION OF NANOMETRIC MATERIALS BY OPTICAL NEAR-FIELDS: TOWARD NANO-PHOTONIC INTEGRATION................ 219 8.1 Introduction.................................... 219 8.2 Principles...................................... 220 8.3 Depositing Zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 8.4 Depositing Zinc Oxide. . . . . . . . . . . . . . . . . . . . . . . . . . .. 226 8.5 Toward Nano-Photonic Integration. . . . . . . . . . . . . . . . . . 230 8.6 Summary...................................... 232 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 x Contents Chapter 9 NONCONT ACT ATOMIC FORCE MICROSCOPY . . . . . . . . . . . . . 235 9.1 Introduction-Historical Background. . . . . . . . . . . . . . . . 235 9.2 Guidelines for Spatial Resolution. . . . . . . . . . . . . . . . . . . 236 9.3 Problems in AFM Measurement under the Contact mode 241 9.4 Noncontact Atomic Force Microscopy (Experimental Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 9.5 Experimental Results on Compound Semiconductors . . . .. 245 9.6 Experimental Results on Si Semiconductors . . . . . . . . . . . 252 9.7 Noncontact AFM Imaging on an Ag(lll) Surface . . . . . .. 264 9.8 Simultaneous Imaging of Topography and Electrostatic Force on n+-GaAs(l1O) . . . . . . . . . . . . . . . . . 267 9.9 Summary...................................... 274 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Chapter 10 CORRELATION BETWEEN INTERFACE STATES AND STRUCTURES DEDUCED FROM ATOMIC-SCALE SURFACE ROUGHNESS IN ULTRATHIN Si0 /Si SySTEM..... 277 2 10.1 Introduction.................................... 277 10.2 Experimental Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 10.3 SiO/Si Interface Structures . . . . . . . . . . . . . . . . . . . . . . .. 278 10.4 Oxidation-induced Atomic-scale Surface Roughness . . . .. 285 10.5 Interface Electronic States and Their Correlation with Interface Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 10.6 Valence Band Discontinuities at and near the SiO/Si Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 10.7 Summary...................................... 295 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Chapter 11 CHARACTERIZATION OF MOLECULAR FILMS BY A SCANNING PROBE MICROSCOPE . . . . . . . . . . . . . . . . . . . . . .. 299 11.1 Local Area Visualization of Organic Ultra-Thin Films by the Scanning Probe Microscope . . . . . . . . . . . . . . . . . . 299 11.2 Application to Anchoring Phase Studies . . . . . . . . . . . . . . 305 11.3 Local Area Characterization of Organic Ultra-Thin Films by a Scanning Probe Microscope . . . . . . . . . . . . . . . . . . .. 312 11.4 Application to Molecular Devices . . . . . . . . . . . . . . . . . . . 320 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.