RESEARCHARTICLE Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel MiguelA.Lanaspa1☯*,L.ElaineEpperson2☯,NanxingLi1☯,ChristinaCicerchi1,Gabriela E.Garcia1,CarlosA.Roncal-Jimenez1,JessicaTrostel1,SwatiJain1,ColinT.Mant3, ChristopherJ.Rivard1,TakujiIshimoto1,MichikoShimada1,LauraGabrielaSanchez- Lozada1,4,TakahikoNakagawa1,AlkeshJani1,PeterStenvinkel5,SandraL.Martin2, RichardJ.Johnson1,6 1 DivisionofRenalDiseasesandHypertension,UniversityofColoradoDenver,Aurora,CO,80045,United StatesofAmerica,2 DepartmentofCellandDevelopmentalBiology,Aurora,CO,80045,UnitedStatesof a11111 America,3 DepartmentofBiochemistryandMolecularGenetics,Aurora,CO,80045,UnitedStatesof America,4 LaboratoryofRenalPhysiopathologyandNephrologyDept,INCIgnacioChavez,MexicoCity, Mexico,5 DivisionofRenalMedicine,DepartmentofClinicalInterventionandTechnology,Karolinska Institutet,Stockholm,Sweden,6 DivisionofNephrology,EasternColoradoHealthSystem,Departmentof VeteranAffairs,Denver,CO,UnitedStatesofAmerica ☯Theseauthorscontributedequallytothiswork. * [email protected] OPENACCESS Citation:LanaspaMA,EppersonLE,LiN,Cicerchi C,GarciaGE,Roncal-JimenezCA,etal.(2015) Abstract OpposingActivityChangesinAMPDeaminaseand AMP-ActivatedProteinKinaseintheHibernating Hibernatinganimalsdevelopfattyliverwhenactiveinsummertimeandundergoaswitchto GroundSquirrel.PLoSONE10(4):e0123509. afatoxidationstateinthewinter.Wehypothesizedthatthisswitchmightbedeterminedby doi:10.1371/journal.pone.0123509 AMPandthedominanceofopposingeffects:metabolismthroughAMPdeaminase AcademicEditor:MiguelLópez,Universityof (AMPD2)(summer)andactivationofAMP-activatedproteinkinase(AMPK)(winter).Liver SantiagodeCompostelaSchoolofMedicine- CIMUS,SPAIN sampleswereobtainedfrom13-linedgroundsquirrelsatdifferenttimesduringtheyear,in- cludingsummerandmultiplesstagesofwinterhibernation,andfatsynthesisandβ-fatty Received:May19,2014 acidoxidationwereevaluated.Changesinfatmetabolismwerecorrelatedwithchangesin Accepted:March4,2015 AMPD2activityandintrahepaticuricacid(downstreamproductofAMPD2),aswellas Published:April9,2015 changesinAMPKandintrahepaticβ-hydroxybutyrate(amarkeroffatoxidation).Hepatic Copyright:©2015Lanaspaetal.Thisisanopen fataccumulationoccurredduringthesummerwithrelativelyincreasedenzymesassociated accessarticledistributedunderthetermsofthe withfatsynthesis(FAS,ACLandACC)anddecreasedenoylCoAhydratase(ECH1)and CreativeCommonsAttributionLicense,whichpermits carnitinepalmitoyltransferase1A(CPT1A),ratelimitingenzymesoffatoxidation.Insum- unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare mer,AMPD2activityandintrahepaticuricacidlevelswerehighandhepaticAMPKactivity credited. waslow.Incontrast,theactivephosphorylatedformofAMPKandβ-hydroxybutyrateboth DataAvailabilityStatement:Allrelevantdataare increasedduringwinterhibernation.Therefore,changesinAMPD2andAMPKactivitywere withinthepaper. paralleledwithchangesinfatsynthesisandfatoxidationratesduringthesummer-winter Funding:ThisworkissupportedbyNIHgrants cycle.ThesedatailluminatetheopposingforcesofmetabolismofAMPbyAMPD2andits HL68607,RC4DK90859andstartupfundsfromthe availabilitytoactivateAMPKasaswitchthatgovernsfatmetabolismintheliverofhibernat- UniversityofColoradotoRJJandgrantHL089049to inggroundsquirrel. SLMforsupportoftheanimalsamples.Thefunders hadnoroleinstudydesign,datacollectionand analysis,decisiontopublish,orpreparationofthe manuscript. PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 1/19 AMPDeaminase,AMPKinaseandHibernation CompetingInterests:DrsMAL,CJR,GEGandRJJ Introduction arelistedasinventorsonapatentfortheuseof Bodyweightistightlyregulatedinmostspecies.Forexample,Keeseyetalhaveshownthat AMPD2inhibitorstotreatobesityandinsulin resistance(US8,697,628).MAL,CJR,LGSL,CARJ ratsreturntotheirbaselineweightaftereitherforcefeedingorforcefasting[1].Migrating andRJJarealsomembersofColoradoResearch songbirdsthatfastduringthesummerregaintheirweightduringtherecoveryphase[2].In PartnersLLCthatisinterestedindevelopingnovel bothsituationstheanimalsreturntotheirbaselineweightfortheirageandthetimeofthe treatmentsforobesity.Therearenofurtherpatents, year.Manyspeciesalsogainweightinpreparationforperiodsoffoodshortage.Forexample, productsindevelopmentormarketedproductsto theEmperorpenguin(Aptenodytesforsteri)doublesitsbodyweightinfattosurviveforupto declare.Thisdoesnotaltertheauthors'adherenceto allthePLOSONEpoliciesonsharingdataand 4monthsontheAntarcticiceduringbrooding[3].Hibernatingmammalsalsoprovideexcel- materials,asdetailedonlineintheguideforauthors. lentexamplesofanimalsthatgainlargeamountsoffatandthenloseitwhilefastingthrough- outwinter[4]. Groundsquirrelsandothersciuridrodenthibernatorsactivelyaccumulatefatinthefall, andthenliveofftheirfatstoresthroughoutthemanymonthsofwinterhibernation[5,6].In thefall,weightgainmaybeenhancedbyreducedmetabolicratesandfatstoresincrease throughoutthebodyincludingabdominaland,toalesserextent,hepaticfat[7].Hibernating mammalssuchastheyellow-belliedmarmot(Marmotaflaviventris)and13-linedground squirrel(Ictidomystridecemlineatus)alsobecomeinsulinresistant[7,8].Throughatriggering mechanismthatremainsunclear,theanimalstheninitiatefastingandareductioninmetabo- lismfollowedbyadropinbodytemperatureandentryintotorpor[9,10].Duringtorporthe animalsgenerateenergyprimarilybyfatoxidation[6].Hibernating13-linedsquirrelsremain indeeptorporfor1to2weeks,withmetabolicratesof1to5percentofthesummeractive level,accompaniedbyseverereductionsinheartrate(to5–10beats/minute),respiration (5times/minute)andbodytemperature(toaslowas-2.9°C)[11]Animalsthenrewarmin about2hoursandremainat~37°Cforapproximately10hours(interboutarousal)beforecool- ingagainintoanotherboutoftorpor.Thiscyclerepeatsthroughoutthewinteruntiltheanimal finallyemergesfromhibernationinthespring[5]. Theoverallresponsetotemperaturechangesinacircannualhibernatorinvolvelocaladap- tationsfrommultiplecentralandperipheralorgansincludingtheskeletalmuscle[12],adipose tissue-brownandwhite-[13,14,15],heart[16],kidney[17]andliver[18,19,20].Inthisregard,in bothdailytorporandhibernation,thereisageneraldecreaseinmetabolicrateallowingani- malstocopewithcoldenvironmentsand/orlimitedfood.Amongtheseorgans,theliverplays aspecificroleinbodyadaptationtotorpor.Forexample,previousstudiesinhibernatingmam- malsindicateanimportantreductioninlivermitochondrialrespiration[19,20],probablyasa waystoreducethermogenesisandinduceenergysavings. Oneofthemostimportantenzymesinvolvedincontrollingfatoxidationisadenosinemo- nophosphate-activatedproteinkinase(AMPK).InresponsetoanincreasedratioofAMPto totalATP,AMPKisactivatedbyphosphorylation[21].Therefore,instatesofenergydeficiency theratiobetweenATPandAMPorADPlevelsisdecreased,thereforefacilitatingtheactivation ofAMPK.ActivatedAMPK,inturn,stimulatescatabolicpathways(fatoxidation,glycolysis andglycogenolysis)whilesimultaneouslyinhibitinganabolicpathways(fatsynthesis,gluco- neogenesisandglycogenesis)[21].Duringhibernation,tissuesrequireATPastheenergysource tosurvivestarvation.Asaconsequence,AMPmayaccumulatethusactingasanAMPKactiva- tortostimulateβ-oxidationoffattyacids.Ofinterest,AMPcanalsoactasametabolicsub- strateforAMPD2(AMPD2)whichconvertsAMPtoinosinemonophosphate(IMP).IMPis eventuallymetabolizedbydifferentenzymesintodownstreamproductssuchasuricacid.Re- centstudiessuggestthatthespecificactivationofAMPD2decreasestheavailabilityofAMP forAMPKactivation;henceAMPD2activationmaylimittheabilityofAMPKtobecomeacti- vated,counteringitseffects[22,23,24,25]. PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 2/19 AMPDeaminase,AMPKinaseandHibernation WethereforetestedthehypothesisthathepaticAMPD2andAMPKhaveopposingpatterns ofactivityduringperiodsoffataccumulation(summer)andfatoxidation(winterhibernation) in13-linedgroundsquirrelstraversingtheiryearlycycleofweightgainandloss. Methods Ethicsstatement AllAnimalexperimentswereperformedaccordingtoprotocolsapprovedbytheUniversityof ColoradoAnimalCareandUseCommittee. Animals GroundsquirrelswereobtainedfromtheUniversityofWisconsin13-linedgroundsquirrel captivebreedingprogramatOshkosh.GroundsquirrelswerehousedattheUniversityofColo- radoandmaintainedunder14hlight-10hdarkconditionswithcatchowadlibitumuntillate SeptemberorearlyOctoberwhentheyweretransferredtoahibernaculuminwhichtempera- turesweremaintainedat4°Cindarkness;foodandwaterwereremovedaftertheanimalsen- teredtorporuntiltheybegantoemergefromhibernationinspring.Toidentifythevarious stagesofhibernationbasedonbodytemperature(Tb),eachgroundsquirrelwassurgicallyim- plantedintraabdominallywitharadiotelemeterandadatalogger(VM-FHdisks,Minimitter, iButton,EmbeddedDataSystems)[26]. TissueCollection Groundsquirrels(n=3to6foreachofthe7timepoints)wereanesthetizedwithisoflurane, euthanizedbycardiacexsanguination,andthelivertissuesnapfrozenwithliquidnitrogen. LiverswereexcisedenblocandsampleswereusedforimmunohistochemistryandoilredO staining(fromsamplesembeddedinOCTandfrozen)orsnapfrozenforproteinandfat determination. Thetimepointswereasfollows:Summeractive(SA),obtainedinJulyandearlyAugust;Fall transition(FT),obtainedinSeptemberandOctober;InterboutArousal(IBA),approximately 3hafterreachingTbof35–37°Cfollowingaperiodoftorpor;Entrance(Ent),Tbdecreasingto between27and23°Casanimalsenteranewboutoftorpor;EarlyTorpor(ET),Tbof4°Cfor lessthan10%ofprevioustorporboutlength;LateTorpor(LT),Tb4°Cfor80–95%ofthetime oftheprevioustorporbout;Arousing(Ar),Tbbetween7–12°Cduringspontaneousarousal fromtorpor;SpringActive(Sp),afteremergencefromhibernation,thegroundsquirrelwasho- meothermicfor11–20daysandhadresumedeating,butthehibernaculumwasstilldarkand cold(4°C). Proteinextractionandwesternblotting ProteinlysateswerepreparedfromliversemployingMAPKinaselysisbufferaspreviouslyde- scribed[27].Sixanimalspercondition(SA,FT,IBA,Ent,ET,LT,ArandSp)wereanalyzedby westernblotintwosetsofthreeanimals.Allproteinsanalyzedweredetectedusingtwosepa- rateblots(10%acrylamide)accordingtotheirdifferentmolecularweights.Blot1(dilutions employedinTTBS)wasemployedfordetectionofFAS(250Kda),AMPD2(90kDa), P-AMPK(65kDa)andactin(42kDa)whileinblot2ACC(250kDa),ACL(125kDa),AMPK (65kDa)andECH1(33kDa)weredetected.Blot2wassubsequentlystrippedandreprobedfor actintoassureequalproteinloadingintheblotandtonormalizeproteinabundance.Blotsde- pictedcorrespondwithrepresentativewesternblotsobtainedforeachprotein.Antibodyto AMPD2wasobtainedfromAbnova(1:1000)whileantibodytoECH1wasobtainedfrom PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 3/19 AMPDeaminase,AMPKinaseandHibernation proteintech(1:500).SampleproteincontentwasdeterminedbytheBCAproteinassay (Pierce).Approximately50mgoftissuewashomogenizedin350μlofMAPKlysisbuffercon- tainingproteasesandphosphatasesinhibitors(Roche),sampleswerekeptonicefor20min- utes,centrifugedatfullspeedat4°Candsupernatantcollected.40μgoftotalproteinwere loadedperlaneforSDS-PAGE(10%w/v)andthentransferredtoPVDFmembranes.Mem- braneswereincubatedwithprimaryantibodiesandvisualizedusingahorseradishperoxidase secondaryantibodyandtheHRPImmunstardetectionkit(Bio-Rad,Hercules,CA).Chemilu- minescencewasrecordedwithanImageStation440CFandresultsanalyzedwiththe1D ImageSoftware(KodakDigitalScience,Rochester,NY).Rabbitpolyclonalantibodyto AMPD2(1:1000dilutioninTTBS,H00000271)waspurchasedfromNovus(Littleton,CO), antibodiestoβ-actin(3700),totalACC(3676),totalACL(4332),totalAMPK(2532)andphos- phorylatedAMPK(Thr172,2535),toLKB1,P-LKB1,CPT1A,AMPKalpha1,AMPKalpha2, wereemployedata1:1000dilutioninTTBS.andobtainedfromCellSignaling(Danvers,MA) whiletheantibodytoECH1(11305-1-AP)waspurchasedfromProteintech(Chicago,IL).Sec- ondaryantibodiesconjugatedwithhorseradishperoxidasewerefromCellSignaling. AMPD2activityassay AMPD2activitywasdeterminedbyestimatingtheproductionofammoniabyamodification ofthemethoddescribedbyChaneyandMarbach[28]fromcellscollectedinabuffercontain- ing150mMKCl,20mMTris-HCl,pH7.51mMEDTA,and1mMdithiothreitol.Briefly,the reactionmixtureconsistedof25mMsodiumcitrate,pH6.0,50mMpotassiumchloride,and theindicatedconcentrationsofAMP.Theenzymereactionwasinitiatedbytheadditionofthe enzymesolutionandincubatedat37°Cfor15minforallsamplescollected.Inaddition,we measuredAMPD2activityfor15minattheapproximatephysiologicaltemperatureforeach animalwithdepressedTb,i.e.,25°Cforarousalandenteringtorporand4°Cforearlyandlate torporsamples,respectively.Thereactionswerestoppedwiththeadditionofthephenol/hypo- chloritereagents:ReagentA(100mMphenoland0.050g/Lsodiumnitroprussideinwater) wasadded,followedbyreagentB(125mMsodiumhydroxide,200mMdibasicsodiumphos- phate,and0.1%sodiumhypochloriteinH O).Afterincubationfor30minat25°C,theabsor- 2 banceofthesampleswasmeasuredat625nmwithaspectrophotometer.Todeterminethe absolutespecificactivityofammoniaproduction(micromolesammonia/min),acalibration curvewasdeterminedintherangeof5μMto1mMofammonia. LiverOilRedOstaining LivertissuewasembeddedinOptimalCuttingTemperaturegel(OCT;SakuraFinetek,Tor- rance,CA)andfrozeninliquidnitrogen.Air-driedcryostattissuesections(8μm)weredipped informalin,washedwithrunningtapwater,rinsedwith60%isopropanol,stainedforlipids withOilRedOandcounterstainedwithhematoxylin.OilredOwasthenextractedfromthe slideswithisopropanolcontaining4%NonidetP-40,transferredtoplasticcuvettes,andoptical density(OD)wasthenmeasuredatawavelengthof520nm. Determinationofintrahepatictriglycerides,β-hydroxybutyrate,inosine, uricacidandphosphate Fortriglyceride(TG)determinationinliver,fatwassolubilizedbyhomogenizationin1mlso- lutioncontaining5%nonidetP40(NP-40)inwater,slowlysampleswereexposedto80–100°C inawaterbathfor5minutesuntiltheNP-40becamecloudy,thencooleddowntoroomtem- perature.Sampleswerethencentrifugedfor2mintoremoveanyinsolublematerial.Triglycer- idedeterminationwiththeVetAceautoanalyzerconsistedintheirinitialbreakdownintofatty PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 4/19 AMPDeaminase,AMPKinaseandHibernation acidsandglycerol.Glyceroloxidationgeneratesaproductthatreactswiththeprobetoproduce colorat570nm.Similarly,uricaciddeterminationisbasedintheconversionofuricacidtoal- lantoin,hydrogenperoxide(H O )andcarbondioxidebyuricase.TheH O then,isdeter- 2 2 2 2 minedbyitsreactionwiththeprobetogeneratecoloratapproximately571nm.Values obtainedwerenormalizedpermgofsolubleproteininthelysates.Hepaticβ-hydroxybutyrate, inosineandphosphatelevelsinMAPKlysatesweredeterminedbyenzymatickits(K632,K712 andK410,Biovision,Milpitas,CA). DeterminationofIMPbyHPLC Liversampleswerepreparedasdescribed[29,30].Inbrief,squirrelliverswerehomogenized with6volumesofice-cold0.6Mperchloricacid.Extractswerethencentrifugedat14,000gfor 5minandthesupernatantwasneutralizedbyaddingtwovolumesof0.5Mtri-N-octylamine in1,1,2-trichlorotriflouroethaneandmixedfor1minonavortexmixer.Aftercentrifugation, analiquotwasinjectedintotheHPLCsystem.ThechromatographicseparationofIMPwas performedusingaZORBAXEclipseXDB-C18columnwithameanparticularsizeof5mm (AgilentTechnologies,SantaClara,CA).Theeffluentwasmonitoredat254nmandpeaks werequantifiedusingpeakheightsandstandardsolutionsofIMP. Plasmametabolites Acetoacetateand3-hydroyxbutryate(ketonesgeneratedduringfatoxidation),uricacidandal- lantoinwereidentifiedandquantifiedingroundsquirrelplasmasamplesbyMetabolonby massspectrometryasdescribedpreviously[26]. Dataanalysis Alldataarepresentedasthemean±standarddeviation(SD).Datagraphicsandstatistical analysiswereperformedusingInstat(version3.0)andPrism5(bothGraphPadSoftware,San Diego,CA).DatawereanalyzedusingANOVAfollowedbytheTukey-Kramermultiplecom- parisontestwithα=0.05.Inallcasesexperimentswereperformed3timeswithindependent replicates.Totaldatapoints(n,numberofgroundsquirrelspertimepoint)areidentifiedin Figurelegends. Results Increasedhepaticlipogenesisanddevelopmentofhepaticsteatosisin summeractive13-linedgroundsquirrels Wefirstevaluatedthegroundsquirrelliversforfatbythepresenceofoilred-Ostainingand triglyceridecontent(Fig1A–1C).Thesestudiesshowedthatfattyliver(hepaticsteatosis)was presentintheanimalsduringthesummerandfall,anddecreasedmarkedlyduringthehiber- nationperiod,withthelowestlevelsinthespring.Duringhibernationwecouldnotobserve significantdifferencesbetweendifferentstagesalthoughwefoundatendencytobelowerin IBAandEnteringtorporcomparedwiththerestofgroups.Wealsodeterminedthehepatic abundanceofvariousenzymesinvolvedinfatsynthesisbywesternblotting,includingfatty acidsynthase(FAS),acetylCoAcarboxylase(ACC)andATPcitratelyase(ACL).Allofthese enzymeswerehighestduringsummer,begantodecreaseduringthefalltransitionperiod,were lowthroughoutwinterhibernation,andthenincreasedagaininthespring(Fig2). PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 5/19 AMPDeaminase,AMPKinaseandHibernation Fig1.13-linedgroundsquirrelsdevelophepaticsteatosiswhenactiveinsummer.(A)Representative imagesofneutrallipidstaining(oilred-O)inliversfromanimalsinspring,summer,earlytorporandfall transition.B)Oilred-Oquantitationfromliversfromspring,summer,falltransition,andearlytorporanimals demonstratesignificantincreaseinhepaticlipidaccumulationinsummertimethatremainshighuntiltorpor. C)HepaticTGquantitationfromliversofgroundsquirrelsinsummeractive(SA),falltransition(FT),interbout arousal(IBA),enteringtorpor(Ent),earlytorpor(ET),latetorpor(LT),arousingfromtorpor(Ar),andSpring (Sp)(n(cid:1)6animalsperphysiologicalstage,smalllettersindicatesignificantlydifferentgroups). doi:10.1371/journal.pone.0123509.g001 PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 6/19 AMPDeaminase,AMPKinaseandHibernation Fig2.Hepaticlipogenicenzymesaresignificantlydown-regulatedasgroundsquirrelsenterinto hibernation.A)Representativewesternblotoflipogenicgenesfattyacidsynthase(FAS),acetyl-CoA carboxylase(ACC)andATP-citratelyase(ACL)inliversfromsummeractive(SA),falltransition(FT), interboutarousal(IBA),enteringtorpor(Ent),earlytorpor(ET),latetorpor(LT),arousingfromtorpor(Ar),and Spring(Sp)animals.B-D)Westernblotdensitometryfromallgroundsquirrelsanalyzed,n(cid:1)6animalsper physiologicalstage,smalllettersindicatesignificantlydifferentgroups. doi:10.1371/journal.pone.0123509.g002 PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 7/19 AMPDeaminase,AMPKinaseandHibernation Fig3.Fatoxidationisactivatedinliverduringhibernation.A)RepresentativewesternblotofactivatedandtotalAMP-activatedproteinkinase(P-AMPK, AMPK),inactivatedandtotalACC(P-ACC,ACC),phosphorylatedandtotalLKB1(P-LKB1andLKB1),alpha1andalpha2subunitsofAMPK,carnitine palmitoyltransferase1A(CPT1A),andenoyl-CoAhydratase1(ECH1)inliversfromanimalsineightcircannualstages(seeFig2legend).B-F)Westernblot densitometryandP-AMPK/AMPK,P-ACC/ACCratiosfromallgroundsquirrelsanalyzed.G)Intrahepaticβ-hydroxybutyrate(amarkeroffatoxidation)levels fromallgroundsquirrelsanalyzed,n(cid:1)6animalsperphysiologicalstage,smalllettersindicatesignificantlydifferentgroups). doi:10.1371/journal.pone.0123509.g003 FatoxidationandAMPKareactivatedinliversofgroundsquirrels enteringhibernation WealsoexaminedtheabundanceofbothtotalandactivatedAMPkinase.TheactiveAMPK, phosphorylatedatthreonine172(P-AMPK),isimportantinoxidationoffattyacids.ECH1 (enoylCoAhydratase-1)andCPT1A(carnitinepalmitoyiltransferase1A)-rate-limitingen- zymesinβ-fattyacidoxidation-andβ-hydroxybutyrate(aketonegeneratedduringfatoxida- tion)levelswerealsoassessedforamorecompletepictureoffattyacidoxidationactivity.As showninFig3A–3F,activated(phosphorylated)AMPKwaslowinsummer,inassociation withlowlevelsofECH1,CPT1Aandβ-hydroxybutyratelevels,providingevidencethatfatoxi- dationisminimalatthistime.Thisisconsistentwiththeobservationthathepatictriglyceride levelsarethehighestinsummerandfalltransition(Fig1C).Duringthewintertorpor-arousal cycle,however,aninterestingpatternemerged.ActivatedP-AMPKwasmaximallyincreased duringtheinterboutarousalwhentheanimalhadwarmedto37°C.Asanimalsenteredinto PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 8/19 AMPDeaminase,AMPKinaseandHibernation torportheP-AMPKlevelbegantofall,andbylatetorporhadreacheditslowestwinterlevel, whereitremaineduntiltheanimalwarmedagainto37°C(IBA).TotalAMPKalsoreflecteda similarpatternasP-AMPKwithapredominantexpressionofthealpha1subunit(α1)overthe alpha2(α2)whichwasobservedonlyinsummer,fallandspringstages.Itisimportanttonote thattotalAMPKexpressionbegantoincreaseinspring(Sp)evenwhenP-AMPKremained low(Fig3A).Ofinterest,P-AMPKexpressioncorrelateswiththephosphorylativestateof ACC.P-ACC(inactive)toACCratio,asshowninFig3D,islowinsummer,fallandspringin- dicatingthatlivermetabolismisdirectedtowardlipogenesisinthesestages.Incontrast,during hibernation,P-ACClevelspeakatenteringandinterboutarousalcorrespondingwiththehigh- estP-AMPKtoAMPKratiosuggestiveofACCphosphorylationbyAMPK.Oneparticulardif- ferenceisobservedatarousalandlatetorporinwhichP-ACClevelsremainhighdespite P-AMPKlevelsbeinglow.ThiswouldsuggestthateitherACCcanbephosphorylatedbyan AMPK-independentmechanismorthatthephosphorylationatACCismorestablethanthe oneonAMPK.WehypothesizethatthemechanismwherebyAMPD2andAMPKcounter- regulateismediatedbythepoolofAMPavailabletostimulateeachenzyme.AMPisknownto activateAMPKallostericallyorthroughliverkinaseB1(LKB1)[31].AsshowninFig3,total expressionofLKB1doesnotsubstantiallychangeatanystage.However,wefoundthatLKB1 wasphosphorylatedatserine334(P-LKB1)inapatternsimilartotheonefoundforP-AMPK thussuggestingthepossibilitythatLKB1couldbeanimportantmediatorinAMPKactivation duringarousalandininterboutarousalstages.ECH1andCPT1aexpressionsincreasedinwin- tercomparedtosummer,falltransitionandspring.However,withinthewintercycle,both ECH1andCPT1Aweresignificantlydecreasedatarousalcomparedtotheotherstages.β- hydroxybutyrate,reflectingfattyacidoxidationthatiscontrolledbyP-AMPK,remainedhigh throughoutthewinterhibernationstages.Consistently,triglyceridelevelsatIBAandentering werefoundtobethelowestamongthehibernationstates(Fig1C).Theoverallpatternsuggests thattheactivationofP-AMPKisdependentonwarmingto37°C;thismayallowthestimula- tionoffattyacidoxidationtocontinuethroughoutthetorporperiod. AMPDeaminase2(AMPD2)ShowsanOpposingActivityPattern ComparedtoAMPKinase AMPactivatesAMPkinasebutisasubstratefordegradationbyAMPD2(AMPD2)inthe liver.AMPD2proteinabundancetendedtobehighestinsummer(SA)andduringthefall transition(FT),withlowerlevelsduringthehibernationperiod,butthedifferenceswerenot significant(Fig4A).AMPD2enzymaticactivitywasalsomeasured(Fig4BandTable1),and foundtovaryamongsamplegroupswhenmeasuredat37°C(ANOVAp=0.03).Althoughno significantpairwisedifferenceswereidentified(Tukeyp>0.05),AMPD2activitytendedtobe elevatedinSAandFTcomparedtotheothergroups(Table1).WhenthegroupswithTb ~37°C(i.e.,Sp,SA,FTandIBA)werecompared,IBAandSpwerefoundtohavesignificantly reducedAMPD2activitycomparedtoSAandFT.Moreover,APMD2activitywasseverelyre- ducedatthephysiologicaltemperaturesoftorpor,andhadintermediateactivityat25°C (Table1),consistentwithQ effects(ameasureofhowchangesintemperatureaffectsenzyme 10 activity)andindicatingthattheenzymaticactivityofAMPD2isimmeasurablylowwhileani- malsareintorpor(ETandLT).Hibernatinganimalswarmbrieflyto37°Cduringeachinterb- outarousal(IBA).TheratioofAMPD2activitytoP-AMPK(reflectingAMPKactivity)when theanimal’sbodytemperatureisat37°C(SA,FT,IBAandSp)islowestduringIBA(ratio 15.71),comparedtosummeractive(SA,ratio100.25),falltransition(FTratio71.42),and spring(Spratio61.11).Thus,therelativeactivityofAMPD2toAMPKishigherduringthe PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 9/19 AMPDeaminase,AMPKinaseandHibernation Fig4.HepaticabundanceandactivityofAMPD22(AMPD2)isreducedduringhibernation.A)Representativewesternblotanddensitometryoftotal hepaticAMPD2.B)PlotemphasizingreciprocalrelationshipbetweenAMPD2activityandactivatedP-AMPK(formwithphosphorylationatThr172)/AMPK ratio.AMPD2activityasmeasuredattherelevantphysiologicaltemperatureforthatstate(Table1,e.g.,4°CforETandLT,25°CforEntandArand37°Cfor SA,FT,IBAandSp).GroupsareasdefinedinFig2. doi:10.1371/journal.pone.0123509.g004 PLOSONE|DOI:10.1371/journal.pone.0123509 April9,2015 10/19
Description: