ebook img

Opioid µ, δ and κ Receptors for Endorphins PDF

8 Pages·2000·0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Opioid µ, δ and κ Receptors for Endorphins

Opioid (cid:22), (cid:14), and (cid:20) Receptors for Endorphins Daniel J. J. Carr1 and J. Edwin Blalock2,* 1Department of Microbiology and Immunology, LSU Medical Center, New Orleans, LA 70112-1393, USA 2Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA *corresponding author tel: 205-934-6439, fax: 205-934-1446, e-mail: [email protected] DOI: 10.1006/rwcy.2000.23005. SUMMARY ((cid:11),(cid:12),and(cid:13))(Bradburyetal.,1976;Coxetal.,1976), dynorphin (Goldstein et al., 1979), and endomorphin (Zadina et al., 1997), suggested the existence of Thethreemajortypesofopioidreceptors((cid:22),(cid:14),and(cid:20)) multiple types of receptors (termed opioid receptors) are members of the DRY (Asp-Arg-Tyr)-containing for these natural ligands. Evidence for multiple types subfamily of seven transmembrane spanning recep- of opioid receptors was obtained using congeners of tors. Opioid receptors on cells of the immune system morphineinspinalstudiesindogs(GilbertandMartin, are virtually identical to those on neuronal cells. The 1976; Martin et al., 1976). activation of opioid receptors in the CNS leads to Originally identified in the early 1970s (Pert and analgesia while activation of opioid receptors on Snyder, 1973; Simon et al., 1973; Terenius, 1973), immune cells can enhance or suppress immune func- today,threemaintypesofopioidreceptorshavebeen tiondependingonthetarget cellandimmuneparam- defined and cloned: (cid:14), (cid:20), and (cid:22) opioid receptors with eter measured. pharmacologically distinct subtypes for (cid:14) ((cid:14) and (cid:14) ), 1 2 (cid:20) ((cid:20) , (cid:20) , and (cid:20) ), and (cid:22) ((cid:22) and (cid:22) ) (Pasternak, 1 2 3 1 2 1993).Twootherreceptorsincluding"(specificfor(cid:12)- BACKGROUND endorphin) and (cid:27) receptors were originally described as opioid receptors but have since been redefined as Discovery nonopioid (Simon, 1991). All of these receptors have been identified and characterized on cells of the The molecular characterization of opioid receptors immune system (Garza and Carr, 1997). has been investigated for nearly 25 years. However, Another opioid-like receptor, referred to as the the activities of these receptors, as manifested in the nociceptivereceptor(orphanopioidreceptor),origin- effectsofopioidcompounds(e.g.opium,ofwhichthe ally described in human brainstem (Mollereau et al., mainactiveingredientismorphine),havebeenknown 1994) was also found in mouse spleen T and B lym- foratleast6000years,sincethetimeoftheSumerians phocytes,whereitwasfirstcoupledtoaphysiological (4000 BC). The discovery of endogenous opioid pep- role (Halford et al., 1995). This review focuses on the tides, including the enkephalins (met- and leu- immunecell-derivedopioidreceptors,comparingtheir enkephalin) (Hughes et al., 1975), the endorphins physicochemical properties with those found in the 2212 Daniel J. J. Carr and J. Edwin Blalock nervous system as well as defining their role in the example, (cid:20) opioid receptors bound to (cid:20)-selective immune system. opioidligandshavebeenfoundtoreducesignificantly monocytotropic HIV-1 SF162 strain replication in microglia-enriched cultures (Chao et al., 1996). Structure GENE The three major types of opioid receptors are mem- bers of the (DRY)-containing subfamily of seven transmembrane spanning receptors. There is 60% Accession numbers aminoacididentitybetweeneachtypeofopioidrecep- tor with the membrane-spanning regions (transmem- The (cid:14) (L06322, L11065), (cid:20) (L11064), and (cid:22) (L22455, brane I–VII) and the intracellular loops connecting L20684)opioidreceptorshavebeen clonedfrom neu- thesesegmentsbeinghighlyconservedbetweenrecep- ronal tissue (Evans et al., 1992; Kieffer et al., 1992; tor types. Studies indicate that ligands (agonists and Li et al., 1993; Thompson et al., 1993; Wang et al., antagonists) to these receptors bind to different 1993; Yasuda et al., 1993). regions of the extracellular domain and such inter- action can be greatly influenced by the transmem- brane segments (predominantly TM II, III, and VI) PROTEIN (Kong et al., 1993, 1994; Surratt et al., 1994). Also, changes in one amino acid in the TM IV spanning Accession numbers region has been shown to alter opioid antagonist to agonist activity (Claude et al., 1996). Since the amino Protein Information Resource: acid sequences of the neuronal- and some immune- Human (cid:22) opioid receptor: 2135858 derived receptors are nearly identical, it is predicted Human (cid:20) opioid receptor: 631277 that a similar relationship between agonist/antago- Human (cid:14) opioid receptor: 2134989 nist-binding domains and the influence of the trans- membrane spanning regions will be found in the immune-derivedopioidreceptors.However,immune- Sequence derived opioid receptor-binding domains according to some investigators may be distinct since binding The neuronal opioid receptors are composed of or biochemical characteristics of these sites are not between370and389aminoacidsencodedbymRNAs characteristic of neuronal opioid sites (e.g. Stefano ranging in size from 1.9 to >10.0kb (Carr et al., et al., 1992; Makman et al., 1995). 1996). Both (cid:14) (Figure 1a; Sedqi et al., 1996) and (cid:20) (Figure1b;Belkowskietal.,1995)receptorfull-length Main activities and cDNAs (predicted to be 372–400 amino acids in length) have been identified in thymocytes or a pathophysiological roles thymoma cell line. However, only a partial sequence (441bp) of a (cid:22) opioid receptor has been identified by Theprimaryfunctionassociatedwithneuronalopioid RT-PCR in peripheral blood mononuclear cells receptorsis thecontrolofthe sensationofpaineither (Chuanget al.,1995) andrat peritonealmacrophages through receptors located spinally ((cid:14) , (cid:20) , and (cid:22) ) or (Figure 1c; 721bp) (Sedqi et al., 1995). All immune 1 1 2 supraspinally ((cid:14) , (cid:20) , (cid:20) , and (cid:22) ) (Pasternak, 1993). cell-derived receptor sequences identified thus far are 2 2 3 1 Withintheimmunesystem,opioidreceptorsfoundon nearlyidentical((cid:21)99%homology)withthereceptors immunecellsmayaugmentorsuppressimmunefunc- in the nervous system. tiondependingonthecelltypeandstimulation(Carr, 1991). However, alkaloid opioid ligands (e.g. mor- Description of protein phine and fentanyl) are potent immunosuppressive compoundsaffectingtheimmunesystemprimarilyby indirect pathways ligating to receptors found within Byavarietyoftechniques,theneuronalopioidrecep- the CNS and activating secondary systems (including torswereobservedtorangeinsizefrom40to65kDa the adrenergic pathway and the hypothalamus- (Simonds, 1988; Loh and Smith, 1990; Wollemann, pituitary-adrenalaxis)(Carretal.,1996).Otherfunc- 1990). The data concerning the biochemical proper- tionsofimmune-derivedopioidreceptorsmaypertain tiesofthesereceptorsmaybelimitedbytheuncertain to the response to infectious pathogens. As an specificities of some of the antireceptor antisera. Opioid (cid:22), (cid:14), and (cid:20) Receptors for Endorphins 2213 Figure1 (a)Deducedaminoacidsequence labeledproteinsmigratingat70,46,and31kDafrom of the (cid:14) opioid receptor cloned from brain tissue, while a major protein species migrating activated murine thymocytes as reported at 31kDa was labeled from spleen tissue. The31kDa by Sedqi et al. (1996). Bold letters indicate species was thought to be a degradative form of the changes from the published rodent brain (cid:14) mature protein. Subsequent analysis of immune cell- opioid receptor. (b) Deduced amino acid derived (cid:14), (cid:20), and (cid:22) opioid receptors determined the sequence of the (cid:20) opioid receptor cloned size to be nearly identical to that of the neuronal fromR1.1thymomacelllineasreportedby receptors (Carr, 1991). Alicea et al. (1998). Bold letters indicate changes from the published rodent brain (cid:20) opioidreceptor.(c)Deducedaminoacidse- quenceofthe(cid:22)opioidreceptorclonedfrom Relevant homologies and species adherentperitonealmacrophagesasreported differences by Sedqi et al. (1995). Bold letters indicate changes from the published rodent brain (cid:22) opioid receptor. Opioid receptors from immune cells are virtually identical ((cid:21)99% homology) to those on neuronal (a) cells.Thevariousopioidreceptortypes((cid:22),(cid:14),(cid:20))show about 60% homology. MELVPSARAELQSSPLVNLSDAFPSAFPSA 30 GANASGSPGARSASSLALAIAITVLYSAVC 60 AVGLLGNVLVMFGIVRYTKLKTATNIYIFN 90 LALADALATSTIPFQSAKYLMETWPFGELL 120 Affinity for ligand(s) CKAVLSIDYYNMFTSIFTLTMMSVDRYIAV 150 CHPVKALDFRTPAKAKLIQICIWVLASGVG 180 VPIMVMAVTQPRDGAVVCMLQFPSPSWYWD 210 Theidentificationofthetypesofopioidreceptorshas TVTKICVFLFAFVVPILIITVCYGLMLLRL 240 been greatly facilitated by the design and synthesis of RSVRLLSGSKEKDRSLRRITRMVLVVVGAF 270 opioid ligands selective for the types of receptors to VVCWAPIHIFVIVWTLVDINRRDPLVVAAL 300 which they bind (Table 1). Similar to cell-associated HLCIALGYANSSLNPVLYAFLDENFKRCFR 330 neuronalopioidreceptors,theclonedneuronalopioid QLCRTPCGRQEPGSLRRPRQATTRERVTAC 360 TPSDGPGGGAAA 372 receptors expressed in PC-12 cells showed high- affinitybindingtoligandsrangingfrom0.2to3.0nM (b) (Raynoret al.,1994).Opioidreceptorsfoundoncells of the immune system display a modestly reduced MESPIQIFRGNPGPTCSPSACLLPDSSSWF 30 affinity for their ligands ranging from 20 to 900nM, PDWAESNSDGSVGSENQQLESAHISPAIPV 60 IITAVNSVVFVVGLVGDSLVMFVIIRIYTK 90 depending on the ligand and receptor (Garza and MKTATDIYIFDLALANALVTTTMPFQSAVY 120 Carr, 1997). For example, (cid:20) receptors display affin- LMDSWPFGNVLCKIVISINYYDMFTSIFTL 150 ities ranging from 4.1 to 65.0nM (Garza and Carr, TMMSVNRYIAVCHPVKALNFRTPLKAKIID 180 1997), whereas a unique alkaloid-specific (cid:22) opioid ICIWLLASSVGISAIVLGGTKVRENVNVIE 210 3 CSLQFPNNEYSWWNLFMKICVFVFAFVIPV 240 receptor found on granulocytes has a Kd of 44nM LIIIVCYTLMILRLKSVRVLSGSREKNRDL 260 (Makmanetal.,1995).Oneinvestigationreportedthe RRITKLVLVVVAVFIICWTPIHIFILVEAL 290 IC for an immunoaffinity-purified opioid receptor 50 GSTSHSTAALSSYYFCIALGYTDSSLDPVL 320 isolated from mouse spleen preparations to be YAFLNEDFKRCFRNFCFPIKMRMERQSTDR 350 approximately 700nM, suggesting a loss in affinity DTVQNPASMRNVGGMDKPV 369 upon purification (Carr et al., 1990). (c) MGTWPFGTILCKIVISIDYYNMFTSIFTLC 30 Cell types and tissues expressing TMSVDRYIAVCHPVKALDFRTPRNAKIVNV 60 CNWILSSAIGLPVMFMATTKYRQGSIDCTL 90 the receptor TFSHPTWYWQNLLKICVFIFAFIMPILIIT 120 VCYALMILRLKSVRMLSGSKEKNRDLRRITR 150 Within the immune system, there is some disagree- MVLVVVAVFIVCWTPIHIYVIIKALITIPE 180 TTFQTVSWHFCIALGYTDSCLDPVLYAFLN 210 ment as to the population of cells that express opioid receptors.Tothisend,Table2andTable3summarize Using a site-directed acylating agent derived from the evidence for the presence of opioid receptors on fentanyl(knownassuperfit)thatishighlyselectivefor primary cells of the immune system (Table 2) and (cid:14) opioid receptors, a comparison of the mouse brain cell lines derived from cells of the immune system cell-andspleencell-derived(cid:14)opioidreceptor.Superfit (Table 3) based on pharmacological (radioreceptor 2214 Daniel J. J. Carr and J. Edwin Blalock Table 1 Commercially available selective opioid agonists/antagonists (cid:14) Opioid receptor ligands (cid:20) Opioid receptor ligands (cid:22) Opioid receptor ligands DADLE (agonist) Bremazocine (agonist) DAMGO (agonist) DPDPE (agonist) U-50488 (agonist) Endomorphin 1 (agonist) SNC 80 (agonist) U-69593 (agonist) Endomorphin 2 (agonist) DSLET (agonist) ICI-199,441 (agonist) Fentanyl citrate (agonist) SNC121 (agonist) Nor-binaltorphimine (antagonist) (cid:12)-Funaltrexamine (antagonist) Superfit (affinity label) DIPPA (antagonist) Naloxonazine (antagonist) Naltrindole (antagonist) Cyprodime HBr (antagonist) ICI-174,864 (antagonist) BNTX (antagonist) Naltriben (antagonist) Table 2 Evidence for the presence of opioid receptors on primary cells of the immune systema Cell type (cid:14) Receptor (cid:20) Receptor (cid:22) Receptor Mouse T lymphocyte B, M – B Mouse B lymphocyte B – B Mouse thymocyte – – P, M Mouse splenocyte B, M B B Human PBLs M M – Human T lymphocyte P, B M – Human B lymphocyte B – – Human granulocyte – – P, M Human monocyte – M M Monkey PBLs M M M Human microglia – M – Rat macrophage – – M aEvidencefortheexistenceofthereceptorsisdefinedusingpharmacological(P),biochemical(B),ormolecular biology(M)approaches(Aliceaetal.,1998;Chaoetal.,1996;Gaveriauxetal.,1995;Miller,1996; Royetal.,1992;Wicketal.,1996)orasreviewedbyCarr(1991),Carretal.(1996). –,Suggestseitheralackofdetectionorthattheanalysishasnotyetbeendetermined. assays), biochemical (affinity labeling), or molecular (Roy et al., 1992) or mitogen (concanavalin A) in the biology techniques (cloning or RT-PCR studies). case of the mouse T lymphocyte (cid:14) opioid receptor (Miller, 1996). Furthermore, the activation of leuko- cytes also leads to the production of endogenous Regulation of receptor expression opioid peptides (Blalock, 1989). Since the leukocyte- derived opioid peptides have also been shown to be The expression of (cid:14) and (cid:22) opioid receptors on functionally active (Blalock, 1989), there is reason to immune cells is reportedly induced by the activation believe that autocrine regulation of receptor expres- ofcellsbyIL-1inthecaseofthethymocyte(cid:22)receptor sion may occur as well. Opioid (cid:22), (cid:14), and (cid:20) Receptors for Endorphins 2215 Table 3 Evidence for the presence of opioid receptors on cell lines derived from cells of the immune systema Cell type (cid:14) Receptor (cid:20) Receptor (cid:22) Receptor Mouse T cell lines EL-4 M P – 11.10 M – – Mouse B cell line CH27 M – – Mouse macrophage cell line P388d B P, B 1 Mouse R1.1 thymoma – P, M – Human T cell lines CEMx174 M M M HSB2 M – – MOLT-4 B, M M – Human B cell line EBV-transformed M M Human monocyte cell line U937 M – – aEvidencefortheexistenceofthereceptorsisdefinedusingpharmacological(P),biochemical(B),ormolecular biology(M)approaches(Gaveriauxetal.,1995;Chaoetal.,1996;Wicketal.,1996;Aliceaetal.,1998)or asreviewedbyCarr(1991),Carretal.(1996). –,Suggestseitheralackofdetectionorthattheanalysishasnotyetbeendetermined. SIGNAL TRANSDUCTION augment T cell activation through the increase in phosphorylation of the CD3 complex intracellular tyrosine-activation motifs (ITAMs) and presumably Cytoplasmic signaling cascades the activation of the inositol trisphosphate (IP ) cas- 3 cade via ZAP-70, whereas at femtomolar levels the Neuronal opioid receptors modify a variety of endorphins would suppress T cell activation by signaling cascades including cAMP through the reducing phosphorylation. activation of G, increases in GTPase activity, phos- i phatidylinositol turnover, mobilization of Ca2+, and K+ channel activity (Childers, 1991; Chen and Yu, DOWNSTREAM GENE 1994). In a similar fashion, immune cell-derived ACTIVATION opioid receptors are coupled to a G protein and i influence K+ channel conductance and calcium Transcription factors activated mobilization (Carr, 1991). In addition, the endogen- ous opioid peptide (cid:12)-endorphin has been shown to modify CD3(cid:13) phosphorylation following phorbol The success in transfecting Jurkat T cells (which do esterstimulation,eitherincreasingordecreasingphos- not express opioid receptors, Gaveriaux et al., 1995) phorylation of the CD3 chain depending on the withafunctional(cid:14)opioidreceptor(Sharpetal.,1996) concentration of the peptide (Kavelaars et al., 1990). allowed for the identification of potential transcrip- These results suggest that the endorphins may act as tional regulatory elements involved in opioid modu- a governor on T cell activation depending on the lation of immune function. Previous studies reported local concentration of endogenous opioid peptide. the augmentation of IL-2 production by activated Specifically, endorphins at mid-picomolar levels may T cells stimulated with endogenous opioid peptides 2216 Daniel J. J. Carr and J. Edwin Blalock (Carr, 1991). In an elegant study, reporter gene con- The hypothalamic-pituitary-adrenal axis results in structs were used to map deltorphin ((cid:14) selective the production of adrenal steroids such as gluco- agonist)-elicited augmentation of IL-2 production by corticoids which suppress immune responses in part (cid:14) opioid receptor-transfected Jurkat T cells to the by preventing translocation of NF(cid:20)B to the nucleus AP-1- and NF-AT/AP-1-binding site (Hedin et al., (Baldwin, 1996). Alternatively, morphine may acti- 1997). This effect was apparently independent of vate the sympathetic/parasympathetic arm of the calcineurin and unrelated to the elevation in [Ca2+] autonomic nervous system known to innervate i butrequiredpertussistoxin-sensitiveGprotein.Since lymph nodes and spleen (Felten et al., 1987) and theNF-AT/AP-1complexisinvolvedintheinduction modify immune function through the release of ofanumberofcytokinegenes(Rao,1994)andendo- monoamines (e.g. catecholamines) (Carr and Serou, genous opioid peptides modify the production of a 1995). numberofcytokines(Petersonetal., 1998),itisquite Other studies suggest that endogenous opioid pep- possible that the NF-AT/AP-1 complex is involved. tides may supplement antimicrobial drugs or local In addition, since leukocyte activation is primarily immune reactivity against viral infections. Studies mediated by cytokines, it is highly probable that have suggested that met-enkephalin suppresses opioid receptor promoters possess binding domains influenza virus infection in mice through the effects for cytokine responsive elements. As an example, on natural killer cells and cytotoxic T lymphocytes the (cid:22) opioid receptor promoter possesses a NF-IL6 (Burger et al., 1995). Another study has found that domain (Min et al., 1994). met-enkephalin synergizes with azidothymidine in blocking feline leukemia virus replication (Specter et al., 1994). It has also been reported that endo- Genes induced genous opioids induce the synthesis of novel fentanyl derivatives that possess analgesic activity in the IL-2. absence of opioid immunosuppression (Carr and Serou, 1995). BIOLOGICAL CONSEQUENCES OF ACTIVATING OR INHIBITING Phenotypes of receptor knockouts RECEPTOR AND and receptor overexpression mice PATHOPHYSIOLOGY Muopioidreceptor(MOR)knockoutmicehavebeen Unique biological effects of developed and tested for immune deviation in the presenceandabsenceoftheclinicallyrelevant,proto- activating the receptors typic(cid:22)ligandmorphine.MORknockoutmiceexhibit normal immunological endpoints including natural The response to opioid receptor activation depends killer activity, antibody production, and mitogen- on the location of the receptor, the type of receptor, induced lymphocyte proliferation (Gaveriaux-Ruff and the level of activation of the cell population. etal.,1998).However,bonemarrowcellsfromMOR Endogenous opioid peptides can either enhance or knockout mice exhibit an altered pattern of early suppress immune function depending in part on the hematopoiesis (Tian et al., 1997). In addition, treat- state of target cell activation and the immune param- ment with morphine had no effect on immune eter (antibody production, natural killer activity, parameters assayed in MOR knockout mice, but sig- cytokine synthesis) measured. Likewise, peripheral nificantly suppressed selectively measured immune bloodmononuclearcellsfromindividualscanrespond parameters (e.g. natural killer cell activity) and differently (sometimes completely opposite of one induced lymphoid organ atrophy in wild-type mice another)toopioidligandsevidentinbothhumanand (Gaveriaux-Ruff et al., 1998). These results suggest mouse populations. However, the administration of that the absence of the (cid:22) opioid receptor has no opioid alkaloids (i.e. morphine, heroin, or fentanyl) detrimental effect on immunocompetence per se, but tends to elicit a significant suppression of immune is directly responsible for the immunomodulatory function primarily by opioid receptors found in the effects of exogenous morphine. Accordingly, mod- mesencephalon (Shavit et al., 1986; Weber and Pert, ificationofimmuneresponsestoantigenormicrobial 1989). pathogens by endogenous opioid peptides does not The activation of the ‘central’ opioid receptors necessarily involve the activation of (cid:22) opioid recep- elicits the activation of neuroendocrine pathways. tors on immune cells. Opioid (cid:22), (cid:14), and (cid:20) Receptors for Endorphins 2217 THERAPEUTIC UTILITY Carr, D. J. J., DeCosta, B. R., Kim, C.-H., Jacobson, A. E., Bost,K.L.,Rice,K.C.,andBlalock,J.E.(1990).Anti-opioid receptor antibody recognition of a binding site on brain and Effects of inhibitors (antibodies) leukocyteopioidreceptors.Neuroendocrinology51,552–560. Carr,D.J.J.,Rogers,T.J.,andWeber,R.J.(1996).Therelevance to receptors of opioids and opioid receptors on immunocompetence and immunehomeostasis.Proc.Soc.Exp.Biol.Med.213,248–257. The classical pharmacological definition of the exis- Chao, C. C., Gekker, G., Hu, S., Sheng, W. S., Shark, K. B., Bu, D.-F., Archer, S., Bidlack, J. M., and Portoghese, P. K. tence of opioid receptors on cells of the immune (1996). (cid:20) opioid receptors in human microglia downregulate system has come from the ability of opioid antag- human immunodeficiency virus 1 expression. Proc. Natl Acad. onists (competitive or noncompetitive) to block the Sci.USA93,8051–8056. immunomodulatoryeffectsinastereospecificmanner Chen, Y., and Yu, L. (1994). Differential regulation by cAMP- (Sibinga and Goldstein, 1988) (see Table 1). Anti- dependentproteinkinaseandproteinkinaseCofthe(cid:22)opioid receptorcouplingtoaGprotein-activatedK+channel.J.Biol. bodieshavealsobeengeneratedagainstopioidrecep- Chem.269,7839–7842. tors that recognize proteins expressed on cells of the Childers,S.R.(1991).Opioidreceptor-coupledsecondmessenger immune system. One such antibody was found to systems.LifeSci.48,1991–2003. possess agonist activity and to recognize a putative (cid:14) Chuang, T. K., Killam Jr, K. F., Chuang, L. F., Kung, H.-F., classopioidreceptoronmouseleukocytes(Carretal., Sheng,W.S.,Chao,C.C.,Yu,L.,andChuang,R.Y.(1995). Muopioidreceptorgeneexpressioninimmunecells. Biochem. 1990). A second antibody was generated against the Biophys.Res.Commun.216,922–930. predicted N-terminal sequence of a (cid:20) opioid receptor Claude, P. A., Wotta, D. R., Zhang, X. H., Prather, P. L., and was found to act as a noncompetitive selective McGinn, T. M., Erickson, L. J., Loh, H. H., and Law, P. Y. antagonist recognizing (cid:20) opioid receptors on U937 (1996).MutationofaconservedserineinTM4ofopioidrecep- cells (Buchner et al., 1997). However, the use of anti- tors confers full agonistic properties to classical antagonists. Proc.NatlAcad.Sci.USA93,5715–5719. bodies is more apt to focus on characterizing the Cox,B.M.,Goldstein,A.,andLi,C.H.(1976).Opioidactivityof structural properties of the cloned receptor (e.g. apeptide,beta-lipotropin-(61-91),derivedfrombeta-lipotropin. mapping ligand-binding domains) rather than using Proc.NatlAcad.Sci.USA73,1821–1823. such antibodies to antagonize tolerance or chemical Evans, C. J., Keith, D., Magendzo, K., Morrison, H., and dependence. Edwards, R. H. (1992). Cloning of a delta opioid receptor by functionalexpression.Science258,1952–1955. Felten, D. L., Felten, S. Y., Bellinger, D. L., Carlson, S. L., References Ackerman, K. D., Madden, K. S., Olschowka, J. A., and Livnat, S. (1987). Noradrenergic sympathetic neural interac- tions with the immune system: Structure and function. Alicea,C.,Belkowski,S.M.,Sliker,J.K.,Zhu,J.,Liu-Chen,L.-Y., Immunol.Rev.100,225–260. Eisenstein,T.K.,Adler,M.W.,andRogers,T.J.(1998).Char- Garza Jr, H. H., and Carr, D. J. J. (1997). In ‘‘Chemical acterizationof(cid:20)-opioidreceptortranscriptsexpressedbyTcells Immunology:Neuroimmunoendocrinology’’(edJ.E.Blalock), andmacrophages.J.Neuroimmunol.91,55–62. Neuroendocrine peptide receptors on cells of the immune Baldwin,A.S.(1996).TheNF-(cid:20)BandI(cid:20)Bproteins:Newdiscov- system,pp.132–154.Karger,Basel. eriesandinsights.Annu.Rev.Immunol.14,649–681. Gaveriaux,C.,Peluso,J.,Simonin,F.,Laforet,J.,andKieffer,B. Belkowski, S. M., Zhu, J., Liu-Chen, L.-Y., Eisenstein, T. K., (1995).Identificationof(cid:20)-and(cid:14)-opioidreceptortranscriptsin Adler, M. W., and Rogers, T. J. (1995). Sequence of (cid:20)-opioid immunecells.FEBSLett.369,272–276. receptorcDNAintheR1.1thymomacellline.J.Neuroimmunol. Gaveriaux-Ruff, C., Matthes, H. W. D., Peluso, J., and 62,113–117. Kieffer, B. L. (1998). Abolition of morphine-immunosuppres- Blalock,J.E.(1989).Amolecularbasisforbidirectionalcommu- sion in mice lacking the (cid:22)-opioid receptor gene. Proc. Natl nication between the immune and neuroendocrine systems. Acad.Sci.USA95,6326–6330. Physiol.Rev.69,1–32. Gilbert,P.E.,andMartin,W.R.(1976).Theeffectsofmorphine- Bradbury A. F., Smyth, D. G., and Snell, C. R. (1976). and nalorphine-like drugs in the nondependent, morphine- Biosynthetic origin and receptor conformation of methionine dependent and cyclazocine-dependent chronic spinal dog. enkephalin.Nature260,165–166. J.Pharmacol.Exp.Ther.198,66–82. Buchner, R. R., Bogen, S. M., Fischer, W., Thoman, M. L., Goldstein,A.,Tachibana,S.,Lowney,L.I.,Hunkapiller,M.,and Sanderson, S. D., and Morgan, E. L. (1997). Anti-human (cid:20) Hood, L. (1979). Dynorphin-(1-13), an extraordinary potent opioidreceptorantibodies.J.Immunol.158,1670–1680. opioidpeptide.Proc.NatlAcad.Sci.USA76,6666–6670. Burger,R.A.,Warren,R.P.,Huffman,J.H.,andSidwell,R.W. Halford W. P., Gebhardt, B. M., and Carr, D. J. J. (1995). (1995). Effect of methionine-enkephalin on natural killer cell Functionalroleandsequenceanalysisofalymphocyteorphan and cytotoxic T lymphocyte activity in mice infected with in- opioidreceptor.J.Neuroimmunol.59,91–101. fluenzaAvirus.Immunopharmacol.Immunotoxicol.17,323–334. Hedin, K. E., Bell, M. P., Kalli, K. R., Huntoon, C. J., Carr, D. J. J. (1991). The role of endogenous opioids and their Sharp, B. M., and McKean, D. J. (1997). (cid:14)-Opioid receptors receptorsintheimmunesystem.Proc.Soc.Exp.Biol.Med.198, expressedbyJurkatTcellsenhanceIL-2secretionbyincreasing 710–720. AP-1complexesandactivityoftheNF-AT/AP-1 bindingpro- Carr,D.J.J.,andSerou,M.(1995).Exogenousandendogenous moterelement.J.Immunol.159,5431–5440. opioidsasbiologicalresponsemodifiers.Immunopharmacology Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., 31,59–71. Morgan, B. A., and Morris, H. R. (1975). Identification of 2218 Daniel J. J. Carr and J. Edwin Blalock two related pentapeptides from the brain with potent opiate Sharp,B.M.,Shahabi,N.A.,Heagy,W.,McAllen,K.,Bell,M., agonistactivity.Nature258,577–580. Huntoon,C.,andMcKean,D.J.(1996).Dualsignaltransduc- Kavelaars,A.,Eggen,B.J.L.,DeGraan,P.N.E.,Gispen,W.H., tion through delta opioid receptors in a transfected human and Heijnen, C. J. (1990). The phosphorylation of the CD3(cid:13) T-cellline.Proc.NatlAcad.Sci.USA93,8294–8299. chain of T lymphocytes is modulated by (cid:12)-endorphin. Eur. Shavit, Y., Depaulis, A., Fredricka, C. M., Terman, G. W., J.Immunol.20,943–945. Pechnick,R.N.,Zane,C.J.,Gale,R.P.,andLiebeskind,J.C. Kieffer, B. L., Befort, K., Gaveriaux-Ruff, C., and Hirth, C. G. (1986). Involvement of brain opiate receptors in the immune- (1992).The(cid:14)-opioidreceptor:Isolation ofacDNAbyexpres- suppressive effect of morphine. Proc. Natl Acad. Sci. USA 83, sion cloning and pharmacological characterization. Proc. Natl 7114–7117. Acad.Sci.USA89,12048–12052. Sibinga,N.E. S.,andGoldstein, A.(1988).Opioid peptidesand Kong,H.,Raynor,K.,Yasuda,K.,Moe,S.T.,Portoghese,P.S., opioid receptors in cells of the immune system. Annu. Rev. Bell,G.I.,andReisine,T.(1993).Asingleresidue,asparticacid Immunol.6,219–249. 95,inthe(cid:14)opioidreceptorspecifiesselectivehighaffinityago- Simon,E.J.(1991).Opioidreceptorsandendogenousopioidpep- nistbinding.J.Biol.Chem.268,23055–23058. tides.Med.Res.Rev.11,357–374. Kong, H., Raynor, K., Yano, H., Takeda, J., Bell, G. I., and Simon, E. J., Hiller, J. M., and Edelman, I. (1973). Stereo- Reisine, T. (1994). Agonists and antagonists bind to different specific binding of the potent narcotic analgesic [3H]etorphine domainsofthecloned(cid:20)receptor.Proc.NatlAcad.Sci.USA91, toratbrainhomogenate.Proc.NatlAcad.Sci.USA70,1947– 8042–8046. 1949. Li,S.,Zhu,J.,Chen,C.,Chen,Y.-W.,DeRiel,J.K.,Ashby,B., Simonds, W. F. (1988). The molecular basis of opioid receptor andLiu-Chen,L.-Y.(1993).Molecularcloningandexpression function.Endocr.Rev.9,200–212. ofaratkappaopioidreceptor.J.Biol.Chem.295,629–633. Specter,S.C.,Plotnikoff,N.,Bradley,W.G.,andGoodfellow,D. Loh,H.H.,andSmith,A.P.(1990).Molecularcharacterizationof (1994). Methionine enkephalin combined with AZT therapy opioidreceptors.Annu.Rev.Pharmacol.Toxicol.30,123–147. reduce murine retrovirus-induced disease. Int. J. Immuno- Makman, M. H., Bilinger, T. V., and Stefano, G. B. (1995). pharmacol.16,911–917. Human granulocytes contain an opiate alkaloid-selective Stefano, G. B., Melchiorri, P., Negri, L., Hughes Jr, T. K., and receptor mediating inhibition of cytokine-induced activation Scharrer, B. (1992). [D-Ala2]Deltorphin I binding and andchemotaxis.J.Immunol.154,1323–1330. pharmacological evidence for a special subtype of (cid:14) opioid Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., receptor on human and invertebrate immune cells. Proc. Natl and Gilbert, P. E. (1976). The effects of morphine- and Acad.Sci.USA89,9316–9320. nalorphine-like drugs in the nondependent and morphine- Surratt, C. K., Johnson, P. S., Moriwaki, A., Seidleck, B. K., dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197, Blaschak, C. J., Wang, J. B., and Uhl, G. R. (1994). (cid:22) opioid 517–532. receptor.Chargedtransmembranedomainaminoacidsarecri- Miller,B.(1996).(cid:14)opioidreceptorexpressionisinducedbycon- ticalforagonistrecognitionandintrinsicactivity.J.Biol.Chem. canavalinAinCD4(cid:135)Tcells.J.Immunol.157,5324–5328. 269,20548–20553. Min, B. H., Augustin, L. B., Felsheim, R. F., Fuchs, J. A., and Terenius, L. (1973). Stereospecific interaction between narcotic Loh, H. H. (1994). Genomic structure analysis of promoter analgesicsandasynapticplasmamembranefractionofratcer- sequence of a mouse mu opioid receptor gene. Proc. Natl ebralcortex.ActaPharmacol.Toxicol.32,317–320. Acad.Sci.USA91,9081–9085. Thompson, R. C., Mansour, A., Akil, H., and Watson, S. J. Mollereau, C., Parmentier, M., Mailleux, P., Butour, J.-L., (1993). Cloning and pharmacological characterization of a rat Moisand, C., Chalon, P., Caput, D., Vassart, G., and (cid:22)opioidreceptor.Neuron11,903–913. Meunier, J.-C. (1994). ORL1, a novel member of the opioid Tian,M.,Broxmeyer,H.E.,Fan,Y.,Lai,Z.,Zhang,S.,Aronica,S., receptorfamily.FEBSLett.341,33–38. Cooper,S.,Bigsby,R.M.,Steinmetz,R.,Engle,S.J.,Mestek,A., Pasternak, G.W.(1993).Pharmacological mechanisms ofopioid Pollock, J. D., Lehman, M. N., Jansen, H. T., Ying, M., analgesics.Clin.Neuropharmacol.16,1–18. Stambrook,P. J., Tischfield, J. A., andYu, L. (1997). Altered Pert,C.B.,andSnyder,S.H.(1973).Opiatereceptor:demonstra- hematopoiesis, behavior, and sexual function in mu opioid tioninnervoustissue.Science179,1011–1014. receptor-deficientmice.J.Exp.Med.185,1517–1522. Peterson, P. K., Molitor, T. W., and Chao, C. C. (1998). The Wang, J. B., Imai, Y., Eppler, C. M., Gregor, P., Spivak, C. E., opioid-cytokineconnection.J.Neuroimmunol.83,63–69. and Uhl, G. R. (1993). (cid:22) opioid receptor: cDNA cloning and Rao, A. (1994). NF-ATp: a transcription factor required for the expression.Proc.NatlAcad.Sci.USA90,10230–10234. co-ordinate induction of several cytokine genes. Immunol. Weber, R. J., and Pert, A. (1989). The periaqueductal gray mat- Today15,274–280. ter mediates opiate-induced immunosuppression. Science 245, Raynor,K.,Kong,H.,Chen,Y.,Yasuda,K.,Yu,L.,Bell,G.I., 188–190. and Reisine, T. (1994). Pharmacological characterization of Wick, M. J., Minnerath, S. R., Roy, S., Ramakrishnan, S., and the cloned (cid:20)-, (cid:14)-, and (cid:22)-opioid receptors. Mol. Pharmacol. 45, Loh, H. H. (1996). Differential expression of opioid receptor 330–334. genes in human lymphoid cell lines and peripheral blood Roy, S., Ge, B.-L., Loh, H. H., and Lee, N. M. (1992). lymphocytes.J.Neuroimmunol.64,29–36. Characterization of [3H]morphine binding to interleukin-1- Wollemann, M. (1990). Recent developments in the research activatedthymocytes.J.Pharmacol.Exp.Ther.263,451–456. of opioid receptor subtype molecular characterization. Sedqi,M.,Roy,S.,Ramakrishnan,S.,Elde,R.,andLoh,H.H. J.Neurochem.54,1095–1101. (1995). Complementary DNA cloning of a (cid:22)-opioid receptor Yasuda, K., Raynor, K., Kong, H., Breder, C., Takeda, J., from rat peritoneal macrophages. Biochem. Biophys. Res. Reisine, T., and Bell, G. I. (1993). Cloning and functional Commun.209,563–574. comparison of (cid:20) and (cid:14) opioid receptors from mouse brain. Sedqi, M., Roy, S., Ramakrishnan, S., and Loh, H. H. (1996). Proc.NatlAcad.Sci.USA90,6736–6740. Expression cloning of a full-length cDNA encoding delta Zadina,J.E.,Hackler,L.,Ge,L.J.,andKastin,A.J.(1997).A opioidreceptor frommouse thymocytes. J. Neuroimmunol. 65, potent and selective endogenous agonist for the mu-opiate 167–170. receptor.Nature386,499–502.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.