ebook img

Ophthalmic Medical Image Analysis: 6th International Workshop, OMIA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, Proceedings PDF

202 Pages·2019·40.156 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ophthalmic Medical Image Analysis: 6th International Workshop, OMIA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, Proceedings

Huazhu Fu · Mona K. Garvin · Tom MacGillivray · Yanwu Xu · Yalin Zheng (Eds.) 5 5 Ophthalmic Medical 8 1 1 S Image Analysis C N L 6th International Workshop, OMIA 2019 Held in Conjunction with MICCAI 2019 Shenzhen, China, October 17, Proceedings Lecture Notes in Computer Science 11855 Founding Editors Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany Juris Hartmanis Cornell University, Ithaca, NY, USA Editorial Board Members Elisa Bertino Purdue University, West Lafayette, IN, USA Wen Gao Peking University, Beijing, China Bernhard Steffen TU Dortmund University, Dortmund, Germany Gerhard Woeginger RWTH Aachen, Aachen, Germany Moti Yung Columbia University, New York, NY, USA More information about this series at http://www.springer.com/series/7412 Huazhu Fu Mona K. Garvin (cid:129) (cid:129) Tom MacGillivray Yanwu Xu (cid:129) (cid:129) Yalin Zheng (Eds.) Ophthalmic Medical Image Analysis 6th International Workshop, OMIA 2019 Held in Conjunction with MICCAI 2019 Shenzhen, China, October 17 Proceedings 123 Editors Huazhu Fu MonaK.Garvin Inception Institute University of Iowa of Artificial Intelligence Iowa City,IA, USA AbuDhabi, UnitedArab Emirates YanwuXu TomMacGillivray Baidu, Inc. University of Edinburgh Beijing,China Edinburgh,UK YalinZheng TheUniversity of Liverpool Liverpool, UK ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notesin Computer Science ISBN 978-3-030-32955-6 ISBN978-3-030-32956-3 (eBook) https://doi.org/10.1007/978-3-030-32956-3 LNCSSublibrary:SL6–ImageProcessing,ComputerVision,PatternRecognition,andGraphics ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The6thInternationalWorkshoponOphthalmicMedicalImageAnalysis(OMIA2019) was held in Shenzhen, China, on October 17, 2019, in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Age-relatedmaculardegeneration,diabeticretinopathy,and glaucoma arethe main causesofblindnessinbothdevelopedanddevelopingcountries.Thecostofblindness to society and individuals is huge, and many cases can be avoided by early intervention. Early and reliable diagnosis strategies and effective treatments are therefore a world priority. At the same time, there is mounting research on the retinal vasculature and neuro-retinal architecture as a source of biomarkers for several high-prevalence conditions like dementia, cardiovascular disease, and of course complications of diabetes. Automatic and semi-automatic software tools for retinal image analysis are being used widely in retinal biomarkers research, and increasingly percolating into clinical practice. Significant challenges remain in terms of reliability and validation, number and type of conditions considered, multi-modal analysis (e.g., fundus,opticalcoherencetomography,scanninglaserophthalmoscopy),novelimaging technologies, and the effective transfer of advanced computer vision and machine learningtechnologies,tomentionafew.Theworkshopaddressedalltheseaspectsand more, in the ideal interdisciplinary context of MICCAI. This workshop aimed to bring together scientists, clinicians, and students from multiple disciplines in the growing ophthalmic image analysis community, such as electronic engineering, computer science, mathematics, and medicine, to discuss the latest advancementsinthefield.Atotal of36full-length papers weresubmitted tothe workshop in response to the call for papers. All submissions are double-blind peer-reviewed by at least three members of the Program Committee. Paper selection was based on methodological innovation, technical merit, results, validation, and applicationpotential.Finally,22paperswereacceptedfororals(8papers)andposters (14papers)attheworkshopandchosentobeincludedinthisSpringerLNCSvolume. We are grateful to the Program Committee for reviewing the submitted papers and giving constructive comments andcritiques, tothe authors for submitting high-quality papers, to the presenters for excellent presentations, and to all the OMIA 2019 attendees for coming to Shenzhen from all around the world. September 2019 Huazhu Fu Mona K. Garvin Tom MacGillivray Yanwu Xu Yalin Zheng Organization Workshop Organizers Huazhu Fu Inception Institute of Artificial Intelligence, UAE Mona K. Garvin University of Iowa, USA Tom MacGillivray University of Edinburgh, UK Yanwu Xu Baidu Inc., China Yalin Zheng University of Liverpool, UK Program Committee Bhavna Antony IBM Research, Australia Guozhen Chen Shenzhen University, China Min Chen University of Pennsylvania, USA Qiang Chen Nanjing University of Science and Technology, China Jun Cheng Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, China Dongxu Gao University of Liverpool, UK Mohammad Hamghalam Shenzhen University, China Baiying Lei Shenzhen university, China Xiaomeng Li The Chinese University of Hong Kong, SAR China Dwarikanath Mahapatra IBM Research, Australia Emma Pead University of Edinburgh, UK Suman Sedai IBM Research, Australia Fei Shi Soochow University, China Raphael Sznitman University of Bern, Switzerland Mingkui Tan South China University of Technology, China Ruwan Tennakoon RMIT University, Australia Jui-Kai Wang University of Iowa, USA Dehui Xiang Soochow University, China Mengdi Xu Yitu Technology, Singapore Yuguang Yan South China University of Technology, China Jiong Zhang University of Southern California, USA Yitian Zhao Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, China Yuanjie Zheng Shandong Normal University, China Weifang Zhu Soochow University, China Contents Dictionary Learning Informed Deep Neural Network with Application to OCT Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Joshua Bridge, Simon P. Harding, Yitian Zhao, and Yalin Zheng Structure-Aware Noise Reduction Generative Adversarial Network for Optical Coherence Tomography Image. . . . . . . . . . . . . . . . . . . . . . . . . 9 YanGuo,KangWang,SuhuiYang,YueWang,PengGao,GuotongXie, Chuanfeng Lv, and Bin Lv Region-Based Segmentation of Capillary Density in Optical Coherence Tomography Angiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Wenxiang Deng, Michelle R. Tamplin, Isabella M. Grumbach, Randy H. Kardon, and Mona K. Garvin An Amplified-Target Loss Approach for Photoreceptor Layer Segmentation in Pathological OCT Scans. . . . . . . . . . . . . . . . . . . . . . . . . . 26 José Ignacio Orlando, Anna Breger, Hrvoje Bogunović, Sophie Riedl, Bianca S. Gerendas, Martin Ehler, and Ursula Schmidt-Erfurth Foveal Avascular Zone Segmentation in Clinical Routine Fluorescein Angiographies Using Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Dominik Hofer, José Ignacio Orlando, Philipp Seeböck, Georgios Mylonas, Felix Goldbach, Amir Sadeghipour, Bianca S. Gerendas, and Ursula Schmidt-Erfurth Guided M-Net for High-Resolution Biomedical Image Segmentation with Weak Boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Shihao Zhang, Yuguang Yan, Pengshuai Yin, Zhen Qiu, Wei Zhao, Guiping Cao, Wan Chen, Jin Yuan, Risa Higashita, Qingyao Wu, Mingkui Tan, and Jiang Liu 3D-CNN for Glaucoma Detection Using Optical Coherence Tomography. . . . 52 Yasmeen George, Bhavna Antony, Hiroshi Ishikawa, Gadi Wollstein, Joel Schuman, and Rahil Garnavi Semi-supervised Adversarial Learning for Diabetic Retinopathy Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Sijie Liu, Jingmin Xin, Jiayi Wu, and Peiwen Shi Shape Decomposition of Foveal Pit Morphology Using Scan Geometry Corrected OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 MinChen,JamesC.Gee,JessicaI.W.Morgan,andGeoffreyK.Aguirre x Contents U-Net with Spatial Pyramid Pooling for Drusen Segmentation in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Rhona Asgari, Sebastian Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, and Hrvoje Bogunović Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images. . . . . . . . . . . . . . . . . . . . . 86 Jianfei Liu, Christine Shen, Tao Liu, Nancy Aguilera, and Johnny Tam Robust Optic Disc Localization by Large Scale Learning. . . . . . . . . . . . . . . 95 Shilu Jiang, Zhiyuan Chen, Annan Li, and Yunhong Wang The Channel Attention Based Context Encoder Network for Inner Limiting Membrane Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Hao Qiu, Zaiwang Gu, Lei Mou, Xiaoqian Mao, Liyang Fang, Yitian Zhao, Jiang Liu, and Jun Cheng Fundus Image Based Retinal Vessel Segmentation Utilizing a Fast and Accurate Fully Convolutional Network. . . . . . . . . . . . . . . . . . . . 112 Junyan Lyu, Pujin Cheng, and Xiaoying Tang Network Pruning for OCT Image Classification . . . . . . . . . . . . . . . . . . . . . 121 Bing Yang, Yi Zhang, Jun Cheng, Jin Zhang, Lei Mou, Huaying Hao, Yitian Zhao, and Jiang Liu An Improved MPB-CNN Segmentation Method for Edema Area and Neurosensory Retinal Detachment in SD-OCT Images. . . . . . . . . . . . . . 130 Jian Fang, Yuhan Zhang, Keren Xie, Songtao Yuan, and Qiang Chen Encoder-Decoder Attention Network for Lesion Segmentation of Diabetic Retinopathy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Shuanglang Feng, Weifang Zhu, Heming Zhao, Fei Shi, Zuoyong Li, and Xinjian Chen Multi-discriminator Generative Adversarial Networks for Improved Thin Retinal Vessel Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Gabriel Tjio, Shaohua Li, Xinxing Xu, Daniel Shu Wei Ting, Yong Liu, and Rick Siow Mong Goh Fovea Localization in Fundus Photographs by Faster R-CNN with Physiological Prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Jun Wu, Jiapei Wang, Jie Xu, Yiting Wang, Kaiwei Wang, Zongjiang Shang, Dayong Ding, Xirong Li, Gang Yang, Xuemin Jin, Yanting Wang, Fangfang Dai, and Jianping Fan Contents xi Aggressive Posterior Retinopathy of Prematurity Automated Diagnosis via a Deep Convolutional Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Rugang Zhang, Jinfeng Zhao, Guozhen Chen, Tianfu Wang, Guoming Zhang, and Baiying Lei Automated Stage Analysis of Retinopathy of Prematurity Using Joint Segmentation and Multi-instance Learning. . . . . . . . . . . . . . . . . . . . . . . . . 173 Guozhen Chen, Jinfeng Zhao, Rugang Zhang, Tianfu Wang, Guoming Zhang, and Baiying Lei Retinopathy Diagnosis Using Semi-supervised Multi-channel Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Yingpeng Xie, Qiwei Wan, Guozhen Chen, Yanwu Xu, and Baiying Lei Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.