ebook img

Operator theory in inner product spaces PDF

242 Pages·2007·1.715 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Operator theory in inner product spaces

Operator Theory: Advances and Applications Vol. 175 Editor: I. Gohberg Editorial Office: S. T. Kuroda (Tokyo) School of Mathematical P. Lancaster (Calgary) Sciences L. E. Lerer (Haifa) Tel Aviv University B. Mityagin (Columbus) Ramat Aviv, Israel V. Olshevsky (Storrs) M. Putinar (Santa Barbara) L. Rodman (Williamsburg) Editorial Board: D. Alpay (Beer-Sheva) J. Rovnyak (Charlottesville) J. Arazy (Haifa) D. E. Sarason (Berkeley) A. Atzmon (Tel Aviv) I. M. Spitkovsky (Williamsburg) J. A. Ball (Blacksburg) S. Treil (Providence) A. Ben-Artzi (Tel Aviv) H. Upmeier (Marburg) H. Bercovici (Bloomington) S. M. Verduyn Lunel (Leiden) A. Böttcher (Chemnitz) D. Voiculescu (Berkeley) K. Clancey (Athens, USA) D. Xia (Nashville) L. A. Coburn (Buffalo) D. Yafaev (Rennes) R. E. Curto (Iowa City) K. R. Davidson (Waterloo, Ontario) Honorary and Advisory R. G. Douglas (College Station) Editorial Board: A. Dijksma (Groningen) C. Foias (Bloomington) H. Dym (Rehovot) P. R. Halmos (Santa Clara) P. A. Fuhrmann (Beer Sheva) T. Kailath (Stanford) B. Gramsch (Mainz) H. Langer (Vienna) J. A. Helton (La Jolla) P. D. Lax (New York) M. A. Kaashoek (Amsterdam) M. S. Livsic (Beer Sheva) H. G. Kaper (Argonne) H. Widom (Santa Cruz) Subseries: Advances in Michael Demuth Partial Differential Equations Technische Universität Clausthal Germany Subseries editors: Bert-Wolfgang Schulze Jerome A. Goldstein Universität Potsdam The University of Memphis, TN Germany USA Sergio Albeverio Nobuyuki Tose Universität Bonn Keio University, Yokohama Germany Japan Operator Theory in Inner Product Spaces Karl-Heinz Förster Peter Jonas Heinz Langer Carsten Trunk Editors Advances in Partial Differential Equations Birkhäuser . . Basel Boston Berlin Editors: Karl-Heinz Förster Heinz Langer Peter Jonas Mathematik Carsten Trunk Technische Universität Wien Institut für Mathematik, MA 6-4 Wiedner Hauptstrasse 8–10/1411 Technische Universität Berlin A-1040 Wien Straße des 17. Juni 136 e-mail: [email protected] D-10623 Berlin e-mail: [email protected] [email protected] [email protected] (cid:21)(cid:19)(cid:19)(cid:19)(cid:3)(cid:48)(cid:68)(cid:87)(cid:75)(cid:72)(cid:80)(cid:68)(cid:87)(cid:76)(cid:70)(cid:86)(cid:3)(cid:54)(cid:88)(cid:69)(cid:77)(cid:72)(cid:70)(cid:87)(cid:3)(cid:38)(cid:79)(cid:68)(cid:86)(cid:86)(cid:76)(cid:191)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:20)(cid:21)(cid:39)(cid:20)(cid:19)(cid:15)(cid:3)(cid:20)(cid:24)(cid:36)(cid:21)(cid:21)(cid:15)(cid:3)(cid:20)(cid:24)(cid:36)(cid:24)(cid:26)(cid:15)(cid:3)(cid:22)(cid:23)(cid:37)(cid:21)(cid:19)(cid:15)(cid:3)(cid:22)(cid:23)(cid:37)(cid:23)(cid:19)(cid:15)(cid:3)(cid:23)(cid:25)(cid:38)(cid:21)(cid:19)(cid:15)(cid:3) (cid:23)(cid:26)(cid:36)(cid:91)(cid:91)(cid:15)(cid:3)(cid:23)(cid:26)(cid:37)(cid:21)(cid:24)(cid:15)(cid:3)(cid:23)(cid:26)(cid:37)(cid:24)(cid:19)(cid:15)(cid:3)(cid:23)(cid:26)(cid:40)(cid:19)(cid:24) (cid:47)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:3)(cid:82)(cid:73)(cid:3)(cid:38)(cid:82)(cid:81)(cid:74)(cid:85)(cid:72)(cid:86)(cid:86)(cid:3)(cid:38)(cid:82)(cid:81)(cid:87)(cid:85)(cid:82)(cid:79)(cid:3)(cid:49)(cid:88)(cid:80)(cid:69)(cid:72)(cid:85)(cid:29)(cid:3)(cid:21)(cid:19)(cid:19)(cid:26)(cid:28)(cid:21)(cid:21)(cid:21)(cid:24)(cid:25) Bibliographic information published by Die Deutsche Bibliothek (cid:39)(cid:76)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:37)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:87)(cid:75)(cid:72)(cid:78)(cid:3)(cid:79)(cid:76)(cid:86)(cid:87)(cid:86)(cid:3)(cid:87)(cid:75)(cid:76)(cid:86)(cid:3)(cid:83)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:39)(cid:72)(cid:88)(cid:87)(cid:86)(cid:70)(cid:75)(cid:72)(cid:3)(cid:49)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:69)(cid:76)(cid:69)(cid:79)(cid:76)(cid:82)(cid:74)(cid:85)(cid:68)(cid:191)(cid:72)(cid:30)(cid:3)(cid:71)(cid:72)(cid:87)(cid:68)(cid:76)(cid:79)(cid:72)(cid:71)(cid:3) bibliographic data is available in the Internet at <http://dnb.ddb.de>. IISSBBNN 3 997788-3--37-6746(cid:26)3-4(cid:24)83(cid:26)2-(cid:23)688(cid:16)(cid:23)2el6st9o-n8 – BBierrklinhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the (cid:80)(cid:68)(cid:87)(cid:72)(cid:85)(cid:76)(cid:68)(cid:79)(cid:3)(cid:76)(cid:86)(cid:3)(cid:70)(cid:82)(cid:81)(cid:70)(cid:72)(cid:85)(cid:81)(cid:72)(cid:71)(cid:15)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:76)(cid:191)(cid:70)(cid:68)(cid:79)(cid:79)(cid:92)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:85)(cid:68)(cid:81)(cid:86)(cid:79)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:85)(cid:72)(cid:16)(cid:88)(cid:86)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3) (cid:76)(cid:79)(cid:79)(cid:88)(cid:86)(cid:87)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:15)(cid:3)(cid:85)(cid:72)(cid:70)(cid:76)(cid:87)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:69)(cid:85)(cid:82)(cid:68)(cid:71)(cid:70)(cid:68)(cid:86)(cid:87)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:85)(cid:72)(cid:83)(cid:85)(cid:82)(cid:71)(cid:88)(cid:70)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:81)(cid:3)(cid:80)(cid:76)(cid:70)(cid:85)(cid:82)(cid:191)(cid:79)(cid:80)(cid:86)(cid:3)(cid:82)(cid:85)(cid:3)(cid:76)(cid:81)(cid:3)(cid:82)(cid:87)(cid:75)(cid:72)(cid:85)(cid:3)(cid:90)(cid:68)(cid:92)(cid:86)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3) storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2007 Birkhäuser Verlag AG, P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF (cid:102) Cover design: Heinz Hiltbrunner, Basel Printed in Germany ISBN-10: 3-7643-8269-3 e-ISBN-10: 3-7643-8270-8 ISBN-13: 978-3-7643-8269-8 e-ISBN-13: 978-3-7643-8270-4 (cid:28)(cid:3)(cid:27)(cid:3)(cid:26)(cid:3)(cid:25)(cid:3)(cid:24)(cid:3)(cid:23)(cid:3)(cid:22)(cid:3)(cid:21)(cid:3)(cid:20)(cid:3) (cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:90)(cid:90)(cid:90)(cid:17)(cid:69)(cid:76)(cid:85)(cid:78)(cid:75)(cid:68)(cid:88)(cid:86)(cid:72)(cid:85)(cid:17)(cid:70)(cid:75) Contents Preface ................................................................... vii T.Ya. Azizov and L.I. Soukhotcheva Linear Operators in Almost Krein Spaces ............................ 1 J. Behrndt, A. Luger and C. Trunk Generalized Resolvents of a Class of Symmetric Operators in Krein Spaces ...................................................... 13 J. Behrndt, H. Neidhardt and J. Rehberg Block Operator Matrices, Optical Potentials, Trace Class Perturbations and Scattering ........................................ 33 V. Derkach, S. Hassi and H. de Snoo Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties ........................................ 51 A. Fleige A Necessary Aspect of the Generalized Beals Condition for the Riesz Basis Property of Indefinite Sturm-Liouville Problems ...... 89 K.-H. Fo¨rster and B. Nagy On Reducible Nonmonic Matrix Polynomials with General and Nonnegative Coefficients ........................................ 95 S. Hassi, H. de Snoo and H. Winkler On Exceptional Extensions Close to the Generalized Friedrichs Extension of Symmetric Operators ................................... 111 P. Jonas and H. Langer On the Spectrum of the Self-adjoint Extensions of a Nonnegative Linear Relation of Defect One in a Krein Space ...................... 121 M. Kaltenba¨ck and H. Woracek Canonical Differential Equations of Hilbert-Schmidt Type ............ 159 I. Karabash and A. Kostenko Spectral Analysis of Differential Operators with Indefinite Weights and a Local Point Interaction ............................... 169 vi Contents C. Mehl and C. Trunk Normal Matrices in Degenerate Indefinite Inner Product Spaces ...... 193 V. Pivovarchik Symmetric Hermite-Biehler Polynomials with Defect ................. 211 L. Rodman A Note on Indefinite Douglas’ Lemma ............................... 225 A. Sandovici Some Basic Properties of Polynomials in a Linear Relation in Linear Spaces ..................................................... 231 Preface This volume contains papers written by the participants of the 4th Workshop on Operator Theory in Krein Spaces and Applications, which was held at the Technische Universita¨t Berlin, Germany, December 17 to 19, 2004. The workshopcovered topics from spectral, perturbation and extension the- ory of linear operatorsand relations in inner product spaces. They included spec- tral analysis of differential operators, the theory of generalized Nevanlinna func- tions and related classes of functions, spectral theory of matrix polynomials and problems from scattering theory. All these topics are reflected in the present vol- ume. The workshopwas attended by 58 participants from 12 countries. It is a pleasureto acknowledgethe substantialfinancialsupportreceivedfromthe – Deutsche Forschungsgemeinschaft(DFG), – DFG-ForschungszentrumMATHEON “Mathematik fu¨r Schlu¨ssel- technologien”, – Institute of Mathematics of the Technische Universita¨t Berlin. WewouldalsoliketothankPetraGrimbergerforhergreathelp.Lastbutnotleast, specialthanksareduetoJussiBehrndtandChristianMehlfortheirexcellentwork in the organisation of the workshop and the preparation of this volume. Without their assistance the workshopmight not have taken place. The Editors OperatorTheory: Advances andApplications,Vol.175,1–11 (cid:1)c 2007Birkh¨auserVerlagBasel/Switzerland Linear Operators in Almost Krein Spaces Tomas Ya. Azizov and Lioudmila I. Soukhotcheva Abstract. The aim of this paper is to study the completeness and basicity problems for selfadjoint operators of the class K(H) in almost Krein spaces and prove criteria for the basicity and completeness of root vectors of linear pencils. MathematicsSubjectClassification(2000). Primary47B50; Secondary46C50. Keywords. Krein space, operator pencil, completeness and basicity problem. 1. Introduction Let H be a Hilbert space, let A and B be compact operators and let A be addi- tionally a positive operator. Consider the linear operator pencil L(λ)=A−1−λ(I +B). (1) Such a pencil appears, for instance, if the following spectral problem in L2(0,π) is considered: ⎧ (cid:4) ⎨ d2f π − +q(t)f(t)=λ(f(t)+ K(t,s)f(s)ds) ⎩ dt2 0 (2) f(0)=f(π)=0. Assume q is a continuous real function with q(t)>−1, the kernel K(t,s) is sym- metricandcontinuouson[0,π]×[0,π].ItremainstodefineAandBinthefollowing way: d2f A−1f =− +qf, dt2 (cid:5) domA−1 = f ∈L2(0,π)|f,f(cid:1) absolutely continuous on (0,π), (cid:6) d2f − dt2 +qf ∈L2(0,π),f(0)=f(π)=0 ThisresearchissupportedpartiallybythegrantRFBR05-01-00203. 2 T.Ya. Azizov and L.I. Soukhotcheva (cid:4)π (Bf)(t)= K(t,s)f(s)ds. 0 The completeness and basicity problems for the pencil (1) and for the operator H =A(I +B) (3) arecloselyrelated.Thecompletenessproblemforoperators(3)undertheassump- tion λ=0 is not an eigenvalue of H (0∈/ σ (H)) was considered for the first time p by M.V. Keldysh (see, for instance, [6, Theorem 8.1]). The case when B is also selfadjoint and kerH ={0} was studied by I.Ts. Gokhberg and M.G. Krein in [6, p. 322].There it was shownthat there is a Riesz basis in H which consists of root vectors of H. The proof is based on the selfadjointness of the operator H with respect to the indefinite inner product [·,·]=((I +B)·,·), (4) whichturns{H,[·,·]}intoaPontryaginspace.Generalcriteriaforthecompleteness and basicity of root vectors of selfadjoint operators in Pontryagin spaces can be found in [2], and, more generally, in [3, Theorem IV.2.12]. If ker(I +B)(cid:2)=0, the inner product (4) is degenerate and, due to the com- pactness of the operator B, we have (a) the isotropic part H0 :={x∈H|[x,y]=0, for all y ∈H} of H is finite-dimensional, and (b) the factor-space H(cid:7) =H/H0 is a Pontryaginspace. Indefinite inner product spaces H with the properties (a) and (b) are called almost Pontryagin spaces. The operator H in (3) is selfadjoint in the degenerate almost Pontryagin space {H,[·,·]}. First results about the completeness and ba- sicity problems forcompactselfadjointoperatorsinalmostPontryaginspace were obtained in [1]. Recently, spectral properties of operators acting in almost Pontryagin and almostKrein spaces (for a definition of almostKreinspaces we refer to Definition 1 below) and their applications were studied in, for example, [4], [5], [7]–[13].1 Themainaimofthispaperistostudythecompletenessandbasicityproblems for selfadjoint operators of the class K(H) in almost Krein spaces (a definition of the classK(H)seebelowonp.3).Moreover,wewillprovecriteriaforthe basicity and completeness of root vectors of the pencil (1). 1TheauthorsthankChr.Mehl(TUBerlin)forhishelpwiththebibliography.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.