ebook img

Operator Theory and Analysis: The M.A. Kaashoek Anniversary Volume Workshop in Amsterdam, November 12–14, 1997 PDF

459 Pages·2001·12.26 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Operator Theory and Analysis: The M.A. Kaashoek Anniversary Volume Workshop in Amsterdam, November 12–14, 1997

Operator Theory: Advances and Applications Vol. 122 Editor: I. Gohberg Editorial Office: School of Mathematical H.G. Kaper (Argonne) Sciences S.T. Kuroda (Tokyo) Tel Aviv University P. Lancaster (Calgary) Ramat Aviv, Israel L.E. Lerer (Haifa) E. Meister (Darmstadt) Editorial Board: B. Mityagin (Columbus) J. Arazy (Haifa) V. V. Peller (Manhattan, Kansas) A. Atzmon (Tel Aviv) J. D. Pincus (Stony Brook) J. A. Ball (Blacksburg) M. Rosenblum (Charlottesville) A. Ben-Artzi (Tel Aviv) J. Rovnyak (Charlottesville) H. Bercovici (Bloomington) D. E. Sarason (Berkeley) A. Bottcher (Chemnitz) H. Upmeier (Marburg) K. Clancey (Athens, USA) D. Voiculescu (Berkeley) L. A. Coburn (Buffalo) H. Widom (Santa Cruz) K. R. Davidson (Waterloo, Ontario) D. Xia (Nashville) R. G. Douglas (Stony Brook) D. Yafaev (Rennes) H. Dym (Rehovot) A. Dynin (Columbus) P. A. Fillmore (Halifax) Honorary and Advisory P. A. Fuhrmann (Beer Sheva) Editorial Board: S. Goldberg (College Park) C. Foias (Bloomington) B. Gramsch (Mainz) P. R. Halmos (Santa Clara) G. Heinig (Chemnitz) T. Kailath (Stanford) J. A. Helton (La Jolla) P. D. Lax (New York) M.A. Kaashoek (Amsterdam) M. S. Livsic (Beer Sheva) Operator Theory and Analysis The M.A. Kaashoek Anniversary Volume Workshop in Amsterdam, November 12-14, 1997 H.Bart 1. Gohberg A.C.M. Ran Editors Springer Basel AG Editors: H. Bart A.C.M. Rao Ecooomctrisch lostituut Divisie Wiskunde eo Informatica Erasmus Uoiversiteit Rotterdam Faeulteit der Exaete Wctcnschappeo Postbus 17 3 H Vrije Universiteit 3000 DR Rotterdam De Boelelaan 1081 a The Netherlands 1081 HV Amsterdam e-mail: bart@few.eur.nl The Netherlands e-mail: ran@cs.vu.nl I. Gohberg Departmenl of Mathematical Scienccs Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University 69978 Ramat Aviv Israel e-mail: gohbcrg@math.tau.ac.il 2000 Mathematics Subject Classificalion 47-06 A CIP catalogue record for Ihis book is available from the Library of Congress, Washington D.C .. USA Deutsche Bibliothek Calaloging-in-PlIblication Data Operator theory and analysis: the M. A. Kaashoek anniversary volllme ; workshop in Amslerdam. November 12 - 14, 1997 I H. Bart ... cd .. -Basel; Boston; Bedin : Birkhäuser, 200 1 (Operator theory ; Vol. 122) ISBN 978-3-0348-9502-6 ISBN 978-3-0348-8283-5 (eBook) DOI 10.1007/978-3-0348-8283-5 This work is subject 10 copyright. All rights are rcscrved, whcther the whole or part of the material is concemed, spccifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtaioed. © 2001 Springer Basel AG OriginaHy published by Birkhäuser Verlag ßasel. SW;I,crl.nd in 2001 Softcover reprint of the hardcover I st edition 200 I Printed on acid-frce paper prodllced from chlonne-free pulp. TCF "" Cover design: Heinz Hiltbrunner, Basel ISBN 978-3-0348-9502-6 987654321 Preface On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM.A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of the Vrije Univer siteit, the Stichting VU Computer Science & Mathematics Research Centre, the Thomas Stieltjes Institute for Mathematics, and the department of Economics of the Erasmus University Rotterdam. The organizers would like to take this opportunity to express their gratitude for the support. Without it the workshop would not have been so successful as it was. Table of Contents Preface ................................................................ v Photograph of M.A. Kaashoek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xiii Curriculum Vitae of M.A. Kaashoek .................................... xv List of Publications of M.A. Kaashoek ................................. xix l. Gohberg Opening Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxi H. Bart, A.C.M. Ran and H.I. Woerdeman Personal Reminiscences ............................................ xxxv V. Adamyan and R. Mennicken On the Separation of Certain Spectral Components of Selfadjoint Operator Matrices ...................................... 1 1. Introduction ............................................. 1 2. Conditions for the Separation of Spectral Components ....... 4 3. Example ................................................ 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 D. Alpay, V. Bolotnikov, A. Dijksma and Y. Peretz A Coisometric Realization for Triangular Integral Operators .......... 13 1. Introduction... ... ... ... . ... . ... ... . . .. . .. . ... ... . .. . ... 13 2. Preliminaries and Notations. . .. . ... . ... . ... .. . .. . ... . .... 15 3. Resolvent Operators and Resolvent Equations . . . . . . . . . . . . .. 23 4. The State Spaces 1i£(S) and 1iR(S) ...................... 26 5. The Coisometric Realization. .. . ... . .. ... .. . .. . ... ... .... 34 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 D.Z. Arov and H. Dym Some Remarks on the Inverse Monodromy Problem for 2 x 2 Canonical Differential Systems .... . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 1. Introduction ............................................ 53 2. Monodromy Matrices with Zero 1Ype in the Upper Half Plane .................................. 59 3. Monodromy Matrices with Zero 1Ype in the Lower Half Plane .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 66 viii Table of Contents 4. Monodromy Matrices with Nonzero Type in Both Halfplanes ...................................... 68 5. Reparametrizations ...................................... 71 6. Three Classes of J-inner mvf's and Some Examples ........ 74 7. Another Parametrization. . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. .. 83 References ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 1.A. Ball, T. T. Trent and V Vinnikov Interpolation and Commutant Lifting for Multipliers on Reproducing Kernel Hilbert Spaces ................................ 89 1. Introduction ........................................... 89 2. The Multiplier Space for H(kd) .......................... 93 3. Multipliers for Nevanlinna-Pick-type Kernels. . . . . . . . . . . .. 103 4. Interpolation by Multipliers ............................. 107 5. The Commutant Lifting Theorem for Mk (£, £*) .......... 117 6. Examples and Applications............................. 131 References ............................................... 135 H. Bart, T. Erhardt and B. Silbermann Sums of Idempotents and Logarithmic Residues in Matrix Algebras ................................................. 139 1. Introduction ........................................... 139 2. Preliminaries .......................................... 140 3. Matrix Algebras Generated by a Single Matrix. . . . . . . . . . .. 142 4. Rank, Trace and Decomposition of Matrices .............. 147 5. Logarithmic Residues of Matrix and Fredholm Operator Valued Functions. . . . . . . . . . . . . . . . . . . .. . . . . . . . .. 153 6. The Algebra of Block Upper Triangular Matrices ......... 157 References ............................................... 167 V Derkach, S. Hassi and H. De Snoo Generalized Nevanlinna Functions with Polynomial Asymptotic Behaviour at Infinity and Regular Perturbations ................................ 169 1. Introduction ........................................... 169 2. Preliminaries .......................................... 172 3. Multiplicity of the Generalized Poles for the Sum of Ncfunctions ........................................ 175 4. Polynomial Behaviour at Infinity ........................ 179 5. The Subclasses Induced via Polynomial Asymptotics to NK,o .................................... 180 6. Spectral Characterizations of Regular Rank One Perturbations . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. 184 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 188 Table of Contents IX R.L. Ellis and I. Gohberg Extensions of Matrix Valued Inner Products on Modules and the Inversion Formula for Block Toeplitz Matrices ............... 191 o. Introduction.......................................... 191 1. The Scalar Case ...................................... 192 1.1 Extension of a Scalar Product .......................... 192 1.2 Connections with Prediction Theory and the Extension Theorem............................ 196 1.3 Properties of the Extended Scalar Product ............... 198 1.4 The Inversion Formula ................................ 205 2. The Matrix Case ...................................... 208 2.1 Matrix Valued Inner Products on Modules ............... 208 2.2 Extension of a Matrix-valued Inner Product. . . . . . . . . . . . .. 211 2.3 Properties of the Extended Matrix-valued Inner Product ... 217 2.4 The Gohberg-Heinig Formula .......................... 224 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 227 K.-H. Forster and B. Nagy Linear Independence of Jordan Chains .............................. 229 1. Introduction ........................................... 229 2. Linearly Independent Chains with Respect to a Sequence of Operators .............................. 230 3. Jordan Chains of Holomorphic Operator Functions ........ 234 4. Right (spectral) Roots of a Regular Holomorphic Matrix Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 242 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 244 A.E. Frazho Weighted Nevanlinna-Pick Interpolation ...... . . . . . . . . . . . . . . . . . . . . . .. 247 o. Introduction ........................................... 247 1. Preliminaries .......................................... 249 2. Some State Space Existence Results ..................... 254 3. The Outer Spectral Factor Case .......................... 256 4. A State Space Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 261 5. A State Space Computation for Band Bh ................ 266 ::s 6. The Case when T QT* Q ............................ 269 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 273 1.K. Hale and S.M. Verduyn Lunel Effects of Small Delays on Stability and Control . . . . . . . . . . . . . . . . . . . . .. 275 1. Introduction ........................................... 275 2. The Abstract Setting of the Problem ..................... 278 3. Difference Equations ................................... 282 4. Neutral Delay Differential Equations. . . . . . . . . . . . . . . . . . . .. 293 x Table of Contents 5. Delayed Boundary Control in a Hyperbolic Equation ...... 295 References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 299 I. Karelin and L. Lerer Generalized Bezoutian, Factorization of Rational Matrix Functions and Matrix Quadratic Equations .......................... 303 O. Introduction ........................................... 303 1. Bezoutian of Rational Matrix Functions and Matrix Quadratic Equations ......................... 305 2. Generalized T-Bezoutian of Rational Matrix Functions .... 311 3. Discrete Quadratic Equation and Factorizations of Rational Matrix Functions ............................ 314 References ............................................... 320 P. Lancaster and A. Markus A Note on Factorization of Analytic Matrix Functions ................ 323 1. Introduction ........................................... 323 2. Preliminary Results .................................... 325 3. Spectral Divisors and the Case c(F) = 1 ................. 327 4. When r is a Circle ..................................... 328 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 329 H. Langer and C. Tretter Diagonalization of certain Block Operator Matrices and Applications to Dirac Operators ................................. 331 O. Introduction ........................................... 331 1. Basic Propositions... ... ... ... ... ... . . .. . .. ... ... . .. . .. 333 2. Block Operator Matrices .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 337 3. The Self-adjoint Case. ... . .. . ... .. . .. .. . .. . .. .. . .. . . ... 341 4. The Non-self-adjoint Case ............................. 350 5. Dirac Operators with Potential.. . .. . .. . . ... ... .. . ... .... 354 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 357 A. Ran, L. Rodman and D. Temme Stability of Pseudospectral Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . .. 359 1. Introduction ........................................... 359 2. Dissipative Matrices and their Invariant Subspaces ........ 360 3. Functions of the Form Identity Plus a Contraction ......... 365 4. Positive Real Functions ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 377 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 382 L. Rodman, I.M. Spitkovsky and H.Z. Woerdeman Factorization of Almost Periodic Matrix Functions of Several Variables and Toeplitz Operators .. . . . . . . . . . . . . . . . . . . . . . . .. 385 1. Introduction ........................................... 385 2. Algebras of Almost Periodic Functions and Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 387 Table of Contents xi 3. Toeplitz Operators.. . . . . . . . . . . . . . . ... . . .. .. . ... . . . . . ... 392 4. Factorization of Sectorial Matrix Functions ............... 396 5. Factorization of Hermitian Matrix Functions .. . . . . . . . . . . .. 402 6. One-sided Invertibility of Toeplitz Operators .. . . . . . . . . . . .. 405 7. Robustness and Continuity of Factorizations .............. 407 References ............................................... 413 R. Zuidwijk Simultaneous Similarity of Pairs of Companions to their Transposes 417 1. Introduction ........................................... 417 2. Companion and Bezoutian Matrices ..................... 418 3. Simultaneous Similarity ................................ 422 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 424 Conference Programm ............................................... 427 List of Participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 431

Description:
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici­ pants came from Aus
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.