ebook img

Operator-Related Function Theory and Time-Frequency Analysis: The Abel Symposium 2012 PDF

204 Pages·2015·3.067 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Operator-Related Function Theory and Time-Frequency Analysis: The Abel Symposium 2012

Abel Symposia 9 Karlheinz Gröchenig Yurii Lyubarskii Kristian Seip E ditors Operator-Related Function Theory and Time-Frequency Analysis The Abel Symposium 2012 ABEL SYMPOSIA Edited by the Norwegian Mathematical Society Moreinformationaboutthisseriesat http://www.springer.com/series/7462 s er ett L d n a e orway.Scienc Nof o,y slm Oe d 012,Aca 2n ma ugi osiwe mpNor y She belatt An oftheaardse sB antF. pk ParticibyEiri n e k a t o ot h P Karlheinz GroRchenig • Yurii Lyubarskii (cid:129) Kristian Seip Editors Operator-Related Function Theory and Time-Frequency Analysis The Abel Symposium 2012 123 Editors KarlheinzGroRchenig YuriiLyubarskii FacultyofMathematics KristianSeip UniversityofVienna DepartmentofMathematicalSciences Vienna NorwegianUniversityofScience Austria andTechnology Trondheim Norway ISSN2193-2808 AbelSymposia ISBN978-3-319-08556-2 ISBN978-3-319-08557-9(eBook) DOI10.1007/978-3-319-08557-9 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014956015 MathematicsSubjectClassification(2010):35-XX,42-XX,47-XX,94-XX ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword The Niels Henrik Abel Memorial Fund was established by the Norwegian gov- ernmenton January 1, 2002. The main objective is to honor the great Norwegian mathematicianNielsHenrikAbelbyawardinganinternationalprizeforoutstanding scientificworkinthefieldofmathematics.Theprizeshallcontributetowardsraising the status of mathematics in society and stimulate the interest for science among schoolchildrenandstudents.Inkeepingwith thisobjectivetheBoardof theAbel FundhasdecidedtofinanceanannualAbelSymposium.Thetopicmaybeselected broadly in the area of pure and applied mathematics. The Symposia should be at the highest international level, and serve to build bridges between the national and international research communities. The Norwegian Mathematical Society is responsiblefortheevents.Ithasalsobeendecidedthatthecontributionsfromthese Symposiashouldbe presentedin a seriesofproceedings,andSpringerVerlaghas enthusiastically agreed to publish the series. The board of the Niels Henrik Abel Memorial Fund is confident that the series will be a valuable contribution to the mathematicalliterature. HelgeHolden ChairmanoftheboardoftheNielsHenrikAbelMemorialFund v Preface The topic of the 2012 Abel Symposium was Operator-Related Function Theory and Time-Frequency Analysis. The symposium centered on these two important fields of modernmathematicalanalysisand the profoundinterplaybetween them. Contemporary complex analysis is a powerful tool in harmonic and functional analysis, probability theory, and in applied areas such as control theory and informationtheory.Time-frequencyanalysisoriginatedwithinquantummechanics and signal analysis and has since grown into an independent mathematical dis- cipline, embracing different areas from harmonic analysis and combinatorial and geometricalanalysis.Methods,approaches,and–perhapsevenmoreimportantly– the philosophy of time-frequency analysis allow us to reexamine known results, discover new unexplored areas in classical function theory, and also to establish surprisingandprofoundrelationsbetweenproblemsarisinginseeminglydisparate areas of mathematics. The purpose of these Abel Symposium proceedings is to presentaselectionofthelatestexcitingresultsbytheworld’sleadingresearchersin thesetwoareasofresearch. The Abel Symposium was hosted at the Norwegian Academy of Science and Letters, Oslo, August 20–24, 2012. Attendance was by invitation only, and the symposium had a total of 61 participants, 23 of whom were from Norwegianuniversities.TheScientificCommitteeconsistedofKarlheinzGröchenig (Vienna),MichaelLacey(GeorgiaTech),JoaquimOrtega-Cerdà(Barcelona),Yurii Lyubarskii(Trondheim),KristianSeip(Trondheim)andMikhailSodin(TelAviv). Talks were presentedby Artur Avila (Paris), IngridDaubechies(Duke),László Erdo˝s(Munich),HansFeichtinger(Vienna),StéphaneJaffard(Paris-Est), Izabella Łaba (Vancouver), Nikolai Makarov (Caltech), Clément Mouhot (Cambridge), Alexander Olevskii (Tel Aviv), Alexei Poltoratskii (Texas A&M), Eero Saksman (Helsinki), Eric Sawyer (Hamilton), Johannes Sjöstrand (Dijon), Sergei Treil (Providence)andYosefYomdin(Rehovot). vii viii Preface These proceedingsinclude selected lecturespresented at the Abel Symposium. Theeditorswouldliketothankallspeakerswhohavepresentedtheirtalksinthese proceedings. The participants were: Aleksei Aleksandrov, Alexandru Aleman, Artur Avila, Anton Baranov, Yurii Belov, Christian Berg, Bo Berndtsson, Toke Meier Carlsen, Dmitrii Chelkak, Ole Christensen, Jacob S. Christiansen, Ingrid Daubechies, Trond Digernes, Mats Ehrnström, Kjersti Solberg Eikrem, László Erdo˝s, Hans Feichtinger,JohnErikFornæss,SigridGrepstad,KarlheinzGröchenig,AnttiHaimi, HaraldHanche-Olsen,HåkanHedenmalm,HelgeHolden,AlexanderIgamberdiev, Marius Irgens, Georgy Ivanov, Stéphane Jaffard, Kenneth H. Karlsen, Izabella Łaba, Michael Lacey, Magnus Landstad, Peter Lindqvist, Alexander Logunov, Yurii Lyubarskii, Erik Løw, Nikolai Makarov, Eugenia Malinnikova, Clément Mouhot, Alexander Olevskii, Jan-Fredrik Olsen, Eduard Ortega, Joaquim Ortega- Cerdà,HenrikLaurbergPedersen,Karl-MikaelPerfekt,AlexeiPoltoratskii,Sandra Pott, Maria Carmen Reguera, Nils Henrik Risebro, Eero Saksman, Eric Sawyer, Kristian Seip, Sigmund Selberg, Johannes Sjöstrand, Arne Stray, Alexey Tochin, SergeiTreil,FranciscoVillarroya,ErlendFornæssWold,YosefYomdinandPavel Zatitskyi. We gratefully acknowledge the financial support providedby the Niels Henrik Abel Memorial Fund, and by the Centre for Advanced Study at the Norwegian Academyof Science and Letters. The kind assistance of Tanja Opheim and Marit F.Strømisgreatlyappreciated.Lastly,ourthanksgotoOleFredrikBrevigforhis assistanceinthepreparationoftheseproceedings. Trondheim,Norway YuriiLyubarskii KristianSeip Vienna,Austria KarlheinzGröchenig Contents A BridgeBetweenGeometricMeasureTheoryandSignal Processing:MultifractalAnalysis.............................................. 1 P.Abry,S.Jaffard,andH.Wendt 1 Introduction.................................................................... 1 2 PointwiseRegularity:TwoExamples........................................ 7 2.1 TaylorPolynomialandPeanoDerivatives............................. 7 2.2 LévyFunctions......................................................... 8 2.3 BinomialMeasures...................................................... 12 3 MathematicalNotionsPertinentinMultifractalAnalysis................... 15 3.1 ToolsDerivedfromGeometricMeasureTheory...................... 15 3.2 ToolsDerivedfromPhysicsandSignalProcessing................... 19 4 WaveletBasedScalingFunctions ............................................ 21 4.1 WaveletBases........................................................... 21 4.2 TheWaveletScalingFunction.......................................... 25 4.3 WaveletLeaders......................................................... 30 4.4 Estimationofthep-Oscillationandp-Variation...................... 32 5 TheCurseofConcavity....................................................... 34 5.1 MathematicalExamplesofNon-concaveSpectra..................... 35 5.2 TheLargeDeviationLeaderSpectrum ................................ 39 5.3 TheQuantileLeaderSpectrum......................................... 42 5.4 WeightedLegendreTransform......................................... 46 6 MultifractalAnalysisofNon-locallyBoundedFunctions................... 47 6.1 ConvergenceandDivergenceRatesforWaveletSeries............... 47 6.2 PointwiseLq Regularity:TheUseofq-Leaders ...................... 50 References......................................................................... 54 LocalandGlobalGeometryofPronySystemsandFourier ReconstructionofPiecewise-SmoothFunctions .............................. 57 D.BatenkovandY.Yomdin 1 Introduction.................................................................... 57 2 ThePronyProblem............................................................ 58 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.