ebook img

Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design PDF

492 Pages·2019·9.883 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design

OPERATOR-ADAPTED WAVELETS, FAST SOLVERS, AND NUMERICAL HOMOGENIZATION Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of makingestimationswithpartialinformation.Thisbookexplorestheseconnectionsfroma gameanddecisiontheoreticperspective,showinghowtheyconstituteapathwaytodevel- oping simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator-adapted wavelets, fast solvers, and Gaussian processes. This perspective reveals much of their essential anatomy and greatly facilitates advances in these areas, thereby appearing to establish a general principle for guiding the process of scientific discovery. This book is designed for graduate students, researchers, and engineers in mathematics, appliedmathematics,andcomputerscience,andparticularlyresearchersinterestedindraw- ingonanddevelopingthisinterfaceamongapproximation,inference,andlearning. houman owhadi isProfessorofAppliedandComputationalMathematicsandControl and Dynamical Systems in the Department of Computing and Mathematical Sciences of theCaliforniaInstituteofTechnology. HeearnedanM.Sc.fromthe E´colePolytechnique in 1994 and was a high civil servant in the Corps des Ponts et Chausse´es until 2001. He earnedhisPh.D.inprobabilitytheoryfromtheE´colePolytechniqueFe´de´raledeLausanne in 2001 under the supervision of Ge´rard Ben Arous and joined the Centre National de la Recherche Scientifique (CNRS) during the same year following a postdoctorate position at Technion. He moved to the California Institute of Technology in 2004. Owhadi serves asanassociateeditoroftheSIAMJournalonNumericalAnalysis,theSIAM/ASAJournal onUncertaintyQuantification,theInternationalJournalofUncertaintyQuantification,the Journal of Computational Dynamics, and Foundations of Data Science. He is one of the maineditorsoftheSpringerHandbookofUncertaintyQuantification.Hisresearchinterests concerntheexplorationofinterplaysamongnumericalapproximation,statisticalinference, andlearningfromagametheoreticperspective,especiallythefacilitation/automationpossi- bilitiesemergingfromtheseinterplays.Owhadiwasawardedthe2019GermundDahlquist PrizebytheSocietyforIndustrialandAppliedMathematics. clint scovel is Research Associate in the Computing and Mathematical Sciences DepartmentattheCaliforniaInstituteofTechnology,aftera26-yearcareeratLosAlamos NationalLaboratory,includingfoundationalresearchinsymplecticalgorithmsandmachine learning.HereceivedhisPh.D.inmathematicsfromtheCourantInstituteofMathematics atNewYorkUniversityin1983underthesupervisionofHenryMcKean. TheCambridgeMonographsonAppliedandComputationalMathematicsseriesreflectsthecrucial role of mathematical and computational techniques in contemporary science. The series publishes expositionsonallaspectsofapplicableandnumericalmathematics,withanemphasisonnewdevel- opmentsinthisfast-movingareaofresearch. State-of-the-artmethodsandalgorithmsaswellasmodernmathematicaldescriptionsofphysical andmechanicalideasarepresentedinamannersuitedtograduateresearchstudentsandprofessionals alike.Soundpedagogicalpresentationisaprerequisite.Itisintendedthatbooksintheserieswillserve toinformanewgenerationofresearchers. Acompletelistofbooksintheseriescanbefoundat www.cambridge.org/mathematics. Recenttitlesincludethefollowing: 19. Matrixpreconditioningtechniquesandapplications,KeChen 20. Greedyapproximation,VladimirTemlyakov 21. Spectralmethodsfortime-dependentproblems,JanHesthaven,SigalGottlieb&DavidGottlieb 22. Themathematicalfoundationsofmixing,RobSturman,JulioM.Ottino&StephenWiggins 23. Curveandsurfacereconstruction,TamalK.Dey 24. Learningtheory,FelipeCucker&DingXuanZhou 25. Algebraicgeometryandstatisticallearningtheory,SumioWatanabe 26. Apracticalguidetotheinvariantcalculus,ElizabethLouiseMansfield 27. Differenceequationsbydifferentialequationmethods,PeterE.Hydon 28. MultiscalemethodsforFredholmintegralequations,ZhongyingChen,CharlesA.Micchelli& YueshengXu 29. Partialdifferentialequationmethodsforimageinpainting,Carola-BibianeScho¨nlieb 30. Volterraintegralequations,HermannBrunner 31. Symmetry,phasemodulationandnonlinearwaves,ThomasJ.Bridges 32. Multivariateapproximation,VladimirTemlyakov 33. Mathematical modelling of the human cardiovascular system, Alfio Quarteroni, Luca Dede’, AndreaManzoni&ChristianVergara 34. Numericalbifurcationanalysisofmaps,YuriA.Kuznetsov&HilG.E.Meijer 35. Operator-adapted wavelets, fast solvers, and numerical homogenization, Houman Owhadi & ClintScovel Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization From a Game Theoretic Approach to Numerical Approximation and Algorithm Design HOUMAN OWHADI CaliforniaInstituteofTechnology CLINT SCOVEL CaliforniaInstituteofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108484367 DOI:10.1017/9781108594967 ©HoumanOwhadiandClintScovel2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedintheUnitedKingdombyTJInternationalLtd.,Padstow,Cornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Owhadi,Houman,author.|Scovel,Clint,1955–author. Title:Operator-adaptedwavelets,fastsolvers,andnumericalhomogenization:fromagametheoreticapproach tonumericalapproximationandalgorithmdesign/HoumanOwhadi(CaliforniaInstituteofTechnology), ClintScovel(CaliforniaInstituteofTechnology). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Series:Cambridgemonographsonappliedandcomputationalmathematics;35 Identifiers:LCCN2019007312|ISBN9781108484367(hardback) Subjects:LCSH:Approximationtheory.|Estimationtheory.|Mathematicalstatistics. Classification:LCCQA221.O942019|DDC515–dc23 LCrecordavailableathttps://lccn.loc.gov/2019007312 ISBN978-1-108-48436-7Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ForAreen,Julien,Kailo,andAne´ Contents Preface pagexiii Acknowledgments xiv ReadingGuide xv 1 Introduction 1 1.1 StatisticalNumericalApproximation 1 1.2 TheGameTheoreticPerspective 4 1.3 IntheSettingofSobolevSpaces 7 1.4 UncertaintyQuantificationandProbabilisticNumerics 19 1.5 StructureoftheBook 20 PartI TheSobolevSpaceSetting 23 2 SobolevSpaceBasics 25 2.1 TheSobolevSpace 25 2.2 TheOperatorandItsCorrespondingEnergyNorm 27 3 OptimalRecoverySplines 34 3.1 Information-BasedComplexity 34 3.2 OptimalRecovery 35 3.3 VariationalPropertiesofOptimalRecoverySplines 36 4 NumericalHomogenization 38 4.1 AShortReviewofClassicalHomogenization 38 4.2 TheNumericalHomogenizationProblem 47 4.3 IndicatorandDiracDeltaFunctionsasφ 51 i 4.4 Accuracy 54 4.5 ExponentialDecay 54 4.6 LocalPolynomialsasφ 58 i,α vii viii Contents 4.7 AShortReviewoftheLocalizationProblem 59 4.8 A Short Review of Optimal Recovery Splines in Numerical Analysis 61 5 Operator-AdaptedWavelets 63 5.1 AShortReview 63 5.2 OverviewoftheConstructionofOperator-AdaptedWavelets 65 5.3 Non-adaptedPrewaveletsasφ(k) 66 i 5.4 Operator-AdaptedPrewavelets 73 5.5 MultiresolutionDecompositionofHs((cid:4)) 74 0 5.6 Operator-AdaptedWavelets 76 5.7 UniformlyBoundedConditionNumbers 79 5.8 MultiresolutionDecompositionofu ∈ Hs((cid:4)) 81 0 5.9 InterpolationMatrixR(k−1,k) 84 5.10 TheDiscreteGambletDecomposition 86 5.11 LocalPolynomialsasφ(k) 88 i 6 FastSolvers 90 6.1 AShortReview 90 6.2 TheGambletTransformandSolve 92 6.3 Sparse and Rank-Revealing Representation of the Green’s Function 94 6.4 NumericalIllustrationsoftheGambletTransformandSolve 95 6.5 TheFastGambletTransform 99 PartII TheGameTheoreticApproach 103 7 GaussianFields 105 7.1 GaussianRandomVariable 105 7.2 GaussianRandomVector 106 7.3 GaussianSpace 108 7.4 ConditionalCovarianceandPrecisionMatrix 109 7.5 GaussianProcess 112 7.6 GaussianMeasureonaHilbertSpace 113 7.7 GaussianFieldonaHilbertSpace 115 7.8 Canonical Gaussian Field on (Hs((cid:4)),(cid:3)·(cid:3)) in Dual Pairing 0 with(H−s((cid:4)),(cid:3)·(cid:3)∗) 116 7.9 Degenerate Noncentered Gaussian Fields on Hs((cid:4)) in Dual 0 PairingwithH−s((cid:4)) 118 8 OptimalRecoveryGamesonHs((cid:4)) 119 0 8.1 ASimpleFiniteGame 119 8.2 ASimpleOptimalRecoveryGameonRn 122

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.