ebook img

Operational calculus and related topics PDF

408 Pages·2006·2.204 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Operational calculus and related topics

Operational Calculus and Related Topics H.-J. Glaeske Friedrich-Schiller University Jena, Germany A.P. Prudnikov (Deceased) K.A. Skòrnik Institute of Mathematics Polish Academy of Sciences Katowice, Poland Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor & Francis Group, an informa business © 2006 by Taylor & Francis Group, LLC Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor and Francis Group, LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 1-58488-649-8 (Hardcover) International Standard Book Number-13: 978-1-58488-649-5 (Hardcover) Library of Congress Card Number 2006045622 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Glaeske, Hans-Jürgen. Operational calculus and related topics / Hans-Jürgen Glaeske, Anatoly P. Prudnikov, Krystyna A. Skórnik. p. cm. -- (Analytical methods and special functions ; 10) ISBN 1-58488-649-8 (alk. paper) 1. Calculus, Operational. 2. Transformations (Mathematics) 3. Theory of distributions (Func- tional analysis) I. Prudnikov, A. P. (Anatolii Platonovich) II. Skórnik, Krystyna. III. Title. IV. Series. QA432.G56 2006 515’.72--dc22 2006045622 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2006 by Taylor & Francis Group, LLC C6498_Discl.indd 1 5/5/06 7:08:15 PM In memory of A. P. Prudnikov January 14, 1927 — January 10, 1999 © 2006 by Taylor & Francis Group, LLC Contents Preface xi List of Symbols xv 1 Integral Transforms 1 1.1 Introduction to Operational Calculus . . . . . . . . . . . . . . . . . . . . . 1 1.2 Integral Transforms – Introductory Remarks . . . . . . . . . . . . . . . . . 5 1.3 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.4 The Inversion Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 27 1.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.3 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.4 The Complex Inversion Formula . . . . . . . . . . . . . . . . . . . . 37 1.4.5 Inversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.4.6 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.4.7 Remarks on the Bilateral Laplace Transform . . . . . . . . . . . . . 47 1.4.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.5 The Mellin Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1.5.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 55 1.5.2 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.5.3 The Complex Inversion Formula . . . . . . . . . . . . . . . . . . . . 62 1.5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 1.6 The Stieltjes Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 1.6.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 67 1.6.2 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1.6.3 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 1.6.4 Inversion and Application . . . . . . . . . . . . . . . . . . . . . . . . 75 © 2006 by Taylor & Francis Group, LLC viii 1.7 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 1.7.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . 78 1.7.2 Operational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 81 1.7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 1.8 Bessel Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 1.8.1 The Hankel Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 85 1.8.2 The Meijer (K-) Transform . . . . . . . . . . . . . . . . . . . . . . . 93 1.8.3 The Kontorovich–Lebedev Transform . . . . . . . . . . . . . . . . . 100 1.8.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 1.9 The Mehler–Fock Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 107 1.10 Finite Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 1.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 1.10.2 The Chebyshev Transform . . . . . . . . . . . . . . . . . . . . . . . . 116 1.10.3 The Legendre Transform. . . . . . . . . . . . . . . . . . . . . . . . . 122 1.10.4 The Gegenbauer Transform . . . . . . . . . . . . . . . . . . . . . . . 131 1.10.5 The Jacobi Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 137 1.10.6 The Laguerre Transform . . . . . . . . . . . . . . . . . . . . . . . . . 144 1.10.7 The Hermite Transform . . . . . . . . . . . . . . . . . . . . . . . . . 153 2 Operational Calculus 163 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 2.2 Titchmarsh’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 2.3.1 Ring of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 2.3.2 The Field of Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 185 2.3.3 Finite Parts of Divergent Integrals . . . . . . . . . . . . . . . . . . . 190 2.3.4 Rational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 2.3.5 Laplace Transformable Operators . . . . . . . . . . . . . . . . . . . . 205 2.3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 2.3.7 Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 2.4 Bases of the Operator Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 219 2.4.1 Sequences and Series of Operators . . . . . . . . . . . . . . . . . . . 219 2.4.2 Operator Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 2.4.3 The Derivative of an Operator Function . . . . . . . . . . . . . . . . 229 2.4.4 Properties of the Continuous Derivative of an Operator Function . . 229 2.4.5 The Integral of an Operator Function . . . . . . . . . . . . . . . . . 232 2.5 Operators Reducible to Functions . . . . . . . . . . . . . . . . . . . . . . . 236 2.5.1 Regular Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 © 2006 by Taylor & Francis Group, LLC ix 2.5.2 The Realization of Some Operators . . . . . . . . . . . . . . . . . . . 239 2.5.3 Efros Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 2.6 Application of Operational Calculus . . . . . . . . . . . . . . . . . . . . . . 247 2.6.1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . 247 2.6.2 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . 258 3 Generalized Functions 271 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 3.2 Generalized Functions — Functional Approach . . . . . . . . . . . . . . . . 272 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 3.2.2 Distributions of One Variable . . . . . . . . . . . . . . . . . . . . . . 274 3.2.3 Distributional Convergence . . . . . . . . . . . . . . . . . . . . . . . 279 3.2.4 Algebraic Operations on Distributions . . . . . . . . . . . . . . . . . 280 3.3 Generalized Functions — Sequential Approach . . . . . . . . . . . . . . . . 287 3.3.1 The Identification Principle . . . . . . . . . . . . . . . . . . . . . . . 287 3.3.2 Fundamental Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 289 3.3.3 Definition of Distributions . . . . . . . . . . . . . . . . . . . . . . . . 297 3.3.4 Operations with Distributions . . . . . . . . . . . . . . . . . . . . . . 300 3.3.5 Regular Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 3.4 Delta Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 3.4.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . 311 3.4.2 Distributions as a Generalization of Continuous Functions . . . . . . 317 3.4.3 Distributions as a Generalization of Locally Integrable Functions . . 320 3.4.4 Remarks about Distributional Derivatives . . . . . . . . . . . . . . . 322 3.4.5 Functions with Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 3.4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3.5 Convergent Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 3.5.1 Sequences of Distributions . . . . . . . . . . . . . . . . . . . . . . . . 332 3.5.2 Convergence and Regular Operations. . . . . . . . . . . . . . . . . . 339 3.5.3 Distributionally Convergent Sequences of Smooth Functions . . . . . 341 3.5.4 ConvolutionofDistributionwithaSmoothFunctionofBoundedSup- port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 3.5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 3.6 Local Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 3.6.1 Inner Product of Two Functions . . . . . . . . . . . . . . . . . . . . 347 3.6.2 Distributions of Finite Order . . . . . . . . . . . . . . . . . . . . . . 350 3.6.3 The Value of a Distribution at a Point . . . . . . . . . . . . . . . . . 352 3.6.4 The Value of a Distribution at Infinity . . . . . . . . . . . . . . . . . 355 © 2006 by Taylor & Francis Group, LLC x 3.6.5 Support of a Distribution . . . . . . . . . . . . . . . . . . . . . . . . 355 3.7 Irregular Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 3.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 3.7.2 The Integral of Distributions . . . . . . . . . . . . . . . . . . . . . . 357 3.7.3 Convolution of Distributions . . . . . . . . . . . . . . . . . . . . . . 369 3.7.4 Multiplication of Distributions . . . . . . . . . . . . . . . . . . . . . 375 3.7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 3.8 Hilbert Transform and Multiplication Forms . . . . . . . . . . . . . . . . . 381 3.8.1 Definition of the Hilbert Transform . . . . . . . . . . . . . . . . . . . 381 3.8.2 Applications and Examples . . . . . . . . . . . . . . . . . . . . . . . 383 References 389 Index 401 © 2006 by Taylor & Francis Group, LLC Preface The aim of this book is to provide an introduction to operational calculus and related topics: integral transforms of functions and generalized functions. This book is a cross be- tweenatextbookforstudentsofmathematics,physicsandengineeringandamonographon thissubject. Itiswellknownthatintegraltransforms, operationalcalculusandgeneralized functions are the backbone of many branches of pure and applied mathematics. Although centuriesold,thesesubjectsarestillunderintensivedevelopmentbecausetheyareusefulin various problems of mathematics and other disciplines. This stimulates continuous interest in research in this field. Chapter 1 deals with integral transforms (of functions), historically the first method to justifyOliverHeaviside’s(algebraic)operationalcalculusinthefirstquarterofthetwentieth century. Methodsconnectedwiththeuseofintegraltransformshavegainedwideacceptance in mathematical analysis. They have been sucessfully applied to the solution of differential and integral equations, the study of special functions, the evaluation of integrals and the summation of series. Thesectionsdealwithconditionsfortheexistenceoftheintegraltransformsinconsider- ation, inversion formulas, operational rules, as for example, differentiation rule, integration rules and especially the definition of a convolution f∗g of two functions f and g, such that for the transform T it holds that T[f ∗g]=T[f]·T[g]. Sometimesapplicationsaregiven. Becauseofthespecialnatureofthisbooksomeextensive proofsareonlysketched. Thereaderinterestedinmoredetailisreferredforexampletothe textbooks of R.V. Churchill [CH.2], I.W. Sneddon [Sn.2], and A.H. Zemanian [Ze.1]. Short versions of many integral transforms can be found in A.I. Zayed’s handbook Function and Generalized Function Transformations [Za]. For tables of integral transforms we refer to [EMOT], [O.1]-[O.3], [OB], [OH], and [PBM], vol. IV, V. InthisbookwedealonlywithintegraltransformsforR1-functions. Thereaderinterested in the multidimensional case is referred to [BGPV]. In Chapter 2 (algebraic) operational calculus is considered. This complete return to the original operator point of view of Heaviside’s operational calculus was done by Jan Mikusin´ski; see [Mi.7]. He provided a strict operator basis without any references to the theory of the Laplace transform. His theory of convolution quotients provides a clear and simple basis for an operational calculus. In contrast to the definition of the multiplication © 2006 by Taylor & Francis Group, LLC xii of functions f and g, continuous on [0,∞) given by J. Mikusin´ski, Z t (1) (f ∗g)(t)= f(x)g(t−x)dx, 0 in Chapter 2 functions with a continuous derivative on [0,∞) are considered and the mul- tiplication is defined by means of d Z t (2) (f ∗g)(t)= f(x)g(t−x)dx. dt 0 Both definitions have advantages and disadvantages. Some formulas are simpler in the one case, otherwise in the case of definition (2). In the case of definition (2) the ∗-product of two functions constant on [0,∞), f(x)=a, g(x)=b, x∈[0,∞) equals a function h with h(x) = ab, x ∈ [0,∞), such that the ∗-product of two numbers equals their usual product. In the case of definition (1) this product equals abt. In both cases the field of operators generated by the original space of functions is the same; the field of Mikusin´ski operators. For our version of the starting point we refer to L. Berg, [Be.1] and [DP]. After an introduction a proof of Titchmarsh’s theorem is given. Then the operator calculus is derived and the basis of the analysis of operators is developed. Finally, applications to the solution of ordinary and partial differential equations are given. Chapter3consistsofthetheoryofgeneralizedfunctions. Variousinvestigationshavebeen put forward in the middle of the last century. The mathematical problems encountered are twofold: first,tofindananalyticalinterpretationfortheoperationsperformedandtojustify these operations in terms of the interpretation and, second, to provide an adequate theory of Dirac’s, δ-function, which is frequently used in physics. This “function” is often defined by means of Z +∞ δ(x)=0, x6=0, δ(x)ϕ(x)dx=ϕ(0), −∞ for an arbitrary continuous function ϕ. It was introduced by the English physicist Paul Dirac in his quantum mechanics in 1927; see [Dir]. It was soon pointed out that from the purely mathematical point of view this definition is meaningless. It was of course clear to Dirac himself that the δ-function is not a function in the classical meaning and, what is important, that it operates as an operator (more precisely as a functional), that related to each continuous function ϕ its value at the point zero, ϕ(0); see Laurent Schwartz [S.2]. Similar to the case of operational calculus of Chapter 2, J. Mikusin´ski together with R. Sikorski developed an elementary approach to generalized functions, a so-called sequential approach; see [MiS.1] and [AMS]. They did not use results of functional analysis, but only basic results of algebra and analysis. In Chapter 3 we follow this same line. © 2006 by Taylor & Francis Group, LLC Preface xiii Because this book is not a monograph, the reference list at the end of the book is not complete. We assume that the reader is familiar with the elements of the theory of algebra and analysis. We also assume a knowledge of the standard theorems on the interchange of limit processes. Some knowledge of Lebesgue integration, such Fubini’s theorem, is necessary becauseintegralsareunderstoodasLebesgueintegrals. Finally,thereadershouldbefamil- iar with the basic subject matter of a one-semester course in the theory of functions of a complex variable, including the theory of residues. Formulas for special functions are taken from textbooks on special functions, such as [E.1], [PBM] vols. I-III, [NU], and [Le]. The advantage of this book is that both the analytical and algebraic aspects of opera- tional calculus are considered equally valuable. We hope that the most important topics of this book may be of interest to mathematicians and physicists interested in application- relevant questions; scientists and engineers working outside of the field of mathematics who apply mathematical methods in other disciplines, such as electrical engineering; and undergraduate- and graduate-level students researching a wide range of applications in di- verse areas of science and technology. The idea for this book began in December 1994 during A.P. Prudnikov’s visit to the Mathematical Institute of the Friedrich Schiller University in Jena, Germany. The work wasenvisionedastheculminationofalengthycollaboration. Unfortunately,Dr. Prudnikov passed away on January 10, 1999. After some consideration, we decided to finish our joint work in his memory. This was somewhat difficult because Dr. Prudnikov’s work is very extensive and is only available in Russian. We were forced to be selective. We hope that our efforts accurately reflect and respect the memory of our colleague. Hans-Juergen Glaeske and Krystyna A. Sk´ornik © 2006 by Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.