TopologyanditsApplications136(2004)37–85 www.elsevier.com/locate/topol Open problems in topology Elliott Pearl AtlasConferencesInc.,Toronto,ON,Canada Received22May2003;receivedinrevisedform5June2003 Abstract Thisisacumulativestatusreporton the1100 problemslistedinthevolumeOpenProblemsin Topology(North-Holland,1990),editedbyJ.vanMillandG.M.Reed. 2003ElsevierB.V.Allrightsreserved. MSC:54-06 Keywords:Problems;Solutions Introduction This is a cumulative status report on the 1100 problems listed in the volume Open ProblemsinTopology(North-Holland,1990),editedbyJ.vanMillandG.M.Reed[192]. Thebookisout-of-printbutthepublisherhasmadeitfreelyavailableonline.Thisreportis acompleterevisionofthesevenstatusreportsthathaveappearedinthejournalTopology anditsApplications[193–198,221]. Thisreportcontainsa matrix(Figs. 1 and 2) of numbersindicatingthe status of each problem. On the matrix, a numbered box is shaded if the problem has been answered absolutely or shown to be independent of ZFC. A numbered box is half-shaded if the problemhasbeenansweredinpart,foraspecialcase,orconsistently,sincethevolumewas published.Thereare199fullyshadedboxesand76half-shadedboxes.Itisremarkablethat three-quartersof the problemsremain openafter thirteen years. We hopethat this report andtheavailabilityofthebookwillregenerateinterestintheseproblems. E-mailaddress:[email protected](E.Pearl). 0166-8641/$–seefrontmatter 2003ElsevierB.V.Allrightsreserved. doi:10.1016/S0166-8641(03)00183-4 38 E.Pearl/TopologyanditsApplications136(2004)37–85 Dow’squestionsbyA.Dow Problem2.FindnecessaryandsufficientconditionsonacompactspaceXsuchthatω×X has remote points. In the notes to this problem, Dow conjectured that there is a model satisfying that if X is compactand ω×X has remote points then X has an open subset with countable cellularity. However, Dow [93] showed that there is a compact, nowhere c.c.c.spaceXsuchthatω×Xhasremotepoints. Problem5.Yes.J.BakerandK.Kunen[15]provedthatifκisaregularcardinal,thenthere isaweakPκ+-pointinU(κ),thespaceofuniformultrafiltersonκ.Problem5onlyasked forthecaseκ=ω1.TheweakPκ+-pointproblemisstillopenforsingularcardinalsκ. Problem8.Isthereaclopensubsetofthesubuniformultrafiltersofω whoseclosurein 1 βω1 isitsonepointcompactification?Yes,underPFA(S.Todorcˇevic´[274,§8]). Problem 9. A. Dow and J. Vermeer [100] provedthat it is consistent that the σ-algebra ofBorelsetsoftheunitintervalisnotthequotientofanycompleteBooleanalgebra.By Stoneduality,thereisabasicallydisconnectedspaceofweightcthatcannotbeembedded intoanextremallydisconnectedspace. Problem 13. Is every compact space of weight ω homeomorphicto the remainder of a 1 ψ-space?A.DowandR.Frankiewicz[94]showedthatanegativeanswerisconsistent. Problem14(A.Błaszczyk).Istherea compactc.c.c.spaceofweightc whosedensityis notlessthanc?M.RabusandS.Shelah[227]provedthateveryuncountablecardinalcan bethetopologicaldensityofac.c.c.Booleanalgebra. Problem 16. Does countable closed tightness imply countable tightness in compact spaces? I. Juhász and Z. Szentmiklóssy [143] provedthat if κ is an uncountableregular cardinaland a compactHausdorffspace X containsa free sequence of length κ, then X alsocontainssuchasequencethatisconvergent. Stepra¯ns’sproblemsbyJ.Stepra¯ns Problem 19. Yes, there is an ω-Toronto space. An α-Toronto space is a scattered space ofCantor–Bendixsonrank α whichis homeomorphictoeach ofits subspacesofrankα. G.GruenhageandJ.Moore[128]constructedcountableα-Torontospacesforeachα(cid:1)ω. Gruenhagealso constructedconsistent examplesof countableα-Toronto spaces for each α<ω . 1 Problem20.Yes,J.Stepra¯nsconstructedahomogeneous,idempotentfilteronω. Problem23.SolvedbyA.Krawczyk. E.Pearl/TopologyanditsApplications136(2004)37–85 39 Problem24.SolvedbyA.Krawczyk. Problem26.No,S.Schuder[245]provedthatI(2)(cid:1)[0,1]A(2)doesnothold.Thegraph G={(x,x− 1): 1 (cid:1)x(cid:1) 2}on[0,1]canbecolouredbyf :[0,1]→{0,1},f(x)=1iff 3 3 3 1 (cid:1)x< 2,butthereisnoA(2)-colouringg:[0,1]→A(2)forG. 3 3 Problem 30. If every autohomeomorphism of N∗ is somewhere trivial, is then every autohomeomorphismtrivial?ThisisthesameasProblem205.S.Shelah[251,IV]proved thatitisconsistentthatallautohomeomorphismsaretrivial.S.ShelahandJ.Stepra¯ns[258] provedthatitisconsistentwithMAω1 thatthereisanontrivialautohomeomorphismofN∗, yetallautohomeomorphismsaresomewheretrivial.In[259],theyprovethatMAdoesnot implythatallautohomeomorphismsaresomewheretrivial. Tall’sproblemsbyF.D.Tall Problem 43. Yes, G. Gruenhage and P. Koszmider [126] constructed a consistent coun- terexample to the Arhangel’ski˘ı–Tall problem: a locally compact, normal, metacompact spacethatisnotparacompact. Problem44.SeeS.Watson’sProblem92. Problem 48. If κ is a singular strong limit cardinal and X is a < κ-collectionwise Hausdorffand normal(or countablyparacompact)space of character <κ, is then X is κ-collectionwiseHausdorff?UnderSCH,N.Kemoto[156]provedthisconjecture. Problem49.P.Szeptycki[270]provedthatthereareEastonmodelswherefirstcountable, ℵ -para-LindelöfspacesarecollectionwiseHausdorff. 1 Problem50.T.LaBergeandA.Landver[172]provedfromasupercompactcardinalthatit isconsistentthatfirstcountable,<ℵ -collectionwiseHausdorffspacesareweakly(cid:1)ℵ - 2 2 collectionwiseHausdorff. Problem 57. Yes, there is a ZFC example of a screenable normal space that is not collectionwise normal. By a theorem of M.E. Rudin [233], it suffices to construct a screenablenormalspacethatisnotparacompact.Z.Balogh[20]constructedsuchaspace. Balogh’sexampleprovidesapositiveanswertoProblem119. ℵ ℵ Problem 63. Does 2 0 <2 1 imply there is an S-space? (or an L-space?) T. Eisworth, ℵ ℵ P.NyikosandS.Shelah[115]provedthatitisconsistentwith2 0 <2 1 thatthereareno locallycompact,firstcountableS-spaces. Problem 66. P. Larson and F.D. Tall [173] proved that there is a c.c.c. partial order forcingthateveryhereditarilynormal,firstcountablespacesatisfyingthecountablechain conditionishereditarilyseparable. 40 E.Pearl/TopologyanditsApplications136(2004)37–85 ProblemsIwishIcouldsolvebyS.Watson Problem69. A. Dow [92]showed thatit is consistentandindependentof CH that every + normalspaceofcharacteratmostc iscollectionwiseHausdorff.Thisprovidesanegative answertobothProblems69and70. Problem70.No,seeProblem69. Problem77.SeeF.D.Tall’sProblem48. Problem84.No,D.Shakhmatov,F.D. TallandS.Watson[248]constructeda consistent exampleofanormalMoorespacewhichisnotsubmetrizable.Whetherapositiveanswer canbeestablishedwithoutusingalargecardinalremainsopen.Also,Tall[271]hasshown that under the assumption of a supercompact cardinal, there is a model of set theory in whichallnormalMoorespacesaresubmetrizable,butinwhichthereexistnonmetrizable normalMoorespaces. Problem85.SeeF.D.Tall’sProblem43. Problem86.Arecountablyparacompact,locallycompact,metacompactspacesparacom- pact? The counterexampleof G. Gruenhage and P. Koszmider to the Arhangel’ski˘ı–Tall problem(seeProblem43)iscountablyparacompact. Problem87.Yes.G.GruenhageandP.Koszmider[127]showedthat,underMAℵ ,normal, 1 locallycompact.meta-Lindelöfspacesareparacompact. Problem88.DoesZFCimplythatthereisaperfectlynormal,locallycompactspacewhich isnotparacompact?P.LarsonandF.D.Tall[173]provedthatifitisconsistentthatthereis asupercompactcardinal,thenitisconsistentthateveryperfectlynormal,locallycompact spaceisparacompact. Problem 92. Are normal, locally compact, locally connected spaces collectionwise normal?Z.Balogh[18]showedthatitisconsistent,relativetotheexistenceofacompact cardinal,thatlocally compact,normalspaces are collectionwisenormal.It remainsopen whetherlargecardinalsareneededtoestablishapositiveanswer. ℵ ℵ Problem94.Does2 0 <2 1 implythatseparable,firstcountable,countablyparacompact spaces are collectionwise Hausdorff? R. Knight [159] announced that there is model of 2ℵ0 <2ℵ1 such that there exists an uncountable subset of R that is a ∆-set. Note that in such a model there must be dominatingfamily in ω1ω of cardinality 2ω. The cardinal arithmeticofKnight’smodelseemstobeflexibleenoughtoobtainaone-to-onecontinuum function.(The topologicalexample is the tangent-disk space over this subset of R; such a tangent-disk space is countably paracompact iff the subset is a ∆-set.) This provides negative answers to both Problems 94 and 96. In [158], Knight constructed a model of ZFCinwhichthereisasubsetofRthatis∆-setbutnotaQ-set. E.Pearl/TopologyanditsApplications136(2004)37–85 41 Problem96.Ifthecontinuumfunctionisone-to-oneandX isacountablyparacompact, firstcountablespace,thenise(X)(cid:1)c(X)?No,seeProblem94. Problem97.Does ♦∗ imply thatcountablyparacompact,first countablespacesare ℵ - 1 collectionwise Hausdorff? Yes, K. Smith and P. Szeptycki [264] showed that, assuming ♦∗, paranormal spaces of character (cid:1)ℵ are ω -collectionwise Hausdorff. A space is 1 1 paranormal if every countable discrete collection of closed sets can be expanded to a locally finite collection of open sets. Both countably paracompact spaces and normal spacesareparanormal. Problem 99. No, P. Nyikos [212] claimed that if there is a Souslin tree then there is a collectionwiseHausdorff,Aronszajntreewhichisnotcountablyparacompact. Problem 104. W. Fleissner [119, §3] gave a repaired construction of the space Son of George,whichiswhatWatsonreallywantedinProblem104. Problem 110. Is it consistent that meta-Lindelöf, collectionwise normal spaces are paracompact? No. Z. Balogh [21] constructed a hereditarily meta-Lindelöf, hereditarily collectionwise normal, hereditarily realcompact Dowker space. Balogh also constructed a meta-Lindelöf, collectionwise normal, countably paracompact space which is not metacompact. Problem113.Z.BaloghgaveaZFCconstructionofaDowkerspacewhichishereditarily normal and scattered of height ω. This gives affirmative answers to Problems 113, 114, and115,whichaskforaZFCexampleofaDowkerspacethatis,respectively,hereditarily normal,σ-discrete,andscattered.See[23]foranexpositionofBalogh’stechnique. Problem114.SeeProblem113. Problem115.SeeProblem113. Problem116.Yes(Z.Balogh[20]).SeeProblem57. Problem 132. Under CH, W.L. Saltsman [243] constructed a nondegenerate connected CDHsubsetoftheplanewhichhasarigidopensubset. Problem134.UnderCH,W.L.Saltsman[242]constructedaconnectedCDHsubsetofthe planewhichisnotSLH. Problem141.In the discussionbeforethe statementof Problem142,Watson stated that ifoneforceswithaSouslintree,thenonecanmakeacollectionwisenormalspaceintoa nonnormalspace.WatsonnowretractssuchaclaimandthisbecomesProblem1411. 2 Problem 142. Can Cohen forcing make a collectionwise normal space not normal? W. Fleissner, T. LaBerge and A. Stanley [120] described a construction that takes any 42 E.Pearl/TopologyanditsApplications136(2004)37–85 normal space X and outputs a normal superspace T such that T becomes nonnormal after adding one Cohen real if and only if X is a Dowker space. A similar construction applied to Rudin’s box productDowker space yields a collectionwise normal space that becomesnonnormalaftertheadditionofoneCohenreal.Thisprovidesnegativeanswers toProblems142,143and144.R.Grunberg,L.JunqueiraandF.D.Tall[129]showedthat ifXisnormalbutnotnormalafteraddingoneCohenrealthenXisaDowkerspace. Problem143.CanoneCohenrealkillnormality?SeeProblem142. Problem144.Isthere,inZFC,ac.c.c.partialorderwhichkillscollectionwisenormality? Yes. R. Grunberg, L. Junqueira and F.D. Tall [129] showed that any strengthening of the topology on the real line which is locally compact, locally countable, separable and collectionwisenormalisanexampleofacollectionwisenormalspacewhichcanbemade nonnormalbyc.c.c.forcing.TheEric(vanDouwen)Lineissuchastrengthening. Problem145.Cancountablyclosed,cardinal-preservingforcingmakeanonnormalspace normal?R.Grunberg,L.JunqueiraandF.D.Tall[129]gaveaconsistentanswer.Suppose thereisanuncountableregularκ suchthatκ<κ =κ. Thenthereis anonnormalspace X andacountablyclosed,cardinal-preservingP suchthatP forcesXtobenormal. Problem146.Canc.c.c.forcingmake a nonnormalspace metrizable?Yes, W. Fleissner produced,inZFC,ac.c.c.forcingwhichturnsanonnormalspaceintoametrizablespace. Problem147. Is there, in ZFC, a cardinal-preservingforcing which makes a nonnormal spacemetrizable?SeeProblem146. Problem149.Doescountablyclosedforcingpreservehereditarynormality?No.R.Grun- berg,L.JunqueiraandF.D.Tall[129]showedthataddingaCohensubsetofω withcount- 1 able conditions will destroy the normality of a non-ℵ -collectionwise Hausdorff space. 1 In particular,this countablyclosed forcingdoes notpreserve the hereditarynormality of Bing’sExampleG. Problem151.A.Dow[91,Theorem7.28]provedthatitispossibletolowerthedensityof aspacewithcardinal-preservingforcing.Dow’smethodusesameasurablecardinal. Problem153.A.Dow[91,Theorem7.29]provedthatitispossibletomakearegular(or afirstcountableHausdorff)non-LindelöfspaceLindelöfwithcardinal-preservingforcing. Dow’smethodusesameasurablecardinal. Problem 160. D. Shakhmatov and M. Tkachenko [249] proved that the existence of a ℵ compactHausdorffspaceofsize2 0 thatisT1-complementarytoitselfisbothconsistent with and independent of ZFC. They also constructed, in ZFC, a countably compact ℵ Tychonoffspaceofsize2 0 whichisT1-complementarytoitselfandacompactHausdorff ℵ space of size 2 0 which is T1-complementary to a countably compact Tychonoff space. ThisprovidescompletesolutionstoProblems160and161. E.Pearl/TopologyanditsApplications136(2004)37–85 43 Problem161.SeeProblem160.TheexistenceoftwoinfiniteT -complementarycompact 1 HausdorffspaceswasannouncedtoWatsonbyB.Aniszczykin1989,buttheexamplehas neverbeenpublished. Problem162.M.Tkacˇenko,V.Tkachuk,R.WilsonandI.Yashchenko[273]provedthat proved that no T -complementarytopology exists for the maximal topology constructed 1 byE.K.vanDouwenontherationalnumbers. Problem167.Whichtopologyonasetofsize nhasthelargestnumberofcomplements? The natural conjecture is that the partial order (T topology) with the least number of 0 complementsis the partialorder made up of an antichainand two comparableelements, the partial order (T topology) with the greatest number of complements is the partial 0 order made up an antichain and a maximum and a minimum. These conjectures remain openalthoughJ.I.BrownandS.Watsonhaveshowntheyareasymptoticallycorrect.See [44–46]. Problem172.Yes,J.HardingandA.Pogel[135]provedthateverylatticewith1and0is embeddableinthelatticeoftopologiesofsomeset. Problem 175. The problem should have stated “open intervals” instead of “open sets”. Y.-Q.QiaoandF.D.Tall[272]showedthattheexistenceofalinearorderingascorrectly statedisequivalenttotheexistenceofaperfectlynormalnonmetrizablenon-Archimedean space(i.e.,anarchvillain).See Problem374.Qiao[225]showedthatthereisa modelof MA+¬CH in which there is an archvillain (and yet no Souslin lines); this answers the secondhalfoftheproblemnegatively. Problem 176. Is there a topological space in which the nondegenerate connected sets are precisely the cofinite sets? G. Gruenhage [125] gave several consistent examples. AssumingMA,therearecompletelyregularaswellascountableexamples.AssumingCH, thereisaperfectlynormalexample. Weiss’squestionsbyW.Weiss Problem179.P.Koszmider[161]provedthatthereisanuncountableproductofnontrivial compactconvexsubsetsofnormedlinearspacesthatfailstohavethecompleteinvariance property. Problem180.Isthereaboundonthesizeofcountablycompact,locallycountable,regular spaces? Such spaces are called good; if, in addition, separable subspaces are at most countable then they are called splendid. I. Juhász, Z. Nagy and W. Weiss [141] proved that there are splendid spaces of size ℵn for each n∈ω, and if V= L then there are arbitrarilylargesplendidspaces.P.NyikosobservedthattheV=Lresultsonlyrequirethat thecoveringlemmaholdsovertheCoreModelandvariousotherweakhypotheses.Onthe otherhand,I.Juhász,S.ShelahandL.Soukup[142]showedthatiftheChangConjecture 44 E.Pearl/TopologyanditsApplications136(2004)37–85 variant(ℵω+1,ℵω)→(ω1,ω)holdsthentherearenosplendidspacesofcardinalitygreater than ℵω. Also, ZFCis enoughtoshow thatthere arenoneofcardinalityexactlyequalto ℵ oranyothersingularcardinalofcountablecofinality.Infactthisisthehurdleforwhich ω somethingbeyondZFCisneeded:inZFConecaneasilygofromℵn toℵn+1 butthejump atℵ causesmajorcomplications.TheChangConjecturevarianthasnothingtosayabout ω goodspacesandtheproblemforgoodspacesisstillopen.Itwouldentailsolvinganother problem:Istherearegularseparable,locallycountable,countablycompact,noncompact space?ThisisaspecialcaseofthetitleproblemofthesectionbyP.Nyikosandnowcarries arewardofaUS$1000:IsthereaZFCexampleofaseparable,firstcountable,countably compact,noncompactHausdorffspace? Problem181.LetXbearegularspaceandletλbetheleastcardinalsuchthatsomeopen coverofsizeλhasnofinitesubcoverandletκ betheleastcardinalsuchthateverypoint hasaneighbourhoodofsize<κ.Howareλ,κ and|X|related?P.Nyikosremarksthatif κ =λ isstronglyinaccessible,|X| canbearbitrarilylarge.TakeD discreteasbigasyou wishandletS bethespaceofultrafiltersµ∈βD forwhichthereisE∈µwith|E|<λ. Asimilarexampleworkswheneverκ>22<λ. Problem185(A.HajnalandI.Juhász).DoeseachLindelöfspaceofcardinalityℵ have 2 a Lindelöf subspace of cardinality ℵ ? P. Koszmider and F.D. Tall [164]used countably 1 closedforcingtoconstructanexampleofasubspaceofthecountableboxtopologyonthe product of ℵ copies of the two-point discrete space. Their example is an uncountable 2 Lindelöf T P-space with no Lindelöf subspaces of cardinality ℵ (actually, with no 2 1 convergentω1-sequences).TheyshowedthattheirconstructionwillnotworkZFC. Perfectlynormalcompacta,cosmicspaces,andsomepartitionproblemsby G.Gruenhage Therehavebeennosolutionstothesixproblemsinthissection. OpenproblemsonβωbyK.P.Hart,J.vanMill Problem 201. Yes. S. Shelah and J. Stepra¯ns [259] showed that it is consistent with MA+¬CHthatatotallynontrivial(=nowheretrivial)automorphismexists. Problem205.Theanswerisindependent.ThisisthesameasProblem30. Problem210.Theanswerisindependent.OntheonehanditisconsistentwithMA+¬CH ∗ thateveryautohomeomorphismofω istrivial[257].Inthismodeltheanswerisnegative: there are c autohomeomorphismsbut 2c P -points. On the other hand, J. Stepra¯ns [268] c showedtheconsistencyofapositiveanswer. E.Pearl/TopologyanditsApplications136(2004)37–85 45 Problem216.No.A.Dow[95]showedthatitisconsistentwith¬CHthatclosedsubsets ofthespaceω∗ areexactlythecompactzero-dimensionalF-spacesofweight(cid:1)c. Problem 217. This is a special case of Problem 9, which was solved in the negative by A.DowandJ.Vermeer.SeeProblem9. ∗ Problem221.Iseverynowheredensesetinω ac-set?SeeProblem222. ∗ Problem222.Isthereamaximalnowheredensesubsetin ω ?Inthebook,itwasnoted thatnoc-setcanbeamaximalnowheredensesetandthatitisconsistentthateverynowhere densesetisac-set(see[16]).P.Simon[262]showedthatProblem221andProblem222 ∗ areequivalent:everynowheredensesetinω isac-setifandonlyiftherearenomaximal ∗ nowheredensesubsetsin ω . In1975,A.I.Veksler[286]hadshownthatnowheredense P-setsarenotmaximal. Problem223.A.Bella,A.BłaszczykandA.Szyman´ski[33]provedthatifXiscompact, extremallydisconnected,withoutisolatedpointsandofπ-weightℵ orlessthenX isan 1 ARforextremallydisconnectedspacesiff X istheabsoluteofoneofthefollowingthree spaces:theCantorset,theCantorcubeω12,orthesumofthesetwospaces.Thisprovides anegativeanswertoProblem223underCH. ∗ Problem226.Isitconsistentthatthereis,uptopermutation,onlyoneP-pointinω ?Yes. SeeS.Shelah[251,XVIII§4]. Problem228.Is thereis a p in ω∗ suchthateverycompactificationofω∪{p} contains ω∗? Yes (A. Dow [101]).Take a map f from βω onto Ic, take a closed set A such that f (cid:2)AisirreducibleandfinallytakeanypinA. Problem 229. This problem was partially solved by E. Coplakova and K.P. Hart [69]. They proved that if the bounding number b equals c then there exists a point p in Q∗ (the Cˇech–Stone remainder of the space of rational numbers) such that p generates an ultrafilterintheset-theoreticsenseonQandsuchthatphasabaseconsistingofsetsthat arehomeomorphictoQ. Problem231.(MA+¬CH)ArethereaHausdorffgapG=(cid:17)(fα,gα): α∈ω1(cid:18)anda(P- point,selectiveultrafilter)p suchthatp⊆IG+?HereIG istheinducedgap-ideal,i.e.,the ideal on ω of subsets over which the gapis filled, IG={M: (∃h∈Mω)(∀α) fα(cid:2)M <∗ h<∗gα(cid:2)M}.S.Kamo[145]provedthatifV isobtainedfromamodelofCHbyadding CohenrealstheninV anidealisagap-idealiffitis(cid:1)ω1-generated.Also,CHimpliesthat anynontrivialidealisagap-ideal.Inapreprint,Kamo[146]showed,underMA+¬CH,that foreveryHausdorffgapGtherearebothselectiveultrafiltersandnon-P-pointsconsisting of positive sets (with respect to the gap-ideal IG). Also, under MA+¬CH, there is a selectivenon-P -pointthatmeetseverygap-ideal. ω2 46 E.Pearl/TopologyanditsApplications136(2004)37–85 Problem 237. D. Strauss [269] showed that (cid:17)βN,+(cid:18) cannot be embedded in (cid:17)N∗,+(cid:18). Specifically,ifφ:βN→N∗ isacontinuoushomomorphismthentheimageofφ mustbe finite. Problem 240. Yes. I. Farah [117] proved a generalization of Problems 240 and 241: AssumeZ isaβN-space,X iscompact,κ isanarbitrarycardinalandf :Xκ →Z.Then Xκ canbecoveredbyfinitelymanyclopenrectanglessuchthatf dependsonatmostone coordinateoneachoneofthem. Problem241.SeeProblem240. Problem244.S.ShelahandO.Spinas[255]provedthatforeverynonecanhaveamodel inwhichwn((ω∗)n)>wn((ω∗)n+1).ThisprovidessomeinformationaboutProblem244. Problem245.Yes,tothesecondpartoftheproblem.S.ShelahandO.Spinas[256]showed thatwn(ω∗)>wn(ω∗×ω∗)isconsistent. Problem264.Thisproblemissolved.AresultduetoA.Dow[89]showsthatunder¬CH there are always p and q for which I and I are not homeomorphic.A. Dow and K.P. p q Hart[96]showedthatunderCHanytwocontinuaIp andIq arehomeomorphic.Itfollows thatthestatementallcontinuaIp arehomeomorphicisequivalenttoCH. Problem 265. Are there cutpoints in I other than the points f for f :ω →I? This p p problem is solved; as indicated in the paper the answer is yes under MAcountable [17]. A.DowandK.P.Hart[97]confirmedtheconjecturethattheanswerisnoinLaver’smodel fortheBorelConjecture. Problem 266. A. Dow and K.P. Hart [98] have shown that there are least 14 different subcontinuaof βR\R: 10 in ZFC alone,fourmoreunderCH or atleast six moreunder ¬CH. Onfirstcountable,countablycompactspacesIIIbyP.J.Nyikos Problem 286. No. T. Eisworth and J. Roitman [116] showed that CH is not enough to implytheexistenceofanOstaszewskispace. Problem 287. Yes. T. Eisworth [114] showed that it is consistent with CH that first countable, countably compact spaces with no uncountable free sequences are compact. Consequently,itisconsistentwithCHthatperfectlynormal,countablycompactspacesare compact. Problem 292. M. Rabus [226] proved that it is consistent with MA and t=ℵ2 =c that every ⊂∗-increasing ω -sequence in P(ω) is the bottom part of some tight (ω ,ω∗)- 1 1 2 gap. In the discussion after Axiom 5.6 (p. 151), P. Nyikos wrote: “Of course, the really