ebook img

Open problems in topology PDF

49 Pages·1990·1.004 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Open problems in topology

TopologyanditsApplications136(2004)37–85 www.elsevier.com/locate/topol Open problems in topology Elliott Pearl AtlasConferencesInc.,Toronto,ON,Canada Received22May2003;receivedinrevisedform5June2003 Abstract Thisisacumulativestatusreporton the1100 problemslistedinthevolumeOpenProblemsin Topology(North-Holland,1990),editedbyJ.vanMillandG.M.Reed. 2003ElsevierB.V.Allrightsreserved. MSC:54-06 Keywords:Problems;Solutions Introduction This is a cumulative status report on the 1100 problems listed in the volume Open ProblemsinTopology(North-Holland,1990),editedbyJ.vanMillandG.M.Reed[192]. Thebookisout-of-printbutthepublisherhasmadeitfreelyavailableonline.Thisreportis acompleterevisionofthesevenstatusreportsthathaveappearedinthejournalTopology anditsApplications[193–198,221]. Thisreportcontainsa matrix(Figs. 1 and 2) of numbersindicatingthe status of each problem. On the matrix, a numbered box is shaded if the problem has been answered absolutely or shown to be independent of ZFC. A numbered box is half-shaded if the problemhasbeenansweredinpart,foraspecialcase,orconsistently,sincethevolumewas published.Thereare199fullyshadedboxesand76half-shadedboxes.Itisremarkablethat three-quartersof the problemsremain openafter thirteen years. We hopethat this report andtheavailabilityofthebookwillregenerateinterestintheseproblems. E-mailaddress:[email protected](E.Pearl). 0166-8641/$–seefrontmatter 2003ElsevierB.V.Allrightsreserved. doi:10.1016/S0166-8641(03)00183-4 38 E.Pearl/TopologyanditsApplications136(2004)37–85 Dow’squestionsbyA.Dow Problem2.FindnecessaryandsufficientconditionsonacompactspaceXsuchthatω×X has remote points. In the notes to this problem, Dow conjectured that there is a model satisfying that if X is compactand ω×X has remote points then X has an open subset with countable cellularity. However, Dow [93] showed that there is a compact, nowhere c.c.c.spaceXsuchthatω×Xhasremotepoints. Problem5.Yes.J.BakerandK.Kunen[15]provedthatifκisaregularcardinal,thenthere isaweakPκ+-pointinU(κ),thespaceofuniformultrafiltersonκ.Problem5onlyasked forthecaseκ=ω1.TheweakPκ+-pointproblemisstillopenforsingularcardinalsκ. Problem8.Isthereaclopensubsetofthesubuniformultrafiltersofω whoseclosurein 1 βω1 isitsonepointcompactification?Yes,underPFA(S.Todorcˇevic´[274,§8]). Problem 9. A. Dow and J. Vermeer [100] provedthat it is consistent that the σ-algebra ofBorelsetsoftheunitintervalisnotthequotientofanycompleteBooleanalgebra.By Stoneduality,thereisabasicallydisconnectedspaceofweightcthatcannotbeembedded intoanextremallydisconnectedspace. Problem 13. Is every compact space of weight ω homeomorphicto the remainder of a 1 ψ-space?A.DowandR.Frankiewicz[94]showedthatanegativeanswerisconsistent. Problem14(A.Błaszczyk).Istherea compactc.c.c.spaceofweightc whosedensityis notlessthanc?M.RabusandS.Shelah[227]provedthateveryuncountablecardinalcan bethetopologicaldensityofac.c.c.Booleanalgebra. Problem 16. Does countable closed tightness imply countable tightness in compact spaces? I. Juhász and Z. Szentmiklóssy [143] provedthat if κ is an uncountableregular cardinaland a compactHausdorffspace X containsa free sequence of length κ, then X alsocontainssuchasequencethatisconvergent. Stepra¯ns’sproblemsbyJ.Stepra¯ns Problem 19. Yes, there is an ω-Toronto space. An α-Toronto space is a scattered space ofCantor–Bendixsonrank α whichis homeomorphictoeach ofits subspacesofrankα. G.GruenhageandJ.Moore[128]constructedcountableα-Torontospacesforeachα(cid:1)ω. Gruenhagealso constructedconsistent examplesof countableα-Toronto spaces for each α<ω . 1 Problem20.Yes,J.Stepra¯nsconstructedahomogeneous,idempotentfilteronω. Problem23.SolvedbyA.Krawczyk. E.Pearl/TopologyanditsApplications136(2004)37–85 39 Problem24.SolvedbyA.Krawczyk. Problem26.No,S.Schuder[245]provedthatI(2)(cid:1)[0,1]A(2)doesnothold.Thegraph G={(x,x− 1): 1 (cid:1)x(cid:1) 2}on[0,1]canbecolouredbyf :[0,1]→{0,1},f(x)=1iff 3 3 3 1 (cid:1)x< 2,butthereisnoA(2)-colouringg:[0,1]→A(2)forG. 3 3 Problem 30. If every autohomeomorphism of N∗ is somewhere trivial, is then every autohomeomorphismtrivial?ThisisthesameasProblem205.S.Shelah[251,IV]proved thatitisconsistentthatallautohomeomorphismsaretrivial.S.ShelahandJ.Stepra¯ns[258] provedthatitisconsistentwithMAω1 thatthereisanontrivialautohomeomorphismofN∗, yetallautohomeomorphismsaresomewheretrivial.In[259],theyprovethatMAdoesnot implythatallautohomeomorphismsaresomewheretrivial. Tall’sproblemsbyF.D.Tall Problem 43. Yes, G. Gruenhage and P. Koszmider [126] constructed a consistent coun- terexample to the Arhangel’ski˘ı–Tall problem: a locally compact, normal, metacompact spacethatisnotparacompact. Problem44.SeeS.Watson’sProblem92. Problem 48. If κ is a singular strong limit cardinal and X is a < κ-collectionwise Hausdorffand normal(or countablyparacompact)space of character <κ, is then X is κ-collectionwiseHausdorff?UnderSCH,N.Kemoto[156]provedthisconjecture. Problem49.P.Szeptycki[270]provedthatthereareEastonmodelswherefirstcountable, ℵ -para-LindelöfspacesarecollectionwiseHausdorff. 1 Problem50.T.LaBergeandA.Landver[172]provedfromasupercompactcardinalthatit isconsistentthatfirstcountable,<ℵ -collectionwiseHausdorffspacesareweakly(cid:1)ℵ - 2 2 collectionwiseHausdorff. Problem 57. Yes, there is a ZFC example of a screenable normal space that is not collectionwise normal. By a theorem of M.E. Rudin [233], it suffices to construct a screenablenormalspacethatisnotparacompact.Z.Balogh[20]constructedsuchaspace. Balogh’sexampleprovidesapositiveanswertoProblem119. ℵ ℵ Problem 63. Does 2 0 <2 1 imply there is an S-space? (or an L-space?) T. Eisworth, ℵ ℵ P.NyikosandS.Shelah[115]provedthatitisconsistentwith2 0 <2 1 thatthereareno locallycompact,firstcountableS-spaces. Problem 66. P. Larson and F.D. Tall [173] proved that there is a c.c.c. partial order forcingthateveryhereditarilynormal,firstcountablespacesatisfyingthecountablechain conditionishereditarilyseparable. 40 E.Pearl/TopologyanditsApplications136(2004)37–85 ProblemsIwishIcouldsolvebyS.Watson Problem69. A. Dow [92]showed thatit is consistentandindependentof CH that every + normalspaceofcharacteratmostc iscollectionwiseHausdorff.Thisprovidesanegative answertobothProblems69and70. Problem70.No,seeProblem69. Problem77.SeeF.D.Tall’sProblem48. Problem84.No,D.Shakhmatov,F.D. TallandS.Watson[248]constructeda consistent exampleofanormalMoorespacewhichisnotsubmetrizable.Whetherapositiveanswer canbeestablishedwithoutusingalargecardinalremainsopen.Also,Tall[271]hasshown that under the assumption of a supercompact cardinal, there is a model of set theory in whichallnormalMoorespacesaresubmetrizable,butinwhichthereexistnonmetrizable normalMoorespaces. Problem85.SeeF.D.Tall’sProblem43. Problem86.Arecountablyparacompact,locallycompact,metacompactspacesparacom- pact? The counterexampleof G. Gruenhage and P. Koszmider to the Arhangel’ski˘ı–Tall problem(seeProblem43)iscountablyparacompact. Problem87.Yes.G.GruenhageandP.Koszmider[127]showedthat,underMAℵ ,normal, 1 locallycompact.meta-Lindelöfspacesareparacompact. Problem88.DoesZFCimplythatthereisaperfectlynormal,locallycompactspacewhich isnotparacompact?P.LarsonandF.D.Tall[173]provedthatifitisconsistentthatthereis asupercompactcardinal,thenitisconsistentthateveryperfectlynormal,locallycompact spaceisparacompact. Problem 92. Are normal, locally compact, locally connected spaces collectionwise normal?Z.Balogh[18]showedthatitisconsistent,relativetotheexistenceofacompact cardinal,thatlocally compact,normalspaces are collectionwisenormal.It remainsopen whetherlargecardinalsareneededtoestablishapositiveanswer. ℵ ℵ Problem94.Does2 0 <2 1 implythatseparable,firstcountable,countablyparacompact spaces are collectionwise Hausdorff? R. Knight [159] announced that there is model of 2ℵ0 <2ℵ1 such that there exists an uncountable subset of R that is a ∆-set. Note that in such a model there must be dominatingfamily in ω1ω of cardinality 2ω. The cardinal arithmeticofKnight’smodelseemstobeflexibleenoughtoobtainaone-to-onecontinuum function.(The topologicalexample is the tangent-disk space over this subset of R; such a tangent-disk space is countably paracompact iff the subset is a ∆-set.) This provides negative answers to both Problems 94 and 96. In [158], Knight constructed a model of ZFCinwhichthereisasubsetofRthatis∆-setbutnotaQ-set. E.Pearl/TopologyanditsApplications136(2004)37–85 41 Problem96.Ifthecontinuumfunctionisone-to-oneandX isacountablyparacompact, firstcountablespace,thenise(X)(cid:1)c(X)?No,seeProblem94. Problem97.Does ♦∗ imply thatcountablyparacompact,first countablespacesare ℵ - 1 collectionwise Hausdorff? Yes, K. Smith and P. Szeptycki [264] showed that, assuming ♦∗, paranormal spaces of character (cid:1)ℵ are ω -collectionwise Hausdorff. A space is 1 1 paranormal if every countable discrete collection of closed sets can be expanded to a locally finite collection of open sets. Both countably paracompact spaces and normal spacesareparanormal. Problem 99. No, P. Nyikos [212] claimed that if there is a Souslin tree then there is a collectionwiseHausdorff,Aronszajntreewhichisnotcountablyparacompact. Problem 104. W. Fleissner [119, §3] gave a repaired construction of the space Son of George,whichiswhatWatsonreallywantedinProblem104. Problem 110. Is it consistent that meta-Lindelöf, collectionwise normal spaces are paracompact? No. Z. Balogh [21] constructed a hereditarily meta-Lindelöf, hereditarily collectionwise normal, hereditarily realcompact Dowker space. Balogh also constructed a meta-Lindelöf, collectionwise normal, countably paracompact space which is not metacompact. Problem113.Z.BaloghgaveaZFCconstructionofaDowkerspacewhichishereditarily normal and scattered of height ω. This gives affirmative answers to Problems 113, 114, and115,whichaskforaZFCexampleofaDowkerspacethatis,respectively,hereditarily normal,σ-discrete,andscattered.See[23]foranexpositionofBalogh’stechnique. Problem114.SeeProblem113. Problem115.SeeProblem113. Problem116.Yes(Z.Balogh[20]).SeeProblem57. Problem 132. Under CH, W.L. Saltsman [243] constructed a nondegenerate connected CDHsubsetoftheplanewhichhasarigidopensubset. Problem134.UnderCH,W.L.Saltsman[242]constructedaconnectedCDHsubsetofthe planewhichisnotSLH. Problem141.In the discussionbeforethe statementof Problem142,Watson stated that ifoneforceswithaSouslintree,thenonecanmakeacollectionwisenormalspaceintoa nonnormalspace.WatsonnowretractssuchaclaimandthisbecomesProblem1411. 2 Problem 142. Can Cohen forcing make a collectionwise normal space not normal? W. Fleissner, T. LaBerge and A. Stanley [120] described a construction that takes any 42 E.Pearl/TopologyanditsApplications136(2004)37–85 normal space X and outputs a normal superspace T such that T becomes nonnormal after adding one Cohen real if and only if X is a Dowker space. A similar construction applied to Rudin’s box productDowker space yields a collectionwise normal space that becomesnonnormalaftertheadditionofoneCohenreal.Thisprovidesnegativeanswers toProblems142,143and144.R.Grunberg,L.JunqueiraandF.D.Tall[129]showedthat ifXisnormalbutnotnormalafteraddingoneCohenrealthenXisaDowkerspace. Problem143.CanoneCohenrealkillnormality?SeeProblem142. Problem144.Isthere,inZFC,ac.c.c.partialorderwhichkillscollectionwisenormality? Yes. R. Grunberg, L. Junqueira and F.D. Tall [129] showed that any strengthening of the topology on the real line which is locally compact, locally countable, separable and collectionwisenormalisanexampleofacollectionwisenormalspacewhichcanbemade nonnormalbyc.c.c.forcing.TheEric(vanDouwen)Lineissuchastrengthening. Problem145.Cancountablyclosed,cardinal-preservingforcingmakeanonnormalspace normal?R.Grunberg,L.JunqueiraandF.D.Tall[129]gaveaconsistentanswer.Suppose thereisanuncountableregularκ suchthatκ<κ =κ. Thenthereis anonnormalspace X andacountablyclosed,cardinal-preservingP suchthatP forcesXtobenormal. Problem146.Canc.c.c.forcingmake a nonnormalspace metrizable?Yes, W. Fleissner produced,inZFC,ac.c.c.forcingwhichturnsanonnormalspaceintoametrizablespace. Problem147. Is there, in ZFC, a cardinal-preservingforcing which makes a nonnormal spacemetrizable?SeeProblem146. Problem149.Doescountablyclosedforcingpreservehereditarynormality?No.R.Grun- berg,L.JunqueiraandF.D.Tall[129]showedthataddingaCohensubsetofω withcount- 1 able conditions will destroy the normality of a non-ℵ -collectionwise Hausdorff space. 1 In particular,this countablyclosed forcingdoes notpreserve the hereditarynormality of Bing’sExampleG. Problem151.A.Dow[91,Theorem7.28]provedthatitispossibletolowerthedensityof aspacewithcardinal-preservingforcing.Dow’smethodusesameasurablecardinal. Problem153.A.Dow[91,Theorem7.29]provedthatitispossibletomakearegular(or afirstcountableHausdorff)non-LindelöfspaceLindelöfwithcardinal-preservingforcing. Dow’smethodusesameasurablecardinal. Problem 160. D. Shakhmatov and M. Tkachenko [249] proved that the existence of a ℵ compactHausdorffspaceofsize2 0 thatisT1-complementarytoitselfisbothconsistent with and independent of ZFC. They also constructed, in ZFC, a countably compact ℵ Tychonoffspaceofsize2 0 whichisT1-complementarytoitselfandacompactHausdorff ℵ space of size 2 0 which is T1-complementary to a countably compact Tychonoff space. ThisprovidescompletesolutionstoProblems160and161. E.Pearl/TopologyanditsApplications136(2004)37–85 43 Problem161.SeeProblem160.TheexistenceoftwoinfiniteT -complementarycompact 1 HausdorffspaceswasannouncedtoWatsonbyB.Aniszczykin1989,buttheexamplehas neverbeenpublished. Problem162.M.Tkacˇenko,V.Tkachuk,R.WilsonandI.Yashchenko[273]provedthat proved that no T -complementarytopology exists for the maximal topology constructed 1 byE.K.vanDouwenontherationalnumbers. Problem167.Whichtopologyonasetofsize nhasthelargestnumberofcomplements? The natural conjecture is that the partial order (T topology) with the least number of 0 complementsis the partialorder made up of an antichainand two comparableelements, the partial order (T topology) with the greatest number of complements is the partial 0 order made up an antichain and a maximum and a minimum. These conjectures remain openalthoughJ.I.BrownandS.Watsonhaveshowntheyareasymptoticallycorrect.See [44–46]. Problem172.Yes,J.HardingandA.Pogel[135]provedthateverylatticewith1and0is embeddableinthelatticeoftopologiesofsomeset. Problem 175. The problem should have stated “open intervals” instead of “open sets”. Y.-Q.QiaoandF.D.Tall[272]showedthattheexistenceofalinearorderingascorrectly statedisequivalenttotheexistenceofaperfectlynormalnonmetrizablenon-Archimedean space(i.e.,anarchvillain).See Problem374.Qiao[225]showedthatthereisa modelof MA+¬CH in which there is an archvillain (and yet no Souslin lines); this answers the secondhalfoftheproblemnegatively. Problem 176. Is there a topological space in which the nondegenerate connected sets are precisely the cofinite sets? G. Gruenhage [125] gave several consistent examples. AssumingMA,therearecompletelyregularaswellascountableexamples.AssumingCH, thereisaperfectlynormalexample. Weiss’squestionsbyW.Weiss Problem179.P.Koszmider[161]provedthatthereisanuncountableproductofnontrivial compactconvexsubsetsofnormedlinearspacesthatfailstohavethecompleteinvariance property. Problem180.Isthereaboundonthesizeofcountablycompact,locallycountable,regular spaces? Such spaces are called good; if, in addition, separable subspaces are at most countable then they are called splendid. I. Juhász, Z. Nagy and W. Weiss [141] proved that there are splendid spaces of size ℵn for each n∈ω, and if V= L then there are arbitrarilylargesplendidspaces.P.NyikosobservedthattheV=Lresultsonlyrequirethat thecoveringlemmaholdsovertheCoreModelandvariousotherweakhypotheses.Onthe otherhand,I.Juhász,S.ShelahandL.Soukup[142]showedthatiftheChangConjecture 44 E.Pearl/TopologyanditsApplications136(2004)37–85 variant(ℵω+1,ℵω)→(ω1,ω)holdsthentherearenosplendidspacesofcardinalitygreater than ℵω. Also, ZFCis enoughtoshow thatthere arenoneofcardinalityexactlyequalto ℵ oranyothersingularcardinalofcountablecofinality.Infactthisisthehurdleforwhich ω somethingbeyondZFCisneeded:inZFConecaneasilygofromℵn toℵn+1 butthejump atℵ causesmajorcomplications.TheChangConjecturevarianthasnothingtosayabout ω goodspacesandtheproblemforgoodspacesisstillopen.Itwouldentailsolvinganother problem:Istherearegularseparable,locallycountable,countablycompact,noncompact space?ThisisaspecialcaseofthetitleproblemofthesectionbyP.Nyikosandnowcarries arewardofaUS$1000:IsthereaZFCexampleofaseparable,firstcountable,countably compact,noncompactHausdorffspace? Problem181.LetXbearegularspaceandletλbetheleastcardinalsuchthatsomeopen coverofsizeλhasnofinitesubcoverandletκ betheleastcardinalsuchthateverypoint hasaneighbourhoodofsize<κ.Howareλ,κ and|X|related?P.Nyikosremarksthatif κ =λ isstronglyinaccessible,|X| canbearbitrarilylarge.TakeD discreteasbigasyou wishandletS bethespaceofultrafiltersµ∈βD forwhichthereisE∈µwith|E|<λ. Asimilarexampleworkswheneverκ>22<λ. Problem185(A.HajnalandI.Juhász).DoeseachLindelöfspaceofcardinalityℵ have 2 a Lindelöf subspace of cardinality ℵ ? P. Koszmider and F.D. Tall [164]used countably 1 closedforcingtoconstructanexampleofasubspaceofthecountableboxtopologyonthe product of ℵ copies of the two-point discrete space. Their example is an uncountable 2 Lindelöf T P-space with no Lindelöf subspaces of cardinality ℵ (actually, with no 2 1 convergentω1-sequences).TheyshowedthattheirconstructionwillnotworkZFC. Perfectlynormalcompacta,cosmicspaces,andsomepartitionproblemsby G.Gruenhage Therehavebeennosolutionstothesixproblemsinthissection. OpenproblemsonβωbyK.P.Hart,J.vanMill Problem 201. Yes. S. Shelah and J. Stepra¯ns [259] showed that it is consistent with MA+¬CHthatatotallynontrivial(=nowheretrivial)automorphismexists. Problem205.Theanswerisindependent.ThisisthesameasProblem30. Problem210.Theanswerisindependent.OntheonehanditisconsistentwithMA+¬CH ∗ thateveryautohomeomorphismofω istrivial[257].Inthismodeltheanswerisnegative: there are c autohomeomorphismsbut 2c P -points. On the other hand, J. Stepra¯ns [268] c showedtheconsistencyofapositiveanswer. E.Pearl/TopologyanditsApplications136(2004)37–85 45 Problem216.No.A.Dow[95]showedthatitisconsistentwith¬CHthatclosedsubsets ofthespaceω∗ areexactlythecompactzero-dimensionalF-spacesofweight(cid:1)c. Problem 217. This is a special case of Problem 9, which was solved in the negative by A.DowandJ.Vermeer.SeeProblem9. ∗ Problem221.Iseverynowheredensesetinω ac-set?SeeProblem222. ∗ Problem222.Isthereamaximalnowheredensesubsetin ω ?Inthebook,itwasnoted thatnoc-setcanbeamaximalnowheredensesetandthatitisconsistentthateverynowhere densesetisac-set(see[16]).P.Simon[262]showedthatProblem221andProblem222 ∗ areequivalent:everynowheredensesetinω isac-setifandonlyiftherearenomaximal ∗ nowheredensesubsetsin ω . In1975,A.I.Veksler[286]hadshownthatnowheredense P-setsarenotmaximal. Problem223.A.Bella,A.BłaszczykandA.Szyman´ski[33]provedthatifXiscompact, extremallydisconnected,withoutisolatedpointsandofπ-weightℵ orlessthenX isan 1 ARforextremallydisconnectedspacesiff X istheabsoluteofoneofthefollowingthree spaces:theCantorset,theCantorcubeω12,orthesumofthesetwospaces.Thisprovides anegativeanswertoProblem223underCH. ∗ Problem226.Isitconsistentthatthereis,uptopermutation,onlyoneP-pointinω ?Yes. SeeS.Shelah[251,XVIII§4]. Problem228.Is thereis a p in ω∗ suchthateverycompactificationofω∪{p} contains ω∗? Yes (A. Dow [101]).Take a map f from βω onto Ic, take a closed set A such that f (cid:2)AisirreducibleandfinallytakeanypinA. Problem 229. This problem was partially solved by E. Coplakova and K.P. Hart [69]. They proved that if the bounding number b equals c then there exists a point p in Q∗ (the Cˇech–Stone remainder of the space of rational numbers) such that p generates an ultrafilterintheset-theoreticsenseonQandsuchthatphasabaseconsistingofsetsthat arehomeomorphictoQ. Problem231.(MA+¬CH)ArethereaHausdorffgapG=(cid:17)(fα,gα): α∈ω1(cid:18)anda(P- point,selectiveultrafilter)p suchthatp⊆IG+?HereIG istheinducedgap-ideal,i.e.,the ideal on ω of subsets over which the gapis filled, IG={M: (∃h∈Mω)(∀α) fα(cid:2)M <∗ h<∗gα(cid:2)M}.S.Kamo[145]provedthatifV isobtainedfromamodelofCHbyadding CohenrealstheninV anidealisagap-idealiffitis(cid:1)ω1-generated.Also,CHimpliesthat anynontrivialidealisagap-ideal.Inapreprint,Kamo[146]showed,underMA+¬CH,that foreveryHausdorffgapGtherearebothselectiveultrafiltersandnon-P-pointsconsisting of positive sets (with respect to the gap-ideal IG). Also, under MA+¬CH, there is a selectivenon-P -pointthatmeetseverygap-ideal. ω2 46 E.Pearl/TopologyanditsApplications136(2004)37–85 Problem 237. D. Strauss [269] showed that (cid:17)βN,+(cid:18) cannot be embedded in (cid:17)N∗,+(cid:18). Specifically,ifφ:βN→N∗ isacontinuoushomomorphismthentheimageofφ mustbe finite. Problem 240. Yes. I. Farah [117] proved a generalization of Problems 240 and 241: AssumeZ isaβN-space,X iscompact,κ isanarbitrarycardinalandf :Xκ →Z.Then Xκ canbecoveredbyfinitelymanyclopenrectanglessuchthatf dependsonatmostone coordinateoneachoneofthem. Problem241.SeeProblem240. Problem244.S.ShelahandO.Spinas[255]provedthatforeverynonecanhaveamodel inwhichwn((ω∗)n)>wn((ω∗)n+1).ThisprovidessomeinformationaboutProblem244. Problem245.Yes,tothesecondpartoftheproblem.S.ShelahandO.Spinas[256]showed thatwn(ω∗)>wn(ω∗×ω∗)isconsistent. Problem264.Thisproblemissolved.AresultduetoA.Dow[89]showsthatunder¬CH there are always p and q for which I and I are not homeomorphic.A. Dow and K.P. p q Hart[96]showedthatunderCHanytwocontinuaIp andIq arehomeomorphic.Itfollows thatthestatementallcontinuaIp arehomeomorphicisequivalenttoCH. Problem 265. Are there cutpoints in I other than the points f for f :ω →I? This p p problem is solved; as indicated in the paper the answer is yes under MAcountable [17]. A.DowandK.P.Hart[97]confirmedtheconjecturethattheanswerisnoinLaver’smodel fortheBorelConjecture. Problem 266. A. Dow and K.P. Hart [98] have shown that there are least 14 different subcontinuaof βR\R: 10 in ZFC alone,fourmoreunderCH or atleast six moreunder ¬CH. Onfirstcountable,countablycompactspacesIIIbyP.J.Nyikos Problem 286. No. T. Eisworth and J. Roitman [116] showed that CH is not enough to implytheexistenceofanOstaszewskispace. Problem 287. Yes. T. Eisworth [114] showed that it is consistent with CH that first countable, countably compact spaces with no uncountable free sequences are compact. Consequently,itisconsistentwithCHthatperfectlynormal,countablycompactspacesare compact. Problem 292. M. Rabus [226] proved that it is consistent with MA and t=ℵ2 =c that every ⊂∗-increasing ω -sequence in P(ω) is the bottom part of some tight (ω ,ω∗)- 1 1 2 gap. In the discussion after Axiom 5.6 (p. 151), P. Nyikos wrote: “Of course, the really

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.