ebook img

Op Amp circuits (Part 3) - Department of Electrical Engineering PDF

76 Pages·2015·1.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Op Amp circuits (Part 3) - Department of Electrical Engineering

EE101: Op Amp circuits (Part 3) M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel DepartmentofElectricalEngineering IndianInstituteofTechnologyBombay M.B.Patil,IITBombay Alow-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthelow-frequency componentv1(t)andremovethehigh-frequencycomponentv2(t). Ahigh-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthehigh-frequency componentv2(t)andremovethelow-frequencycomponentv1(t). Therearesomeothertypesoffilters,aswewillsee. v LPF vo=v1 v HPF vo=v2 Introduction to filters Considerv(t)=v1(t)+v2(t)=Vm1sinω1t+Vm2sinω2t. 1 v 1 v v 2 0 −1 0 5 10 15 20 0 5 10 15 20 t (msec) t (msec) M.B.Patil,IITBombay Ahigh-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthehigh-frequency componentv2(t)andremovethelow-frequencycomponentv1(t). Therearesomeothertypesoffilters,aswewillsee. v HPF vo=v2 Introduction to filters Considerv(t)=v1(t)+v2(t)=Vm1sinω1t+Vm2sinω2t. 1 v 1 v v2 v LPF vo=v1 0 −1 0 5 10 15 20 0 5 10 15 20 t (msec) t (msec) Alow-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthelow-frequency componentv1(t)andremovethehigh-frequencycomponentv2(t). M.B.Patil,IITBombay Therearesomeothertypesoffilters,aswewillsee. Introduction to filters Considerv(t)=v1(t)+v2(t)=Vm1sinω1t+Vm2sinω2t. 1 v 1 v v2 v LPF vo=v1 0 v HPF vo=v2 −1 0 5 10 15 20 0 5 10 15 20 t (msec) t (msec) Alow-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthelow-frequency componentv1(t)andremovethehigh-frequencycomponentv2(t). Ahigh-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthehigh-frequency componentv2(t)andremovethelow-frequencycomponentv1(t). M.B.Patil,IITBombay Introduction to filters Considerv(t)=v1(t)+v2(t)=Vm1sinω1t+Vm2sinω2t. 1 v 1 v v2 v LPF vo=v1 0 v HPF vo=v2 −1 0 5 10 15 20 0 5 10 15 20 t (msec) t (msec) Alow-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthelow-frequency componentv1(t)andremovethehigh-frequencycomponentv2(t). Ahigh-passfilterwithacut-offfrequencyω1<ωc <ω2 willpassthehigh-frequency componentv2(t)andremovethelow-frequencycomponentv1(t). Therearesomeothertypesoffilters,aswewillsee. M.B.Patil,IITBombay Allcomponentswithω<ωc appearattheoutputwithoutattenuation. Allcomponentswithω>ωc geteliminated. (Notethattheideallow-passfilterhas∠H(jω)=1,i.e.,H(jω)=1+j0.) V(jω)i LPF V(jω)o ω ω 0 0 ω ω c c Ideal low-pass filter 1 vi(t) H(jω) vo(t) H(jω) 0 ω 0 ω c Vo(jω)=H(jω)Vi(jω). M.B.Patil,IITBombay (Notethattheideallow-passfilterhas∠H(jω)=1,i.e.,H(jω)=1+j0.) Allcomponentswithω<ωc appearattheoutputwithoutattenuation. Allcomponentswithω>ωc geteliminated. Ideal low-pass filter 1 vi(t) H(jω) vo(t) H(jω) 0 ω 0 ω c V(jω)i LPF V(jω)o ω ω 0 0 ω ω c c Vo(jω)=H(jω)Vi(jω). M.B.Patil,IITBombay Ideal low-pass filter 1 vi(t) H(jω) vo(t) H(jω) 0 ω 0 ω c V(jω)i LPF V(jω)o ω ω 0 0 ω ω c c Vo(jω)=H(jω)Vi(jω). Allcomponentswithω<ωc appearattheoutputwithoutattenuation. Allcomponentswithω>ωc geteliminated. (Notethattheideallow-passfilterhas∠H(jω)=1,i.e.,H(jω)=1+j0.) M.B.Patil,IITBombay High−pass 1 ) ω H(j 0 ω 0 ω c Band−pass Band−reject 1 1 ) ) ω ω H(j H(j 0 ω 0 ω 0 0 ω ω ω ω L H L H Ideal filters Low−pass 1 ) ω H(j 0 ω 0 ω c M.B.Patil,IITBombay Band−pass Band−reject 1 1 ) ) ω ω H(j H(j 0 ω 0 ω 0 0 ω ω ω ω L H L H Ideal filters Low−pass High−pass 1 1 ) ) ω ω H(j H(j 0 ω 0 ω 0 0 ω ω c c M.B.Patil,IITBombay

Description:
Chebyshev, Bessel, and elliptic functions. * Coefficients for these filters listed in filter handbooks. Also, programs for filter design are available on the internet.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.