ebook img

Ontology and the ambitions of metaphysics PDF

382 Pages·2016·3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ontology and the ambitions of metaphysics

(cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) Ontology and the Ambitions of Metaphysics (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) Ontology and the Ambitions of Metaphysics Thomas Hofweber 1 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) 3 GreatClarendonStreet,Oxford,OXDP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©ThomasHofweber Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin Impression: Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress MadisonAvenue,NewYork,NY,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber: ISBN –––– PrintedinGreatBritainby ClaysLtd,StIvesplc LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) forRebecca (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) Contents Preface xi Acknowledgments xv HowtoReadThisBook xvi . OntologyandMetaphysics  . Introduction  . FourProblemsinOntology  .. Numbers  .. OrdinaryObjects  .. Properties  .. Propositions  . TwoKindsofOntologicalQuestions  . ThreePuzzlesAboutOntology  .. IsPhilosophicalOntologyanIncoherentProject?  .. TheFirstPuzzle:HowHard?  .. TheSecondPuzzle:HowImportant?  .. TheThirdPuzzle:HowPhilosophical?  . TowardsaSolution  . InnocentStatementsandTheirMetaphysicallyLoadedCounterparts  . TheTrivialArguments  . TheStandardSolutionstotheMetaphysicalPuzzle  . SomeSyntacticandSemanticPuzzles  .. TheNumberofMoonsofJupiter  .. IsFour  .. SubstitutionFailure  .. TheObviousnessoftheEquivalence  .. ThePuzzleofExtravagance  . SolvingtheSyntacticandSemanticPuzzles  .. TheFunctionoftheCleftConstruction  .. FocusandCommunication  .. Questions,Answers,andFocus  ..AnotherLookattheLoadedCounterparts:TheNumbersCase  . ExplainingtheFocusEffect  .. TheArgumentAgainsttheStandardSolutions  .. TheExplanation  . ASolutiontotheSyntacticandSemanticPuzzles  .. Numbers  .. Properties  .. Propositions  ..ContentCarvingWithoutTears  (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) viii contents . OntotheSecondStep  . Appendix:FocusandIdentityStatements  . Quantification  . TheSignificanceofQuantification  . The(Fairly)UncontroversialFactsAboutQuantifiers  .. TheStructureofQuantifiedNounPhrases  .. “ThereIs”IsNotaQuantifier  .. SingularandPluralQuantifiers  .. TheDomainConditionsReading  . SemanticUnderspecification  . QuantifiersasaSourceofUnderspecification  .. HowtoSettletheIssue  .. TheCommunicativeFunctionofQuantifiers  .. InferentialRoleandEmptyTerms  ..SomeExamples  .. InferentialRoleandTruthConditions  ..HowtheReadingsAreRelated,butDifferent  . CompareandContrast  .. SubstitutionalQuantification  .. MeinongandNon-ExistentObjects  .. CarnaponInternalandExternalQuestions  .. LightweightandHeavyweightQuantifiers  . TheSolutiontotheFirstPuzzle  . Appendix:GeneralizedQuantifiers  . Internalism,Externalism,andtheOntologicalQuestion  . InternalismandExternalism  . TowardsaSolutiontotheSecondandThirdPuzzles  . InternalismandtheAnswertotheOntologicalQuestion  . HowtoSettletheIssue  . TalkAboutNaturalNumbers  . Frege’sOtherPuzzle  . HowthePuzzleCan’tBeSolved  . NumberDeterminers  .. DeterminersandQuantifiers  .. BareDeterminers  .. ComplexDeterminersandQuantifiers  .. Arithmetic-LikeBareDeterminerStatements  . NumbersandArithmetic  .. BasicArithmeticalStatements  .. LearningBasicArithmetic  .. CognitiveTypeCoercion  ..Contrast:OtherKindsofTypeCoercion  .. OtherArithmeticalOperations  ..“Two”vs.“TheNumberTwo”vs.“TheNumberofFs”  (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) OUPCORRECTEDPROOF–FINAL,//,SPi (cid:2) (cid:2) contents ix . TheSolutiontoFrege’sOtherPuzzle  . QuantifyingoverNaturalNumbers  . ThePhilosophyofArithmetic  . PhilosophicalProblemsAboutArithmetic  .. TheCentralTension  .. TheCaesarProblem  .. TheApplicationProblem  . InternalismandOntologicalIndependence  . TheAdjectivalStrategyandSecond-OrderLogic  . TheExistenceofNumbersandtheSecondPuzzle  . TheInternalistSolutionstotheProblems  .. ResolvingtheTension  .. TheSolutiontotheCaesarProblem  .. TheSolutiontotheApplicationProblem  . LogicismWithoutLogic  . ThePhilosophyofMathematics  . OrdinaryObjects  . TheMetaphysicsofOrdinaryObjects  . TalkAboutOrdinaryObjects  . TheExistenceofOrdinaryObjects  .. PerceptualEvidence  .. ScientificEvidence  .. MetaphysicalArgumentsasFurtherEvidence  . MetaphysicalQuestionsAboutObjects  . TalkAboutPropertiesandPropositions  . That-ClausesandPropertyNominalizations  . TheReferentialPictureofLanguage  . SemanticFactsandSemanticValues  . EvidenceAgainstReferentiality  . QuantificationoverPropertiesandPropositions  . InexpressiblePropertiesandPropositions  . TheProblemforInternalism  .. InexpressiblePropertiesandtheInductiveArgument  .. SomeDistinctions  .. TheNewProblemforInternalism  . TheSolutiontotheProblem  . TheSolutiontotheSecondPuzzle  . Appendix:FurtherArgumentsAgainstInternalismUsingExpressibility Considerations  .. ModifiedInductiveArguments  .. CardinalityArguments  . Appendix:GeneralizedQuantifiers,OnceMore  . Appendix:RevisitingtheInternal–ExternalDistinction  (cid:2) (cid:2) (cid:2) (cid:2)

Description:
Thomas Hofweber explores four major metaphysical debates tied to ontology: the philosophy of arithmetic, the metaphysics of ordinary objects, the problem of universals, and the nature of the fact-like aspect of reality. He defends metaphysics as having some questions of fact distinctly its own, but
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.