ebook img

Online electronic version May not be emailed or posted ANYWHERE May not be copied, or printed ... PDF

1033 Pages·2011·46.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Online electronic version May not be emailed or posted ANYWHERE May not be copied, or printed ...

Online electronic version May not be emailed or posted ANYWHERE May not be copied, or printed without express written permission of the authors. Introduction to S TATICS and D YNAMICS Filename:Flywheel0069 Andy Ruina and Rudra Pratap OxfordUniversityPress(Preprint) MostrecentmodificationsonJanuary30,2011. Reference Tables: The front and back tables concisely summarize much of the text material. Summary of Mechanics 0) Thelawsofmechanicsapplytoanycollectionofmaterialor‘body.’ Thisbodycouldbetheoverallsystemofstudy oranypartofit. Intheequationsbelow,theforcesandmomentsarethosethatshowonafreebodydiagram. Interacting bodiescauseequalandoppositeforcesandmomentsoneachother. I) LinearMomentumBalance(LMB)/ForceBalance EquationofMotion Fi L The total force on a body is equal (I) to its rate of change of linear momentum. Impulse-momentum t2 (integratingintime) Fi·dt L Netimpulseisequaltothechangein (Ia) t1 momentum. Conservationofmomentum L=0 When there is no net force the linear (Ib) (if Fi 0) L=L2 L1 0 momentum does not change. Statics Fi 0 If the inertial terms are zero the (Ic) (ifLisnegligible) net force on system is zero. II) AngularMomentumBalance(AMB)/MomentBalance Equationofmotion M H The sum of moments is equal to the (II) C C rateofchangeofangularmomentum. Impulse-momentum(angular) t2 M dt H The net angular impulse is equal to (IIa) (integratingintime) C C t1 the change in angular momentum. Conservationofangularmomentum H 0 C If there is no net moment about point (IIb) (if M 0) H H H 0 C C C2 C1 C then the angular momentum about point C does not change. Statics M 0 If the inertial terms are zero then the (IIc) (ifH isnegligible) C C total moment on the system is zero. III) PowerBalance(1stlawofthermodynamics) Equationofmotion Q P E E E Heat flow plus mechanical power (III) K P int into a system is equal to its change E in energy (kinetic + potential + internal). t2 t2 forfinitetime Qdt Pdt E Thenetenergyflowgoinginisequal (IIIa) t1 t1 tothenetchangeinenergy. ConservationofEnergy E 0 If no energyflows into a system, (IIIb) (ifQ P 0) E E E 0 2 1 then its energydoesnotchange. Statics Q P E E If there is no change of kinetic energy (IIIc) (ifE isnegligible) P int K then the change of potential and internal energy is due to mechanical work and heat flow. PureMechanics (ifheatflowanddissipation P E E In a system well modeled as purely (IIId) K P arenegligible) mechanical the change of kinetic and potential energy is due to mechanical work on the system. Filename:Summaryofmechanics Some definitions (Alsoseetheindexandbacktables) *r or *x Position e.g.,*r *r is the position of a point i i (cid:17) i=O relativetotheorigin,O. d*r *v Velocity e.g.,*v *v is the velocity of a point i (cid:17) dt i (cid:17) i=O relativetoO,measuredinanon-rotatingref- erenceframe. d*v d2*r *a Acceleration e.g.,*a *a istheaccelerationofapointi (cid:17) dt D dt2 i (cid:17) i=O relativetoO,measuredinaNewtonianframe. * F Force e.g.,theforceonAfromBisF . AfromB * * * M or M M MomentorTorque e.g., the moment of a collection of forces CD =C aboutpointC. *! Angularvelocity Ameasureofrotationalvelocityofarigidob- ject.*! =angularvelocityofrigidobjectB. B *(cid:11) *! Angularacceleration Ameasureofrotationalaccelerationofarigid (cid:17) P object. m*v discrete * i i L Linearmomentum Ameasureofasystem’snettranslationalrate (cid:17) 8 P*vdm continuous (weightedbymass). < m R*v D :tot cm m*a discrete * i i LP Rate of change of linear momen- The aspect of motion that balances the net (cid:17) 8 P*adm continuous tum forceonasystem. < m R*a D :tot cm *r m*v discrete H* i=C(cid:2) i i AngularmomentumaboutpointC Ameasureoftherotationalrateofasystem =C (cid:17) 8< P*r=C (cid:2)*vdm continuous about a point C (weighted by mass and dis- tancefromC). R : *r m*a discrete H*P=C (cid:17) 8< P*r=iC=C(cid:2)(cid:2)*admi i continuous RtuamteaobfocuhtapnogientoCfangularmomen- TtohrequaesopnecatsoyfstmemotiaobnouthtaatpboainlatnCc.es the net R : 1 m v2 discrete E 2 i i Kineticenergy Ascalarmeasureofnetsystemmotion. K (cid:17) 8 1Pv2dm continuous < 2 R : E (heat-liketerms) Internalenergy The non-kinetic non-potential part of a sys- int D tem’stotalenergy. P F**v M* *! Powerofforcesandtorques The mechanical energy flow into a system. (cid:17) i(cid:1) i C i(cid:1) i Also,P W,rateofwork. P P (cid:17) P Icm Icm Icm xx xy xz (cid:140)Icm(cid:141) 2 Icm Icm Icm 3 Moment of inertia matrix about Ameasureofthemassdistributioninarigid (cid:17) xy yy yz centerofmass(cm) object. 66 Ixczm Iyczm Izczm 77 6 7 4 5 Introduction to S TATICS and D YNAMICS Andy Ruina and Rudra Pratap c Rudra Pratap and Andy Ruina, 1994-2009. All rights reserved. No part of this book may be reproduced, stored in a (cid:13) retrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,orotherwise,without priorwrittenpermissionoftheauthors. Thisbookisapre-releaseversionofabookinprogressforOxfordUniversityPress. Acknowledgements. Thefollowingareamongstthosewhohavehelpedwiththisbookaseditors,artists,texprogrammers, advisors,criticsorsuggestersandcreatorsofcontent:WilliamAdams,AlexaBarnes,PranavBhounsule,JosephBurns,Jason Cortell,GaborDomokos,MaxDonelan,ThuDong,GailFish,MikeFox,JohnGibson,RobertGhrist,SaptarsiHaldar,Dave Heimstra, Theresa Howley, Herbert Hui, Michael Marder, Elaina McCartney, Horst Nowacki, Jim Papadopoulos, Kalpana Pratap, DaneQuinn, RichardRand, C.V.Radakrishnan, NidhiRathi, PhoebusRosakis, LesSchaffer, IshanSharma, David Shipman, JillStartzell, SaskyavanNouhuys, TianTang, KimTurnerandBillZobrist. Ouron-againoff-againeditorPeter Gordonhasbeensupportivethroughout. Manyotherfriends,colleagues,relatives,students,andanonymousreviewershave alsomadehelpfulsuggestions. WecertifyArthurOgawa,IvanDobrianov,andStephenHicksasTeXgeniuses. MikeColemanworkedextensivelyonthetext,wrotemanyoftheexamplesandhomeworkproblemsandmademanyfigures. David Ho, R. Manjula and Abhay drew or improved most of the drawings. Credit for some of the homework problems retrieved from Cornell archives is due to various Theoretical and Applied Mechanics faculty. Harry Soodak and Martin Tierstenprovidedsomeproblemsfromtheirincompletebook. SoftwarewehaveusedtopreparethisbookincludesTEXshop(forLATEX)withmanycustomfeaturesimplementedbyStephen Hicks,AdobeIllustrator,GraphicsConverterandMATLAB. Brief Contents Fronttables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i BriefContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 DetailedContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Tothestudent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Part I: Basics for Mechanics 24 1 Whatismechanics? . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Vectors: position,forceandmoment . . . . . . . . . . . . . . . . 38 3 FBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Part II: Statics 184 4 Staticsofoneobject. . . . . . . . . . . . . . . . . . . . . . . . . 184 5 Trussesandframes . . . . . . . . . . . . . . . . . . . . . . . . . 254 6 Transmissionsandmechanisms. . . . . . . . . . . . . . . . . . . 320 7 Tension,shearandbendingmoment . . . . . . . . . . . . . . . . 376 8 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 Part III: Dynamics 416 9 Dynamicsin1D . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 10 Particlesinspace . . . . . . . . . . . . . . . . . . . . . . . . . . 534 11 Manyparticlesinspace . . . . . . . . . . . . . . . . . . . . . . . 582 12 Straightlinemotion . . . . . . . . . . . . . . . . . . . . . . . . . 608 13 Circularmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 14 Planarmotionofanobject . . . . . . . . . . . . . . . . . . . . . 756 15 Time-varyingbasisvectors . . . . . . . . . . . . . . . . . . . . . 842 16 Constrainedparticlesandrigidobjects . . . . . . . . . . . . . . . 912 Appendices 980 A Unitsanddimensions . . . . . . . . . . . . . . . . . . . . . . . . 980 B Friction: perspectivesonfrictionlaws . . . . . . . . . . . . . . . 992 C TheoremsforSystems . . . . . . . . . . . . . . . . . . . . . . .1002 Answerstosomehomeworkproblems . . . . . . . . . . . . . . . . .1012 Backtables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1021 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 1 Detailed Contents Fronttables i Summaryofmechanics . . . . . . . . . . . . . . . . . . . i Somebasicdefinitions . . . . . . . . . . . . . . . . . . . . ii BriefContents 1 DetailedContents 2 Preface 10 General issues about content, level, organization, style and motivation. Studyadvicestartsonpage 14. Tothestudent 14 Howtostudy. Theuseofcomputers. 0.1 Anoteoncomputation . . . . . . . . . . . . . . . . . . . . . 18 Box: Informalcomputercommands . . . . . . . . . . . . . 22 Part I: Basics for Mechanics 24 1 Whatismechanics? 24 Mechanicscanpredictforcesandmotionsbyusingthethreepillarsofthe subject: I. models of physical behavior, II. geometry, and III. the basic mechanicsbalancelaws. Thelawsofmechanicsareinformallysumma- rized in this introductory chapter. The extreme accuracy of Newtonian mechanicsisemphasized,despiterelativityandquantummechanicssup- posedly having ‘overthrown’ seventeenth century physics. Various uses oftheword‘model’aredescribed. 1.1 Thethreepillars . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2 Mechanicsiswrong,whystudyit? . . . . . . . . . . . . . . 31 1.3 Theheirarchyofmodels . . . . . . . . . . . . . . . . . . . . 33 2 Vectors: position,forceandmoment 38 The key vectors for statics, namely relative position, force, and mo- ment, are used to develop vector skills. Notational clarity is empha- sized because good vector calculation demands distinguishing vectors fromscalars. Vectoradditionismotivatedbytheneedtoaddforcesand relativepositions. Dotproductsaremotivatedasthetoolwhichreduces vectorequationstoscalarequations.Andcrossproductsaremotivatedas 2 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Chapter0.DetailedContents DetailedContents 3 theformulawhichcorrectlycalculatestheheuristicallymotivatedquan- titiesofmomentandmomentaboutanaxis. 2.1 Notationandaddition . . . . . . . . . . . . . . . . . . . . . 40 Box2.1Thescalarsinmechanics . . . . . . . . . . . . . . 41 Box2.2TheVectorsinMechanics . . . . . . . . . . . . . 42 2.2 Thedotproductoftwovectors . . . . . . . . . . . . . . . . 58 Box2.3Basicfeaturesofthevectordotproduct. . . . . . . 58 Box2.4abcos(cid:18) a b a b a b . . . . . . . 63 x x y y z z ) C C 2.3 Vectorcrossproduct . . . . . . . . . . . . . . . . . . . . . . 67 Box2.5Usesofthecrossproduct . . . . . . . . . . . . . . 68 Box2.6Crossproductasamatrixmultiply . . . . . . . . . 73 Box2.7Thecrossproduct: fromgeometrytocomponents . 74 2.4 Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.5 Solvingvectorequations . . . . . . . . . . . . . . . . . . . . 92 Box2.8Therulesofvectoralgebra. . . . . . . . . . . . . 93 Box2.9Vectortrianglesandthelawsofsinesandcosines . 95 Box2.10Existence,uniqueness,andgeometry . . . . . . . 107 2.6 Equivalentforcesystems . . . . . . . . . . . . . . . . . . . . 112 Box2.11 meansadd . . . . . . . . . . . . . . . . . . . 114 Box2.12Equivalentatonepoint equivalentatallpoints 115 P ) Box2.13A“wrench”canrepresentanyforcesystem . . . 116 2.7 Centerofmassandgravity. . . . . . . . . . . . . . . . . . . 121 Box2.14Like ,thesymbol alsomeansadd . . . . . . 122 Box2.15Eachsubsystemislikeaparticle . . . . . . . . . 127 P R Box2.16TheCOMofatriangleisath=3 . . . . . . . . . 131 ProblemsforChapter2 . . . . . . . . . . . . . . . . . . . . . . . 137 3 FBDs 148 Afree-bodydiagramisasketchofthesystemtowhichyouwillapplythe lawsofmechanics,andallthenon-negligibleexternalforcesandcouples whichactonit.Thediagramindicateswhatmaterialisinthesystem.The diagramshowswhatis,andwhatisnot,knownabouttheforces. Gener- allythereisaforceormomentcomponentassociatedwithanyconnection thatcausesorpreventsamotion.Conversely,thereisnoforceormoment component associated with motions that are freely allowed. Mechanics reasoning entirely rests on free body diagrams. Many student errors in problem solving are due to problems with their free body diagrams, so wegivetipsabouthowtoavoidvariouscommonfree-bodydiagrammis- takes. 3.1 Interactions,forces&partialFBDs . . . . . . . . . . . . . . 150 VectornotationforFBDs . . . . . . . . . . . . . . . . . . 153 Box3.1Freebodydiagramfirst,mechanicsreasoningafter 161 Box3.2ActionandreactiononpartialFBD’s . . . . . . . 163 3.2 Contact: Sliding,friction,androlling . . . . . . . . . . . . . 170 ProblemsforChapter3 . . . . . . . . . . . . . . . . . . . . . . . 180 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 4 Chapter0.DetailedContents DetailedContents Part II: Statics 184 4 Staticsofoneobject 184 Equilibrium of one object is defined by the balance of forces and mo- ments. Foraparticle,forcebalancetellsall. Butforanextendedobject, moment balance is also useful. There are special shortcuts for an ob- jects thathas exactly twoor exactly threeforces acting onit. If friction forces are relevant the possibility of motion needs to be taken into ac- count. Manyreal-worldproblemsarenotstaticallydeterminateandthus yield either only partial solutions, or yield full solutions after you have madeextraassumptions. 4.1 Staticequilibriumofaparticle . . . . . . . . . . . . . . . . . 186 Box4.1Existenceanduniqueness . . . . . . . . . . . . . 190 Box4.2Thesimplificationofdynamicstostatics . . . . . . 193 4.2 Equilibriumofoneobject . . . . . . . . . . . . . . . . . . . 199 Box4.3Two-forcebodies . . . . . . . . . . . . . . . . . . 204 Box4.4Three-forcebodies . . . . . . . . . . . . . . . . . 205 Box4.5Momentbalanceabout3pointsissufficientin2D . 206 4.3 Equilibriumwithfrictionalcontact . . . . . . . . . . . . . . 211 Box4.6Undrivenwheelsandtwoforcebodies . . . . . . 215 4.4 Internalforces . . . . . . . . . . . . . . . . . . . . . . . . . 225 4.5 3Dstaticsofonepart . . . . . . . . . . . . . . . . . . . . . 231 ProblemsforChapter4 . . . . . . . . . . . . . . . . . . . . . . . 240 5 Trussesandframes 254 Hereweconsidercollectionsofpartsassembledsoastoholdsomething up or hold something in place. Emphasis is on trusses, assemblies of bars connected by pins at their ends. Trusses are analyzed by drawing free body diagrams of the pins or of bigger parts of the truss (method ofsections). Frameworksbuiltwithotherthantwo-forcebodiesarealso analyzedbydrawingfreebodydiagramsofparts. Structurescanberigid or not and redundant or not, as can be determined by the collection of equilibriumequations. 5.1 Methodofjoints . . . . . . . . . . . . . . . . . . . . . . . . 256 5.2 Themethodofsections . . . . . . . . . . . . . . . . . . . . 273 5.3 Solvingtrussesonacomputer . . . . . . . . . . . . . . . . . 280 5.4 Framesandstructures . . . . . . . . . . . . . . . . . . . . . 291 Box5.1The‘methodofbarsandpins’fortrusses . . . . . 294 5.5 Advancedtrussconcepts: determinacy . . . . . . . . . . . . 301 Box5.2Stucturalrigidityandgeometriccongruence . . . 306 Box5.3Rigidity,redundancy,linearalgebraandmaps . . 307 ProblemsforChapter5 . . . . . . . . . . . . . . . . . . . . . . . 312 6 Transmissionsandmechanisms 320 Some collections of solid parts are assembled so as to cause force or torque in one place given a different force or torque in another. These include levers, gear boxes, presses, pliers, clippers, chain drives, and crank-drives. Besides solid parts connected by pins, a few special- purpose parts are commonly used, including springs and gears. Tricks IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Chapter0.DetailedContents DetailedContents 5 for amplifying force are usually based on principals idealized by pul- leys, levers, wedges and toggles. Force-analysis of transmissions and mechanisms is done by drawing free body diagrams of the parts, writ- ingequilibriumequationsforthese,andsolvingtheequationsfordesired unknowns. 6.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Box6.1‘Zero-length’springs . . . . . . . . . . . . . . . . 323 Box6.2Howstiffaspringisasolidrod . . . . . . . . . . 330 Box6.3Stifferbutweaker . . . . . . . . . . . . . . . . . . 330 Box6.4Apuzzlewithtwospringsandthreeropes. . . . . . 331 Box6.52Dgeometryofspringstretch . . . . . . . . . . . 334 6.2 Forceamplification . . . . . . . . . . . . . . . . . . . . . . 343 6.3 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Box6.6Shearswithgears . . . . . . . . . . . . . . . . . . 359 ProblemsforChapter6 . . . . . . . . . . . . . . . . . . . . . . . 366 7 Tension,shearandbendingmoment 376 The ‘internal forces’ tension, shear and bending moment can vary from point to point in long narrow objects. Here we introduce the notion of graphingthisvariationandnotingthefeaturesofthesegraphs. 7.1 Arbitrarycuts . . . . . . . . . . . . . . . . . . . . . . . . . 377 7.3 Singularityfunctions . . . . . . . . . . . . . . . . . . . . . . 393 ProblemsforChapter7 . . . . . . . . . . . . . . . . . . . . . . . 398 8 Hydrostatics 400 Hydrostaticsconcernstheequivalentforceandmomentduetodistributed pressure on a surface from a still fluid. Pressure increases with depth. With constant pressure the equivalent force has magnitude = pressure times area, acting at the centroid. For linearly-varying pressure on a rectangular plate the equivalent force is the average pressure times the area acting 2/3 of the way down. The net force acting on a totally sub- mergedobjectinaconstantdensityfluidisthedisplaceweightactingat thecentroid. 8.1 Fluidpressure . . . . . . . . . . . . . . . . . . . . . . . . . 401 Box8.1AddingforcestoderiveArchimedes’principle . . . 404 Box8.2Pressuredependsonpositionbutnotonorientation 405 ProblemsforChapter8 . . . . . . . . . . . . . . . . . . . . . . . 413 Part III: Dynamics 416 9 Dynamicsin1D 416 ThescalarequationF maintroducestheconceptsofmotionandtime D derivatives to mechanics. In particular the equations of dynamics are seen to reduce to ordinary differential equations, the simplest of which have memorable analytic solutions. The harder differential equations needbesolvedonacomputer. Weexplorevariousconceptsandapplica- tions involving momentum, power, work, kinetic and potential energies, oscillations,collisionsandmulti-particlesystems. IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 6 Chapter0.DetailedContents DetailedContents 9.1 Forceandmotionin1D . . . . . . . . . . . . . . . . . . . . 418 Box9.1WhatdothetermsinF mamean? . . . . . . . 423 D Box9.2Theunitsofforce . . . . . . . . . . . . . . . . . . 425 Box9.3SolutionsofthesimplestODEs . . . . . . . . . . . 428 Box9.4D’Alembert’smechanics: beginnersbeware . . . . 431 9.2 Energymethodsin1D . . . . . . . . . . . . . . . . . . . . . 438 Box9.5Particlemodelsfortheenergeticsoflocomotion. . 449 9.3 Vibrations: mass,springanddashpot . . . . . . . . . . . . . 456 Box9.6Acos.(cid:21)t/ Bsin.(cid:21)t/ Rcos.(cid:21)t (cid:30)/ . . . . . 460 C D (cid:0) Box9.7Solutionofthedamped-oscillatorequations . . . . 466 9.4 Coupledmotionsin1D . . . . . . . . . . . . . . . . . . . . 481 Box9.8Normalmodes: themathandtherecipe . . . . . . 488 9.5 Collisionsin1D . . . . . . . . . . . . . . . . . . . . . . . . 496 Box9.9Whenequalrodscollidethevibrationsdisappear . 501 9.6 Advanced: forcing&resonance . . . . . . . . . . . . . . . . 505 Box9.10ALoudspeakerconeisaforcedoscillator. . . . . 510 Box9.11Solutionoftheforcedoscillatorequation . . . . . 512 Box9.12Thevocabularyofforcedoscillations . . . . . . . 513 ProblemsforChapter9 . . . . . . . . . . . . . . . . . . . . . . . 521 10 Particlesinspace 534 This chapter is about the vector equation F* m*a for one particle. D Conceptsandapplicationsincludeballisticsandplanetarymotion. The differential equations of motion are set-up in cartesian coordinates and integratedeithernumerically,orforspecialsimplecases,byhand. Con- straints,forcesfromropes,rods,chains,floors,railsandguidesthatcan onlybefoundonceoneknowstheacceleration,arenotconsidered. Box10.1Newton’slawsinNewtonianreferenceframes . . 536 10.1 Dynamicsofaparticleinspace . . . . . . . . . . . . . . . . 537 Box10.2Thederivativeofavectordependsonframe . . . 544 10.2 Momentumandenergy . . . . . . . . . . . . . . . . . . . . 553 Box10.3Conservativeforcesandnon-conservativeforces 559 Box10.4Particletheoremsformomentaandenergy . . . . 561 10.3 Central-forcemotionandcelestialmechanics . . . . . . . . . 565 ProblemsforChapter10. . . . . . . . . . . . . . . . . . . . . . . 575 11 Manyparticlesinspace 582 Thismoreadvancedchapterconcernsthemotionoftwoormoreparticles inspace. WewilluseF* m*aforeachparticle. WewilluseCartesian D coordinates only. The start is the set up of “two-body” type problems whichareeasilygeneralizedto3ormoreparticles. Thefirstsectioncon- cerns smooth motions due to forces from gravity, springs, smoothly ap- pliedforcesandfriction. Thesecondsectionconcernsthesuddenchange invelocitieswhenimpulsiveforcesareapplied. 11.1 Coupledparticlemotion . . . . . . . . . . . . . . . . . . . . 584 11.2 particlecollisions . . . . . . . . . . . . . . . . . . . . . . . 592 Box11.1Effectivemass . . . . . . . . . . . . . . . . . . . 594 Box11.2Energeticsofcollisions . . . . . . . . . . . . . . 596 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009.

Description:
This body could be the overall system of study . 11 Manyparticlesinspace A free-body diagram is a sketch of the system to which you will apply the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.