Online electronic version May not be emailed or posted ANYWHERE May not be copied, or printed without express written permission of the authors. Introduction to S TATICS and D YNAMICS Andy Ruina and Rudra Pratap OxfordUniversityPress(Preprint) MostrecentmodificationsonFebruary6,2010. Reference Tables: The front and back tables concisely summarize much of the text material. Summary of Mechanics 0) Thelawsofmechanicsapplytoanycollectionofmaterialor‘body.’ Thisbodycouldbetheoverallsystemofstudy oranypartofit. Intheequationsbelow,theforcesandmomentsarethosethatshowonafreebodydiagram. Interacting bodiescauseequalandoppositeforcesandmomentsoneachother. I) LinearMomentumBalance(LMB)/ForceBalance EquationofMotion Fi L The total force on a body is equal (I) to its rate of change of linear momentum. Impulse-momentum t2 (integratingintime) Fi·dt L Netimpulseisequaltothechangein (Ia) t1 momentum. Conservationofmomentum L=0 When there is no net force the linear (Ib) (if Fi 0) L=L2 L1 0 momentum does not change. Statics Fi 0 If the inertial terms are zero the (Ic) (ifLisnegligible) net force on system is zero. II) AngularMomentumBalance(AMB)/MomentBalance Equationofmotion M H The sum of moments is equal to the (II) C C rateofchangeofangularmomentum. Impulse-momentum(angular) t2 M dt H The net angular impulse is equal to (IIa) (integratingintime) C C t1 the change in angular momentum. Conservationofangularmomentum H 0 C If there is no net moment about point (IIb) (if M 0) H H H 0 C C C2 C1 C then the angular momentum about point C does not change. Statics M 0 If the inertial terms are zero then the (IIc) (ifH isnegligible) C C total moment on the system is zero. III) PowerBalance(1stlawofthermodynamics) Equationofmotion Q P E E E Heat flow plus mechanical power (III) K P int into a system is equal to its change E in energy (kinetic + potential + internal). t2 t2 forfinitetime Qdt Pdt E Thenetenergyflowgoinginisequal (IIIa) t1 t1 tothenetchangeinenergy. ConservationofEnergy E 0 If no energyflows into a system, (IIIb) (ifQ P 0) E E E 0 2 1 then its energydoesnotchange. Statics Q P E E If there is no change of kinetic energy (IIIc) (ifE isnegligible) P int K then the change of potential and internal energy is due to mechanical work and heat flow. PureMechanics (ifheatflowanddissipation P E E In a system well modeled as purely (IIId) K P arenegligible) mechanical the change of kinetic and potential energy is due to mechanical work on the system. Filename:Summaryofmechanics Some definitions (Alsoseetheindexandbacktables) *r or *x Position e.g.,*r *r is the position of a point i i (cid:17) i=O relativetotheorigin,O. d*r *v Velocity e.g.,*v *v is the velocity of a point i (cid:17) dt i (cid:17) i=O relativetoO,measuredinanon-rotatingref- erenceframe. d*v d2*r *a Acceleration e.g.,*a *a istheaccelerationofapointi (cid:17) dt D dt2 i (cid:17) i=O relativetoO,measuredinaNewtonianframe. * F Force e.g.,theforceonAfromBisF . AfromB * * * M or M M MomentorTorque e.g., the moment of a collection of forces CD =C aboutpointC. *! Angularvelocity Ameasureofrotationalvelocityofarigidob- ject.*! =angularvelocityofrigidobjectB. B *(cid:11) *! Angularacceleration Ameasureofrotationalaccelerationofarigid (cid:17) P object. m*v discrete * i i L Linearmomentum Ameasureofasystem’snettranslationalrate (cid:17) 8 P*vdm continuous (weightedbymass). < m R*v D :tot cm m*a discrete * i i LP Rate of change of linear momen- The aspect of motion that balances the net (cid:17) 8 P*adm continuous tum forceonasystem. < m R*a D :tot cm *r m*v discrete H* i=C(cid:2) i i AngularmomentumaboutpointC Ameasureoftherotationalrateofasystem =C (cid:17) 8< P*r=C (cid:2)*vdm continuous about a point C (weighted by mass and dis- tancefromC). R : *r m*a discrete H*P=C (cid:17) 8< P*r=iC=C(cid:2)(cid:2)*admi i continuous RtuamteaobfocuhtapnogientoCfangularmomen- TtohrequaesopnecatsoyfstmemotiaobnouthtaatpboainlatnCc.es the net R : 1 m v2 discrete E 2 i i Kineticenergy Ascalarmeasureofnetsystemmotion. K (cid:17) 8 1Pv2dm continuous < 2 R : E (heat-liketerms) Internalenergy The non-kinetic non-potential part of a sys- int D tem’stotalenergy. P F**v M* *! Powerofforcesandtorques The mechanical energy flow into a system. (cid:17) i(cid:1) i C i(cid:1) i Also,P W,rateofwork. P P (cid:17) P Icm Icm Icm xx xy xz (cid:140)Icm(cid:141) 2 Icm Icm Icm 3 Moment of inertia matrix about Ameasureofthemassdistributioninarigid (cid:17) xy yy yz centerofmass(cm) object. 66 Ixczm Iyczm Izczm 77 6 7 4 5 Introduction to S TATICS and D YNAMICS Andy Ruina and Rudra Pratap (cid:13)c Rudra Pratap and Andy Ruina, 1994-2009. All rights reserved. No part of this book may be reproduced, stored in a retrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,orotherwise,without priorwrittenpermissionoftheauthors. Thisbookisapre-releaseversionofabookinprogressforOxfordUniversityPress. Acknowledgements. Thefollowingareamongstthosewhohavehelpedwiththisbookaseditors,artists,texprogrammers, advisors,criticsorsuggestersandcreatorsofcontent:WilliamAdams,AlexaBarnes,PranavBhounsule,JosephBurns,Jason Cortell,GaborDomokos,MaxDonelan,ThuDong,GailFish,MikeFox,JohnGibson,RobertGhrist,SaptarsiHaldar,Dave Heimstra, Theresa Howley, Herbert Hui, Michael Marder, Elaina McCartney, Horst Nowacki, Jim Papadopoulos, Kalpana Pratap,DaneQuinn,RichardRand,C.V.Radakrishnan,NidhiRathi,PhoebusRosakis,LesSchaeffer,IshanSharma,David Shipman, JillStartzell, SaskyavanNouhuys, TianTang, KimTurnerandBillZobrist. Ouron-againoff-againeditorPeter Gordonhasbeensupportivethroughout. Manyotherfriends,colleagues,relatives,students,andanonymousreviewershave alsomadehelpfulsuggestions. WecertifyArthurOgawa,IvanDobrianov,andStephenHicksasTeXgeniuses. MikeColemanworkedextensivelyonthetext,wrotemanyoftheexamplesandhomeworkproblemsandmademanyfigures. David Ho, R. Manjula and Abhay drew or improved most of the drawings. Credit for some of the homework problems retrieved from Cornell archives is due to various Theoretical and Applied Mechanics faculty. Harry Soodak and Martin Tierstenprovidedsomeproblemsfromtheirincompletebook. SoftwarewehaveusedtopreparethisbookincludesTEXshop(forLATEX)withmanycustomfeaturesimplementedbyStephen Hicks,AdobeIllustrator,GraphicsConverterandMATLAB. Brief Contents Fronttables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i BriefContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 DetailedContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Tothestudent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Part I: Basics for Mechanics 22 1 Whatismechanics? . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 FBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Part II: Statics 180 4 Staticsofoneobject. . . . . . . . . . . . . . . . . . . . . . . . . 180 5 Trussesandframes . . . . . . . . . . . . . . . . . . . . . . . . . 248 6 Transmissionsandmechanisms. . . . . . . . . . . . . . . . . . . 310 7 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 8 Tension,shearandbendingmoment . . . . . . . . . . . . . . . . 380 Part III: Dynamics 400 9 Dynamicsin1D . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 10 Particlesinspace . . . . . . . . . . . . . . . . . . . . . . . . . . 518 11 Manyparticlesinspace . . . . . . . . . . . . . . . . . . . . . . . 566 12 Straightlinemotion . . . . . . . . . . . . . . . . . . . . . . . . . 592 13 Circularmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 14 Planarmotionofanobject . . . . . . . . . . . . . . . . . . . . . 740 15 Time-varyingbasisvectors . . . . . . . . . . . . . . . . . . . . . 826 16 Constrainedparticlesandrigidobjects . . . . . . . . . . . . . . . 894 Appendices 962 A Units&Centerofmasstheorems . . . . . . . . . . . . . . . . . . 962 Answerstosomehomeworkproblems . . . . . . . . . . . . . . . . . 983 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 Backtables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 1 Detailed Contents Fronttables i Summaryofmechanics . . . . . . . . . . . . . . . . . . . i Somebasicdefinitions . . . . . . . . . . . . . . . . . . . . ii BriefContents 1 DetailedContents 2 Preface 10 Generalissuesaboutcontent,level,organization,styleandmotivation. Tothestudent 14 Howtostudy. Theuseofcomputers. 0.1 Anoteoncomputation . . . . . . . . . . . . . . . . . . . . . 18 Box: Informalcomputercommands . . . . . . . . . . . . . 21 Part I: Basics for Mechanics 22 1 Whatismechanics? 22 Mechanicscanpredictforcesandmotionsbyusingthethreepillarsofthe subject: I. models of physical behavior, II. geometry, and III. the basic mechanicsbalancelaws. Thelawsofmechanicsareinformallysumma- rized in this introductory chapter. The extreme accuracy of Newtonian mechanicsisemphasized,despiterelativityandquantummechanicssup- posedly having ‘overthrown’ seventeenth century physics. Various uses oftheword‘model’aredescribed. 1.1 Thethreepillars . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2 Mechanicsiswrong,whystudyit? . . . . . . . . . . . . . . 29 1.3 Theheirarchyofmodels . . . . . . . . . . . . . . . . . . . . 31 2 Vectors 36 The key vectors for statics, namely relative position, force, and mo- ment, are used to develop vector skills. Notational clarity is empha- sized because good vector calculation demands distinguishing vectors fromscalars. Vectoradditionismotivatedbytheneedtoaddforcesand relativepositions. Dotproductsaremotivatedasthetoolwhichreduces vectorequationstoscalarequations.Andcrossproductsaremotivatedas theformulawhichcorrectlycalculatestheheuristicallymotivatedquan- titiesofmomentandmomentaboutanaxis. 2 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Chapter0.DetailedContents DetailedContents 3 2.1 Notationandaddition . . . . . . . . . . . . . . . . . . . . . 38 Box2.1Thescalarsinmechanics . . . . . . . . . . . . . . 39 Box2.2TheVectorsinMechanics . . . . . . . . . . . . . 40 2.2 Thedotproductoftwovectors . . . . . . . . . . . . . . . . 58 Box2.3Basicfeaturesofthevectordotproduct. . . . . . . 58 Box2.4abcos(cid:18) a b a b a b . . . . . . . 63 x x y y z z ) C C 2.3 Crossproductandmoment . . . . . . . . . . . . . . . . . . 67 Box2.5Crossproductasamatrixmultiply . . . . . . . . . 77 Box2.6Thecrossproduct: fromgeometrytocomponents . 78 2.4 Solvingvectorequations . . . . . . . . . . . . . . . . . . . . 87 Box2.7Vectortrianglesandthelawsofsinesandcosines . 90 Box2.8Existence,uniqueness,andgeometry . . . . . . . 102 2.5 Equivalentforcesystems . . . . . . . . . . . . . . . . . . . . 107 Box2.9 meansadd . . . . . . . . . . . . . . . . . . . . 109 Box2.10Equivalentatonepoint equivalentatallpoints 110 P ) Box2.11A“wrench”canrepresentanyforcesystem . . . 111 2.6 Centerofmassandgravity. . . . . . . . . . . . . . . . . . . 116 Box2.12Like ,thesymbol alsomeansadd . . . . . . 117 Box2.13Eachsubsystemislikeaparticle . . . . . . . . . 121 P R Box2.14TheCOMofatriangleisath=3 . . . . . . . . . 125 ProblemsforChapter2 . . . . . . . . . . . . . . . . . . . . . . . 131 3 FBDs 142 Afree-bodydiagramisasketchofthesystemtowhichyouwillapplythe lawsofmechanics,andallthenon-negligibleexternalforcesandcouples whichactonit.Thediagramindicateswhatmaterialisinthesystem.The diagramshowswhatis,andwhatisnot,knownabouttheforces. Gener- allythereisaforceormomentcomponentassociatedwithanyconnection thatcausesorpreventsamotion.Conversely,thereisnoforceormoment component associated with motions that are freely allowed. Mechanics reasoning entirely rests on free body diagrams. Many student errors in problem solving are due to problems with their free body diagrams, so wegivetipsabouthowtoavoidvariouscommonfree-bodydiagrammis- takes. 3.1 Interactions,forces&partialFBDs . . . . . . . . . . . . . . 144 VectornotationforFBDs . . . . . . . . . . . . . . . . . . 147 Box3.1Freebodydiagramfirst,mechanicsreasoningafter 154 Box3.2ActionandreactiononpartialFBD’s . . . . . . . 156 3.2 Contact: Sliding,friction,androlling . . . . . . . . . . . . . 163 Box3.3Aproblemwiththeconceptofstaticfriction . . . . 167 Box3.4AcritiqueofCoulombfriction . . . . . . . . . . . 172 ProblemsforChapter3 . . . . . . . . . . . . . . . . . . . . . . . 176 Part II: Statics 180 4 Staticsofoneobject 180 Equilibrium of one object is defined by the balance of forces and mo- IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 4 Chapter0.DetailedContents DetailedContents ments. Force balance tells all fora particle. Foran extended body mo- ment balance is also used. There are special shortcuts for bodies with exactly two or exactly three forces acting. If friction forces are relevant thepossibilityofmotionneedstobetakenintoaccount. Manyreal-world problemsarenotstaticallydeterminateandthusonlyyieldpartialsolu- tions,orfullsolutionswithextraassumptions. 4.1 Staticequilibriumofaparticle . . . . . . . . . . . . . . . . . 182 Box4.1Existenceanduniqueness . . . . . . . . . . . . . 186 Box4.2Thesimplificationofdynamicstostatics . . . . . . 188 4.2 Equilibriumofoneobject . . . . . . . . . . . . . . . . . . . 194 Box4.3Two-forcebodies . . . . . . . . . . . . . . . . . . 199 Box4.4Three-forcebodies . . . . . . . . . . . . . . . . . 200 Box4.5Momentbalanceabout3pointsissufficientin2D . 201 4.3 Equilibriumwithfrictionalcontact . . . . . . . . . . . . . . 206 Box4.6Wheelsandtwoforcebodies . . . . . . . . . . . . 210 4.4 Internalforces . . . . . . . . . . . . . . . . . . . . . . . . . 220 4.5 3Dstaticsofonepart . . . . . . . . . . . . . . . . . . . . . 226 ProblemsforChapter4 . . . . . . . . . . . . . . . . . . . . . . . 234 5 Trussesandframes 248 Hereweconsidercollectionsofpartsassembledsoastoholdsomething up or hold something in place. Emphasis is on trusses, assemblies of bars connected by pins at their ends. Trusses are analyzed by drawing free body diagrams of the pins or of bigger parts of the truss (method ofsections). Frameworksbuiltwithotherthantwo-forcebodiesarealso analyzedbydrawingfreebodydiagramsofparts. Structurescanberigid or not and redundant or not, as can be determined by the collection of equilibriumequations. 5.1 Methodofjoints . . . . . . . . . . . . . . . . . . . . . . . . 250 5.2 Themethodofsections . . . . . . . . . . . . . . . . . . . . 262 5.3 Solvingtrussesonacomputer . . . . . . . . . . . . . . . . . 269 5.4 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Box5.1The‘methodofbarsandpins’fortrusses . . . . . 282 5.5 3Dtrussesandadvancedtrussconcepts . . . . . . . . . . . . 289 Box5.2Stucturalrigidityandgeometriccongruence . . . 295 Box5.3Rigidity,redundancy,linearalgebraandmaps . . 296 ProblemsforChapter5 . . . . . . . . . . . . . . . . . . . . . . . 303 6 Transmissionsandmechanisms 310 Some collections of solid parts are assembled so as to cause force or torque in one place given a different force or torque in another. These include levers, gear boxes, presses, pliers, clippers, chain drives, and crank-drives. Besides solid parts connected by pins, a few special- purpose parts are commonly used, including springs and gears. Tricks for amplifying force are usually based on principals idealized by pul- leys, levers, wedges and toggles. Force-analysis of transmissions and mechanisms is done by drawing free body diagrams of the parts, writ- ingequilibriumequationsforthese,andsolvingtheequationsfordesired unknowns. IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. Chapter0.DetailedContents DetailedContents 5 6.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Box6.1‘Zero-length’springs . . . . . . . . . . . . . . . . 313 Box6.2Apuzzlewithtwospringsandthreeropes. . . . . . 320 Box6.3Howstiffaspringisasolidrod . . . . . . . . . . 321 Box6.4Stifferbutweaker . . . . . . . . . . . . . . . . . . 321 Box6.52Dgeometryofspringstretch . . . . . . . . . . . 324 6.2 Forceamplification . . . . . . . . . . . . . . . . . . . . . . 333 6.3 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Box6.6Shearswithgears . . . . . . . . . . . . . . . . . . 347 ProblemsforChapter6 . . . . . . . . . . . . . . . . . . . . . . . 354 7 Hydrostatics 364 Hydrostaticsconcernstheequivalentforceandmomentduetodistributed pressure on a surface from a still fluid. Pressure increases with depth. With constant pressure the equivalent force has magnitude = pressure times area, acting at the centroid. For linearly-varying pressure on a rectangular plate the equivalent force is the average pressure times the area acting 2/3 of the way down. The net force acting on a totally sub- mergedobjectinaconstantdensityfluidisthedisplaceweightactingat thecentroid. 7.1 Fluidpressure . . . . . . . . . . . . . . . . . . . . . . . . . 365 Box7.1AddingforcestoderiveArchimedes’principle . . . 368 Box7.2Pressuredependsonpositionbutnotonorientation 369 ProblemsforChapter7 . . . . . . . . . . . . . . . . . . . . . . . 377 8 Tension,shearandbendingmoment 380 The ‘internal forces’ tension, shear and bending moment can vary from point to point in long narrow objects. Here we introduce the notion of graphingthisvariationandnotingthefeaturesofthesegraphs. 8.1 Arbitrarycuts . . . . . . . . . . . . . . . . . . . . . . . . . 381 ProblemsforChapter8 . . . . . . . . . . . . . . . . . . . . . . . 397 Part III: Dynamics 400 9 Dynamicsin1D 400 ThescalarequationF Dmaintroducestheconceptsofmotionandtime derivatives to mechanics. In particular the equations of dynamics are seen to reduce to ordinary differential equations, the simplest of which have memorable analytic solutions. The harder differential equations needbesolvedonacomputer. Weexplorevariousconceptsandapplica- tions involving momentum, power, work, kinetic and potential energies, oscillations,collisionsandmulti-particlesystems. 9.1 Forceandmotionin1D . . . . . . . . . . . . . . . . . . . . 402 Box9.1WhatdothetermsinF mamean? . . . . . . . 407 D Box9.2SolutionsofthesimplestODEs . . . . . . . . . . . 412 Box9.3D’Alembert’smechanics: beginnersbeware . . . . 415 9.2 Energymethodsin1D . . . . . . . . . . . . . . . . . . . . . 422 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009. 6 Chapter0.DetailedContents DetailedContents Box9.4Particlemodelsfortheenergeticsoflocomotion. . 433 9.3 Vibrations: mass,springanddashpot . . . . . . . . . . . . . 440 Box9.5Acos.(cid:21)t/ Bsin.(cid:21)t/ Rcos.(cid:21)t (cid:30)/ . . . . . 444 C D (cid:0) Box9.6Solutionofthedamped-oscillatorequations . . . . 450 9.4 Coupledmotionsin1D . . . . . . . . . . . . . . . . . . . . 465 Box9.7Normalmodes: themathandtherecipe . . . . . . 472 9.5 Collisionsin1D . . . . . . . . . . . . . . . . . . . . . . . . 480 Box9.8Whenequalrodscollidethevibrationsdisappear . 485 9.6 Advanced: forcing&resonance . . . . . . . . . . . . . . . . 489 Box9.9ALoudspeakerconeisaforcedoscillator. . . . . . 494 Box9.10Solutionoftheforcedoscillatorequation . . . . . 496 Box9.11Thevocabularyofforcedoscillations . . . . . . . 497 ProblemsforChapter9 . . . . . . . . . . . . . . . . . . . . . . . 505 10 Particlesinspace 518 This chapter is about the vector equation F* D m*a for one particle. Conceptsandapplicationsincludeballisticsandplanetarymotion. The differential equations of motion are set-up in cartesian coordinates and integratedeithernumerically,orforspecialsimplecases,byhand. Con- straints,forcesfromropes,rods,chains,floors,railsandguidesthatcan onlybefoundonceoneknowstheacceleration,arenotconsidered. Box10.1Newton’slawsinNewtonianreferenceframes . . 520 10.1 Dynamicsofaparticleinspace . . . . . . . . . . . . . . . . 521 Box10.2Thederivativeofavectordependsonframe . . . 528 10.2 Momentumandenergy . . . . . . . . . . . . . . . . . . . . 537 Box10.3Conservativeforcesandnon-conservativeforces 543 Box10.4Particletheoremsformomentaandenergy . . . . 545 10.3 Central-forcemotionandcelestialmechanics . . . . . . . . . 549 ProblemsforChapter10. . . . . . . . . . . . . . . . . . . . . . . 559 11 Manyparticlesinspace 566 Thismoreadvancedchapterconcernsthemotionoftwoormoreparticles inspace. WewilluseF*D m*aforeachparticle. WewilluseCartesian coordinates only. The start is the set up of “two-body” type problems whichareeasilygeneralizedto3ormoreparticles. Thefirstsectioncon- cerns smooth motions due to forces from gravity, springs, smoothly ap- pliedforcesandfriction. Thesecondsectionconcernsthesuddenchange invelocitieswhenimpulsiveforcesareapplied. 11.1 Coupledparticlemotion . . . . . . . . . . . . . . . . . . . . 568 11.2 particlecollisions . . . . . . . . . . . . . . . . . . . . . . . 576 Box11.1Effectivemass . . . . . . . . . . . . . . . . . . . 578 Box11.2Energeticsofcollisions . . . . . . . . . . . . . . 580 Box11.3Coefficientofgeneration . . . . . . . . . . . . . 583 Box11.4Aparticlecollisionmodelofrunning . . . . . . . 584 ProblemsforChapter11. . . . . . . . . . . . . . . . . . . . . . . 589 12 Straightlinemotion 592 Here is an introduction to kinematic constraint in its simplest context, IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1992-2009.
Description: