ebook img

Online Dictionary Learning Aided Target Recognition In Cognitive GPR PDF

0.85 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Online Dictionary Learning Aided Target Recognition In Cognitive GPR

ONLINEDICTIONARYLEARNINGAIDEDTARGETRECOGNITIONINCOGNITIVEGPR FabioGiovanneschi1,KumarVijayMishra2,MariaAntoniaGonzalez-Huici1,YoninaC.Eldar2, andJoachimH.G.Ender1,3 1FraunhoferInstituteforHighFrequencyPhysicsandRadarTechniques,Germany 2AndrewandErnaViterbiFacultyofElectricalEngineering,Technion-IsraelInstituteofTechnology,Israel 3Centre for Sensor Systems (ZESS), University of Siegen, Germany 7 ABSTRACT Inordertoreducethescantimeornumberofmeasurements,an 1 emergingtrendinGPRresearch[12,13]istoemploytherecently 0 Sparse decomposition of ground penetration radar (GPR) signals proposedcompressedsensing(CS)framework[14, 15]. InCS,a 2 facilitatestheuseofcompressedsensingtechniquesforfasterdata signalcanbereconstructedusingareducednumberofsamplesw.r.t. n acquisitionandenhancedfeatureextractionfortargetclassification. thetheNyquistraterequirements,providedthesignalissparsein a In this paper, we investigate use of an online dictionary learning somedomain.However,unlikepointscatterers,themineechoesare J (ODL)techniqueinthecontextofGPRtobringdownthelearning spatiallyextendedandtheresultingGPRreceivedsignalisnotsparse 5 timeaswellasimproveidentificationofabandonedanti-personnel inconventionalrange-timeandfrequencydomains[16].Therefore, 2 landmines.OurexperimentalresultsusingrealdatafromanL-band ourimmediategoalistofindanefficientsparserepresentation(SR) GPRforPMN/PMA2,ERAandT72minesshowthatODLreduces whichaccuratelyrepresentsthescatteringbehaviorsrelatedtosoil ] learningtimeby94%andincreasesclutterdetectionby10%overthe type and targets. This has been shown to improve the classifier T classicalK-SVDalgorithm.Moreover,ourmethodscouldbehelpful performanceindiscriminatingminesfromclutter[16,17]. I incognitiveoperationoftheGPRwherethesystemadaptstherange . InSR,thesignal-of-interestistransformedtoadomainwhere s samplingbasedonthelearneddictionary. c thesignalcanbeexpressedasalinearcombinationofonlyafew [ IndexTerms— groundpenetrationradar,onlinedictionarylearn- columnsoratomsofthedictionarymatrix[18].Whenitisinefficient ing,KSVD,compressedsensing,cognitiveradar topre-definethedictionarytocontainarbitrarybasis(e.g.Fourieror 2 wavelets),theusualresortistolearnthedictionaryfromprevious v 1. INTRODUCTION measurements. Dictionarylearning(DL)techniquesaimtocreate 7 adapteddictionarieswhichprovidethesparsestreconstructionfor 0 Agroundpenetratingradar(GPR,hereafter)isusedforprobingthe giventraining-sets, i.e., arepresentationwithaminimumnumber 6 undergroundbytransmittingradiowavesinthesubsurfaceandrecord- ofconstitutingatoms. ClassicalDLalgorithmssuchasMethodof 3 ingthebackscatteredreflections. TheinterestinGPRisduetoits OptimalDirections(MOD)[19]andK-SVD[18]operateinbatches 0 abilitytorevealburiedobjectsnon-invasivelyanddetectnon-metallic -dealingwiththeentiretrainingsetineachiteration. Althoughex- . 1 scattererswithincreasedsensitivitytodielectriccontrast[1,2].This tremelysuccessful,thesemethodsarecomputationallydemanding 0 sensingtechniqueis,therefore,attractiveforseveralapplicationssuch andnotscalabletohigh-dimensiontrainingsets. Anefficientalter- 7 asgeophysics,archaeology,forensics,anddefense(seee.g.[1,3]for nativeistheonlinedictionarylearning(ODL)algorithm[20]that 1 somesurveys). Inthiswork,ourfocusisdetectionofburiedland- convergesfast,processessmallsets,andcaninferthedictionaryfrom v: mines.ItisoneofthemostextensivelyinvestigatedGPRapplications largeortime-varyingtrainingsets[21]. duetoitsobvioussecurityandhumanitarianimportance. i ImprovedDLmethodscanaidinbettertargetidentificationand X MinedetectionGPRusuallyoperatesinL-band(1-2GHz)with subsequentreductioninGPRmeasurementsthroughCS-baseddesign. r ultra-wideband(UWB)transmitsignalsthatallowresolvingsmalltar- Tothisend,ourworkfocusesonhithertounexaminedapplicationof a gets(5-10cmdiameter)atshallowdepths(15-30cm)[4,5].Insuch DLtowardsGPR-basedlandmineclassification.Onlyoneprevious situations,GPRtargetrecognitionsuffersfromsignaldistortiondue studyhasemployedDL(K-SVD)usingGPRsignals[16],foridenti- toinhomogeneoussoilclutter,surfaceroughnessandantennaringing. fyingbedrockfeatures.WeproposeemployingODLandthenusethe Moreover,theconstitutingmaterialofmanymodelsoflandminesis coefficientsoftheresultingsparsevectorsasinputtoaSupportVec- largelyplasticandhasaveryweakresponsetoradarsignalsdueto torMachine(SVM)classifiertodistinguishminesfromclutter.Our itslowdielectriccontrastwithrespecttothesoil[3,6].Avarietyof comparisonofODLandK-SVDusingrealdatafromL-bandGPR signalprocessingalgorithmshavebeenproposedfordetectionoflow showsthatODLenjoysdistinctadvantageinspeedandlowfalse- metal-contentlandminesinrealisticscenarios;approachesbasedon alarmrates.FastODLcomputationspavethewaytowardscognitive featureextractionandclassificationarefoundtobethemosteffective GPRoperation,whereinthesystemusespreviousmeasurementsto (seee.g.[7–10]),yetfalse-alarmratesremainveryhigh. Further,a optimizetheprocessingperformanceandiscapableofsequential high-resolutionGPRhaslongscantimestherebymakingthedata samplingadaptationbasedonthelearneddictionary[22–24]. acquisitionbyaportableinstrumentverycumbersome[11]. Inthenextsection,wedescribetheGPRsystemandthedatasets. InSectionIII,weintroduceourtechniqueforGPRtargetidentifica- TheauthorswouldliketothankthecolleaguesatLeibnizInstitutefor tion,withparticularfocusonODL.SectionIVpresentsclassification AppliedGeophysics(LIAG),Hannover,Germanyfortheirsupportduringthe measurementcampaign. K.V.M.acknowledgespartialsupportviaAndrew andreconstructionresultsusingrealradardata.Weprovideconclud- andErnaFinciViterbiFellowshipandLadyDavisFellowship. ingremarksinSectionV. minimize (cid:107)Y−DX(cid:107) Parameter Value D,X F Operatingfrequency 2GHz subjectto (cid:107)x (cid:107) ≤K, ∀1≤i≤L, (3.1) i 0 PRF 1MHz where||·|| denotesFrobeniusnorm.SincebothDandXareun- Pulselength 0.5ns F known,commonlythisisturnedintoatwo-stepconvexproblemthat Samplingtime 25ps alternatelyminimizesX(sparsecodingstep)[26]andD(dictionary Spatialsampling 1cm updatestep). ThepopularK-SVDalgorithmsequentiallyupdates Crossresolution 4cm alltheatomsforeachalternationbetweentheaforementionedtwo Antennaheight 5-9cm steps.Thisisabatchalgorithmthatusestheentiretrainingdatafor Samples/A-scan 512 updatingthedictionaryateachalternation. TheODLalsoupdates Fig.1. Testsite(red)withburied theentiredictionarysequentially,butusesoneelementoftraining mines.InsetshowsGPRsystem. Table1.GPRparameters dataatatimeforthegradientdescent-baseddictionaryupdatestep. Forthesparsecodingstep,K-SVDemploysOrthogonalMatching 2. SYSTEMANDFIELDTESTS Pursuit(OMP)withtheformulation: WeusedacommercialGPRsystemandcarriedoutthefieldcam- minimize (cid:107)x (cid:107) paignatLeibnizInstituteforAppliedGeophysics(LIAG),Hannover xi i 0 (Germany)[8].Wenowprovidedetailsforthesystemanddata. subjectto (cid:107)y −Dx (cid:107)2 ≤α, ∀1≤i≤L, (3.2) i i 2 2.1. L-bandGPR whereαisthemaximumresidualerrorusedasastoppingcriterion. TheGPRsystem(seeFig. 1inset)isanimpulseradarwithcentral TheODL,ontheotherhand,usesCholesky-basedimplementationof frequency of 2 GHz.The frequency of the pulse repetition (PRF) theLARS-LASSOalgorithm[27].Thelattersolvesa(cid:96) -regularized 1 andthesamplingofthereceiverADCisof1MHz. Table1lists least-squaresproblem: thesalienttechnicalparametersofthesystem.Thescanrateofthe system is ∼ 1 m/s with sampling resolution of 1 cm towards the x (cid:44) min1||y −D x||2+λ||x|| , (3.3) perpendicularbroadside(orXdirection)and4cmtowardsthecross- T x∈Rn2 T T−1 2 1 beam(Ydirection).Theradarusesa8cm×8cmdualbow-tiedipole wherethesubscriptsT −1andT denotelastandcurrentiterations. antennaforbothtransmit(Tx)andreceive(Rx)sealedinametallic shieldingandaninternalabsorber.Therawdataconsistsofsamples 3.2. Signalclassification ofcomplexenvelopeofthereceivedsignal. WeuseSVMtoclassifythesparselyrepresentedGPRrangeprofiles. 2.2. Minesdata Given a pre-defined collection of labeled observations, namely a Thetestbedwasagrassy,moderatelyroughsurfacecontainingland- “classificationset”, SVMsearchesforafunctionalf : Rn → R minesimulantsofdifferentsizesthatintheorderofdecreasingsize thatmapsanygivenobservationxi toaclassc ∈ R. Inourwork, arePMN/PMA2,ERAandT72,allburiedatadepthof5-10cm[25]. theclassificationsetisalabeledcollectionofGPRrangeprofiles Duringthefieldtests,theGPRscanneddifferent1m×1msections oftargets/clutterwhichhavebeensparselydecomposedusingthe ofthetest-bed.Thesoiltexturewassandyandhighlyinhomegeneous learned dictionary D. We refer the reader to [28] for details of (duetothepresenceofmaterialsuchasorganicmatterandstones), SVM. Briefly, SVM transforms the data into a high dimensional therebyleadingtoahighvariabilityintheelectricalparameters.We featurespacewhereitiseasiertoseparatebetweendifferentclasses. measuredthedielectricconstantatthreedifferentlocationsofthe Thekernelfunctionthatweusetocomputethehighdimensional testbedwithaTimeDomainReflectometer(TDR)toobtainanesti- operationsinthefeaturespace,istheRadialBasisFunction(RBF).To mateofitsmeanvalueandvariability.Theaveragevalueoscillated optimallyselecttheSVMinputparameters,wearrangedtheoriginal between4.6and10.1with15%standarddeviationandcorrelation classificationsetintotrainingandvalidationvectorsinν different length[8]of20cm. Suchbigvariationsinsoilcompositionspose ways(ν-foldcross-validationwithν=10)toarriveatacertainmean difficultiesinminedetectionwithexistingmethods. cross-classificationaccuracyofthevalidationvectors. 3. GPRTARGETIDENTIFICATIONMETHOD 4. EXPERIMENTALRESULTSANDANALYSIS Wenowdescribeourmethodfordictionarylearningandclassification WedividedtheentireLIAGdataintothreedifferentsets:thetraining for GPR target identification. The literature for DL and SVM is settolearnthedictionary,theclassificationsetfortheSVMclassifier extensive, and hence we only summarize these methods here. In andthetestset. Wedevisedastatisticalapproachtoselectthebest thefollowing,weuseboldfacelowercaseanduppercaselettersfor parametersforDLwithGPRminesdata,andthenusetheresultant vectorsandmatrices,respectively. dictionaryfortheclassificationprocedure. 3.1. Dictionarylearning 4.1. Dictionarycomparison Adictionarylearningalgorithmfindsanover-completedictionary ThetrainingsetYconsistedofmorethantwothousandrangeprofiles D ∈ Rm×n, m < n that can sparsely represent measurements thatwererandomlyselectedfromacollectionofGPRresponsesin y ∈ Rm. ForthetrainingdataY = [y ,··· ,y ], wecallX = proximity of the buried targets; these areas belonged to different 1 L [x ,··· ,x ] ∈ Rn×L a sparse representation of Y over D = surveysofthetestsite.Inordertocomparethedictionariesobtained 1 L [d ,··· ,d ], ifY (cid:39) DX. Here, d , j = 1,··· ,niscalledan fromODLandK-SVD,weuseasimilaritymeasurethatquantifiesthe 1 n j atomofthedictionary.Eachofthevectorsx isasparserepresenta- closenessofthereconstructedvectorsyˆ obtainedusingthesparse i i tionofy withonlyK nonzeroentries. Atractableformulationof coefficientsofthelearneddictionaryDwiththeoriginaltraining i thisproblemisthefollowingnon-convexoptimization set vectors y . Let the cross-correlation between the two vectors i Wearelookingforsetofvalues{T,K,λ,α}forwhichthep sDL isskewedtowardsunityandhassmallvariance.Theindividualcom- parisonsofmean(µ)andstandarddeviation(σ),asusedinprevious GPRDLstudies[16],arenotsufficienttoquantifytheobserveddis- persionintheepdfsobtainedbyvaryinganyoftheparametervalues. We,therefore,simultaneouslycomparebothstatisticsbyusingthe coefficientofvariation,CV =σ/µ;inouranalysis,itrepresentsthe extentofvariabilityinrelationtothemeanofthesimilarityvalues. Figure3ashowsthevariationofCVforODLandK-SVDfordiffer- entvaluesoftrainedatomsandfixedvaluesofλ=0.1andα=0.1. TheODLshowsthatafter40iterations,thevariationintheepdfis negligibleandtheimpactofincreasingthenumberoftrainedatoms grows.WenotethatK-SVDdoesn’tshowanysuchtrend. Oursecondmetrictocomparethedistributionsofthesimilarity measureobtainedbysuccessivechangesinparametervaluesisthe Kolmogorov-Smirnov(K-S)distance[29],whichisthemaximum distancebetweentwogivenempiricalcumulativedistributionfunc- tions(ecdf).LargervaluesofK-Sdistanceindicatethatsamplesare Fig.2. Normalizedhistogramsofsimilaritymeasure. Here,T = 40,K = 512, drawnfromdifferentunderlyingdistributions.SupposeP andP λ=0.1,andα=0.1. s1 s2 aretheecdfsofthesamelengthcorrespondingtoepdfsp andp , s1 s2 respectively.ThenK-SdistanceD(P ,P )is s1 s2 D(P ,P )= sup |P (i)−P (i)|, (4.2) s1 s2 s1 s2 1≤i≤N wheresupdenotesthesupremumoveralldistances.Figure3bshows thevariationofK-Sdistancefortheidenticalvaluesofparametersas usedforCVevaluationinFig.3a.Wekepttheecdfcorresponding toK = 128atomsandT = 1iterationasareference. Wethen computedtheK-Sdistanceofecdfsobtainedwithotherparameter valueswithrespecttothisreference.Astheparametervaluesmove awayfromthisreference,theK-Sdistanceincreases.However,for (a)Coefficientofvariation (b)Kolmogorov-Smirnovdistance bothDLmethods,wenoticethefollowingtrend: asthenumberof iterationsincrease,thedifferenceinK-Sdistancebetweensuccessive Fig.3. Statisticsofsimilaritymeasuredistributionsforλ=0.1andα=0.1and iterationsisnegligibleandisinfluencedmostlybythenumberof varyingnumberofiterationsandtrainedatoms. trainedatoms. TheK-Sdistancequantifiesthedifferencebetween +∞ be r (m) = (cid:80) y (n)yˆ (n+m). The normalized cross- ODLandK-SVDdistributionsratherthanstatingwhichoneisbetter. yi,yˆi i i n=−∞ CombiningthisinformationwithFig.3a,itisevidentthatODLhas correlationis lowerCVandisalsomorerobusttoparameterchangesthanK-SVD. r (m) r (m)= yi,yˆi (4.1) 4.3. Classificationandcomputationalefficiency yi,yˆi (cid:112)r (0)r (0) yi,yi yˆi,yˆi AfterexaminingthethresholdsatwhichtheCVandK-Sdistance Wedefinethesimilaritymeasuresitobethemaximumoftheabsolute stabilize,weselectedthefollowingvaluesfordictionarylearning: valueofthenormalizedcrosscorrelationbetweenyiandyˆi: si = T =40,K =512,λ=0.1,andα=0.1.Forthissetofvalues,Fig. max|ryi,yˆi(m)|.Thesetofsimilaritymeasurevalues{si}Ni=1form 2showstheepdfsofsimilaritymeasuresforODLandK-SVD.Ina an empirical probability density function (epdf), psDL where the landmineclearancecampaign,theseparameterswillbelearnedoffline subscriptDLrepresentsthemethodused(K-SVDorODL).Asan andwillremainfixedduringtheclassificationprocedure.Thetestset example, Fig. 2 shows the epdfs for the dictionaries learned for contains2differentsurveysforeachtypeofmineclassforatotalof theGPRminesdata. WenotethatpsODL ismoreskewedtowards fivethousandrangeprofiles.Oncethetest-setissparselydecomposed unitythanpsKSVD,therebydemonstratingsimilarityofthelearned usingthelearneddictionary,weestimatedameansparsitytobe≈4 ODLdictionarywiththeoriginaltrainingset.Toarriveatoptimum forODLand≈6forK-SVD.Inordertofindthebestfunctionalfor parametervaluesaffectingtheseepdfs,wenowusestatisticalmetrics. theSVMclassifier,weconductedacross-validationonthesparsely decomposed classification set using a set of different RBF kernel parameters.Afterobtainingthefunctional,weusedittoclassifythe 4.2. Parameteranalysis sparselydecomposedtestset. TheparameterswhichpredominantlyaffecttheresultsofODLand Figure4showstherawdataforPMA/PMNminesat15cmdepth K-SVDalgorithmsarethenumberofiterations(T),thenumberof andtheclassificationmapsobtainedwithalearneddictionaryusing trainedatomsK,theregularizationparameterλintheSDstep,and ODLandK-SVDmethods.Itisclearthattargetandclutterrecogni- theerrorparameterαtosparselydecomposethetrainingsetviaOMP. tionaredrasticallyimprovedusingadictionarylearnedwithODL Theepdfp isthenafunctionofthesefourparameters.Foragiven when compared with K-SVD. Table 2 compares the performance s DLmethod,ourgoalistocomparetheepdfsofsimilaritymeasure ofclassificationusingthetwoDLmethods.Usingaccurateground byvaryingtheseparameters,andarriveatthethresholdsofparameter truthinformation,wedefinedtargethalosastheboundariesofthe valuesafterwhichthechangesinp areonlyincremental. buriedlandmines. Letthenumberofpixelsandthedeclaredmine sDL 6. REFERENCES [1] H.M.Jol,Ed.,Groundpenetratingradartheoryandapplications. Elsevier Science,2009. [2] R.Persico,Introductiontogroundpenetratingradar:Inversescatteringanddata processing. JohnWiley&Sons,2014. [3] D.J.Daniels,Groundpenetratingradar. IET,2004. [4] A.G.Yarovoy,P.vanGenderen,andL.P.Ligthart,“Ultra-widebandgroundpen- etratingimpulseradar,”inUltra-wideband,short-pulseelectromagnetics5,P.D. SmithandS.R.Cloude,Eds. Springer,2002,pp.183–189. [5] F.Giovanneschi,M.A.Gonza´lez-Huici,andU.Uschkerat,“Aparametricanalysis oftimeandfrequencydomainGPRscatteringsignaturesfromburiedlandmine- liketargets,”inSPIEDefense,Security,andSensing,2013,pp.870914–870914. [6] C.BruschiniandB.Gros,“Asurveyofresearchonsensortechnologyforland- minedetection,”J.ConventionalWeaponsDestruction,vol.2,no.1,p.3,2016. [7] C.R.Ratto,P.A.Torrione,andL.M.Collins,“Exploitingground-penetrating radarphenomenologyinacontext-dependentframeworkforlandminedetection anddiscrimination,”IEEETrans.Geosci.RemoteSens.,vol.49,no.5,pp.1689– 1700,2011. [8] M.A.Gonza´lez-HuiciandF.Giovanneschi,“Acombinedstrategyforlandmine detectionandidentificationusingsyntheticGPRresponses,”J.Appl.Geophys., vol.99,pp.154–165,2013. [9] P.A.Torrione,K.D.Morton,R.Sakaguchi,andL.M.Collins,“Histogramsof orientedgradientsforlandminedetectioninground-penetratingradardata,”IEEE Trans.Geosci.RemoteSens.,vol.52,no.3,pp.1539–1550,2014. [10] I. Giannakis, A. Giannopoulos, and A. Yarovoy, “Model-based evaluation of Fig.4.(a)Raw-dataforPMA/PMN(warmervaluesindicatepresence signal-to-clutter ratio for landmine detection using ground-penetrating radar,” ofmines).Classificationmapobtainedwith(b)K-SVDand(c)ODL. IEEETrans.Geosci.RemoteSens.,vol.54,no.6,pp.3564–3573,2016. [11] A.B.Suksmono,E.Bharata,A.A.Lestari,A.G.Yarovoy,andL.P.,“Compres- PCC sivestepped-frequencycontinuous-wavegroundpenetratingradar,”IEEEGeosci. Clutter PMN/PMA2 ERA T72 RemoteSens.Lett.,vol.7,no.4,pp.665–669,2010. [12] A.C.Gurbuz,J.H.McClellan,andW.R.Scott,“Compressivesensingofunder- K-SVD 0.824 0.810 0.666 0.750 groundstructuresusingGPR,”Digit.SignalProcess.,vol.22,no.1,pp.66–73, ODL 0.923 0.950 0.833 0.750 2012. [13] K.R.Krueger,J.H.McClellan,andW.R.ScottJr,“Compressivesensingfor radarimagingofundergroundtargets,”inCompressiveSensingforUrbanRadar, Table2.PerformanceofODLandK-SVDformine-detectionGPR. M.Amin,Ed. CRCPress,2014,p.87. ODL and KSVD results are identical for the smallest mine T72 [14] Y. C. Eldar and G. Kutyniok, Compressed sensing: Theory and applications. CambridgeUniversityPress,2012. becauseonlyafewpixelsareconsideredforT72classification. [15] Y.C.Eldar,SamplingTheory:BeyondBandlimitedSystems. CambridgeUniver- sityPress,2015. pixelsinsidethetargethalobeN andN ,respectively.Similarly, t m [16] W. Shao, A. Bouzerdoum, and S. L. Phung, “Sparse representation of GPR wedenotethenumberoftrueanddeclaredclutterpixelsoutsidethe traceswithapplicationtosignalclassification,”IEEETrans.Geosci.RemoteSens., targethalobyN andN ,respectively. Then,theprobabilitiesof vol.51,no.7,pp.3922–3930,2013. c d correctclassification(P )forminesandclutterare [17] F.GiovanneschiandM.A.Gonza´lez-Huici,“Apreliminaryanalysisofasparse CC reconstructionbasedclassificationmethodappliedtoGPRdata,”inInt.Workshop N N AdvancedGroundPenetratingRadar,2015,pp.1–4. PCCmines = Nmt , and PCCclutter = Ndc. (4.3) [18] Mtio.nEsloavdearnldeaMrn.edAdhiacrtoionn,a“rIimesa,”geIEdEenEoTisrianngs.vIiamsapgaersPeroacnedssr.e,dvuonld.a1n5t,rneop.re1s2e,nptap-. 3736–3745,2006. The P being the output of a classifier should not be mistaken CC [19] K.Engan,S.O.Aase,andJ.H.Husoy,“Methodofoptimaldirectionsforframe as the radar’s probability of detection Pd which is the result of a design,”inIEEEInt.Conf.Acoust.SpeechSignalProcess.,vol.5,1999,pp.2443– detector.Adetectorwoulddeclarethepresenceofaminewhenonly 2446. afewpixelsinsidethehalohavebeendeclaredasmine.SinceP [20] J.Mairal,F.Bach,J.Ponce,andG.Sapiro,“Onlinedictionarylearningforsparse CC coding,”inAnnu.Int.Conf.Mach.Learn.,2009,pp.689–696. takesintoaccounttheentiretargethalo,itprovidesafairandaccurate [21] Y.Naderahmadian,S.Beheshti,andM.A.Tinati,“Correlationbasedonlinedictio- evaluationofoftheclassificationresult.Theexecutiontimeforsparse narylearningalgorithm,”IEEETrans.SignalProcess,vol.64,no.3,pp.592–602, decompositionandclassificationstepswereidentical(0.26sand0.14 2016. [22] J. R. Guerci, Cognitive radar: The knowledge-aided fully adaptive approach. s,respectively)forbothODLandK-SVDmethods.However,forDL ArtechHouse,2010. update,ODLtookonly0.46s-morethansixteentimesfasterthan [23] K.V.Mishra,E.Shoshan,M.Namer,M.Meltsin,D.Cohen,R.Madmoni,S.Dror, K-SVD(8.09s). R.Ifraimov,andY.C.Eldar,“Cognitivesub-Nyquisthardwareprototypeofa collocatedMIMOradar,”inCompressedSens.TheoryAppl.RadarSonarRemote Sens.,2016. 5. SUMMARY [24] K.V.MishraandY.C.Eldar,“Performanceoftimedelayestimationinacognitive radar,”inIEEEInt.Conf.Acoust.SpeechSignalProcess.,2017,toappear. Inthiswork,weproposedODLforsparsedecompositionofGPR- [25] M.A.Gonza´lez-Huici,“Accurategroundpenetratingradarnumericalmodeling basedminedata.Ourresultsindicatenear-real-timeexecutiontimes forautomaticdetectionandrecognitionofantipersonnellandmines,”Ph.D.disser- tation,Universita¨ts-undLandesbibliothekBonn,2013. using ODL, high clutter rejection and improved classifier perfor- [26] M.Aharon,M.Elad,andA.Bruckstein,“K-SVD:Analgorithmfordesigning mance.Thesecharacteristicsopeninterestingopportunitiesforfuture overcompletedictionariesforsparserepresentation,”IEEETrans.SignalProcess., cognitiveoperationofGPR.Forexample, inarealisticlandmine- vol.54,no.11,pp.4311–22,2006. clearancecampaign,anoperatorcouldgatherthetrainingmeasure- [27] M.R.Osborne,B.Presnell,andB.A.Turlach,“Anewapproachtovariableselec- tioninleastsquaresproblems,”IMAJournalofNumericalAnalysis,vol.20,no.3, mentsoverasafeareanexttothecontaminatedsite,hypothetically pp.389–403,2000. placingsomeburiedlandminesimulantsoveritinordertohavea [28] C.-C.ChangandC.-J.Lin,“Libsvm:Alibraryforsupportvectormachines,”ACM faithfulrepresentationofthesoil/targetsinteractionbeneaththesur- Trans.IntelligentSyst.Tech.,vol.2,no.3,p.27,2011. face.Inotherwords,ourworkallowstheoperatorto“calibrate”the [29] I.M.Chakravarti,L.R.G.,andJ.Roy,Handbookofmethodsofappliedstatistics: VolumeI. JohnWileyandSons,2004. acquisitionbyprovidingagoodtrainingsettolearnthedictionary.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.