One Universal Extra Dimension in PYTHIA M.ElKacimi1,D.Goujdami1,H.Przysiezniak2∗,P.Skands3 1Universite´CadiAyyad,Faculte´desSciencesSemlalia,B.P.2390,Marrakech,Maroc 2Laboratoire Rene´-J.-A.-Le´vesque, Universite´ de Montre´al, C.P. 6128, Montre´al (Que´bec), H3C 3J7, Canada,andIN2P3/CNRS,France 3 FermilabMS106,BataviaIL-60510-0500,USA 9 0 0 Abstract 2 TheUniversalExtraDimensionsmodelhasbeenimplementedinthePYTHIAgeneratorfrom n version6.4.18onwards,initsminimalformulationwithoneTeV−1 sizedextradimension. The a J additionalpossibilityofgravity-mediateddecays,throughavariablenumberofeV−1sizedextra dimensions into which only gravity extends, is also available. The implementation covers the 6 2 lowest-lying Kaluza-Klein (KK) excitations of Standard Model particles, except for the excita- tions of the Higgsfields, with the mass spectrumcalculated at one loop. 2 → 2 tree-levelpro- ] ductioncrosssectionsandKKnumberconserving2-bodydecaysareincluded. Mixingbetween h p iso-doubletand-singletKKexcitationsisneglectedthusfar,andisexpectedtobenegligiblefor - allbutthetopsector. p e h [ 1 Introduction 1 v 7 In the Universal Extra Dimensions (UED) model, first formulated in [1], all Standard Model (SM) 8 fields are allowed to propagate into δ TeV−1 sized extra dimensions. In its minimal formulation, 0 the SM lives in 4 + δ(= 1) space-time dimensions. This model can be considered as an effective 4 . theory, valid below some cutoff scale Λ > 1/R, where R is the compactification length of the extra 1 0 dimension. Toavoid fine-tuning ofthe parameters in the Higgs sector, 1/R should also not be much 9 higher than the electroweak scale. Such models can be shown to be consistent with all current low- 0 energyandcollider constraints [1–3]. : v If the UED space is further embedded into a larger space with N extra dimensions into which i X only gravity spreads [4], gravity mediated decays also become possible. In this case the (4 + N)- r dimensionalPlanckscaleM shouldnotbemorethanoneortwoordersofmagnitudeabove1/R[5]. a D Phenomenologically, UEDmodels exhibit several interesting properties, often similar tothose of supersymmetric (SUSY) models. Every SM field has a Kaluza-Klein (KK) partner (a whole tower of them in fact, but here we consider only the lowest-lying excitations), which carries a conserved quantumnumber,KKparity. Thisconservedparity,tracingitsorigintoextra-dimensionalmomentum conservation, renders the lightest KK particle (LKP) stable. Heavier KK modes cascade decay to the LKP by emitting relatively soft SM particles. The LKP escapes detection, generally resulting in missing energy signals. If the model is extended to include (N + 4)-dimensional gravity, then the LKP may decay further to its SM partner plus a low-mass graviton excitation, in which case a phenomenology more similar to that of SUSY models with gauge mediated SUSY breaking may arise[6,7]. InthePYTHIA[8]implementation,theadjustableparametersforthedefaultUEDmodel(i.e.,with no modification of the gravitational sector) are 1/R, Λ, and the number of quark flavours in the KK ∗Correspondingauthor:HelenkaPrzysiezniak([email protected]) 1 excitation spectrum, with default values of 1/R = 1 TeV, Λ = 20 TeV, and nKK = 5, respectively, f whileδ isfixedtothevalueof1. Optionally, onemaychoosetoadjustthevalueofΛ×Rratherthan thatofΛ. Forthe variant ofthemodelwith(4+N)-dimensional gravity, thenumber ofeV−1-sized extra dimensions, N = 2,4, or 6, and the scale M also enter as adjustable parameters, withdefault D valuesofN = 6andM = 5TeV,respectively. D In Section 2, we give a brief description of the spectroscopy of the minimal UED model and in Section 3extend ittoinclude gravity mediated decays. InSection 4, theUEDimplementation inthe PYTHIA generator isdetailed. Weconclude andgiveanoutlook inSection5. 2 One-dimensional UED spectroscopy Inone-dimensional UED,eachSMparticlehasn = 1,2,3,... KKexcitations, ofsquared mass m2 = m2 +n2/R2 (1) n SM with the n = 0 state corresponding to the SM particle. So far, only the n = 1 excitations have been incorporated in PYTHIA. The compactification of the extra dimensions is assumed to conserve the extra-dimensional momentum components at tree level, resulting in conservation of KK number in theeffective4-dimensional model. HenceKKparticles arealwaysproduced inpairsandthereareno verticesinvolving onlyonenon-zero KKmode. At tree level, the mass spectrum at each KK level is highly degenerate for all SM particles with m ≪ 1/R,cf.eq.(1). However,firstorderradiativecorrections,calculatedin[9]andimplemented SM in PYTHIA using the code from [10], lift this degeneracy by about 20% for strongly interacting par- ticles, the heaviest being the excited gluon, and by less than 10% for leptons and EW bosons, the lightest being theexcited photon (the LKP).With these masssplittings, the SMquark and gluon KK excitations cascade decay down to the LKP, which is stable (unless (N +4)-dimensional gravity is switched on, see below). An example of a nondegenerate KK particle mass spectrum obtained with PYTHIA for representative values of the free parameters is shown in Figure 1. These results agree with[9]. Pythia 6.4.20 UED - First level KK mass spectrum g* q q 650 g* 1/R=500GeV L R = 20 q* q* q* a s = 0.118 q D q S 600 D q u* S d* Z* W*+ S (cid:81) (cid:81) q l q l 550 l l* (cid:81)* W*, Z* D D (cid:81) l* l g * l*D l*S l 500 S (cid:74)* Figure 1: In the first figure is shown the KK particle mass spectrum of the first level KK states including radiative corrections[9],for1/R = 500GeV,ΛR = 20andαs = 0.118. Thestar(*)denotesaKKparticleandthenotationsD andSindicaterespectivelythedoubletandsingletKKfermions. Inthesecondfigureareshownthedominant(solid)and rare(dotted)decaysofKKparticles.Theparticlesnotdenotedbyastar(*)areSM. 2 In general, mixing can occur between the doublet and singlet KK states. This effect is strongly suppressed for the light-flavor KK states, but can be phenomenologically relevant for the KK top quark [1]. Nonetheless, since the excited top pair production is small compared to the sum of all KK processes at the LHC [11], neglecting the mixing should still be a reasonable approximation for observables that are not explicitly sensitive to the top flavor. In the current PYTHIA implementation, theeffectsofdoublet-singlet mixingintheKKsectorarethusneglected. 3 Gravity mediated UED decay widths Ifthe(4+1)-dimensional UEDspace(brane)isembeddedintoalargerspaceof(4+N)dimensions (bulk),whereN countsthenumberofeV−1sizedextradimensionsintowhichonlygravitypropagates (withoneoftheN being parallel totheUEDdimension), thengravity mediated decays alsobecome possible [4]. The phenomenology of these decays then also depends on the (4 + N)-dimensional PlanckscaleM ,introducing twoadditional freeparametersinthemodel,N andM . D D Thegravitonfieldappearsasamasslessparticlewithatowerofexcitedmodeswhosemassesdif- ferbyorderofeV.Mostimportantly,thegravitonmodesextendingintheUEDdirectioncoupletoKK particles. HenceKKparticlesmaydecaydirectlytoSMparticlesbyemittingsuchlow-massgraviton excitations. While the coupling to each such mode is incredibly small, the modes are sufficiently densely spaced that, after summation (or, in thecontinuum approximation used for practical calcula- tions,integration) overthem,totaltransition ratesrelevant forcollider phenomenology mayoccur. In general, thegravity-mediated decayswillcompetewiththenon-gravitational (mass-splitting) modes. If Γ(masssplitting) >Γ(gravity mediated) then the gluon and quark excitations will cascade down to the excited photon γ∗ (LKP), which then will decay via γ∗ → γ +G(∗). More details can be found in [12]. This decay is the only gravity- mediated mode that appears by default in the PYTHIA implementation when (N + 4)-dimensional gravityisswitchedon. Thebranching ratioforγ∗ → γ+G(∗) isthen100%. Theremaining gravity mediated decays (of all other KKparticles) are foreseen tobe included in afutureversionandarecurrentlyavailableasastandaloneadd-onroutine,pygrav.f,whichcanbe downloaded from[14],withwidthexpressions from[5,13,15]. Thegravitonmassinthesedecaysisobtainedbyintegratingthedifferentialwidthtakenfrom1 [5, 13]. The formulae for the mass splitting decay widths in PYTHIA were extracted from the code [10] andtheirdependence on1/Risillustrated inFigure2,whichisinagreementwith[12]. 4 PYTHIA implementation The PYTHIA implementation of the UEDparticle spectrum, production processes, and decay modes is summarized here, after which we give a brief overview of the relevant user switches, parameters, andsubroutines controlling thecode. 4.1 PYTHIA UED particlespectrum, production processes anddecay modes In PYTHIA, inorder toavoid confusion between chiral and weakeigenstates, theUEDKKstates are labeledfollowingaslightlydifferentconvention thanthatsofaradoptedbythePDG.InthePDG,the 1Thiscorrectsanumericalproblemintheimplementationof[11]. 3 Figure2: Ontheleft-handfigure,themasssplittingdecaywidthsareshownversus1/RforthefirstlevelKKexcitations of vector bosons for the followingdecays: g∗ →dd¯∗, W∗± →eν∗ and Z∗ →e+e∗−. On theright-hand figure, the D eD D masssplittingdecaywidthsareshownforthefirstlevelKKexcitationsoffermions:q∗,q∗(forup-typequarks;thewidth D S fordown-typequarksisfourtimessmaller)andℓ∗D.TheseplotswereproducedusingPYTHIA6.4.20withΛR=20. KKparticles arelabeled such that for the fermions, the subscripts Land R denote that the fermion is respectively a doublet or a singlet under SU(2) (see Table 1 for first level excitations). However, W these doublet and singlet UED excitations are ordinary Dirac fermions, which both have left- and right-handedchiralspinorcomponents. To avoid any confusion with helicity states, the notations D (for doublet) and S (for singlet) are used here instead of the PDG L and R. Furthermore, the superscript (1) is replaced by a star (*) to correspond totheusual PYTHIA notationforextra-dimensional excitations. Therelationship between thePYTHIA andPDGparticlenamesisgiveninTable1. Weemphasizethattheseareonlynotational differences, of a purely cosmetic nature. We use the same numbers (particle codes) as the PDG,and ourschemeisthereforefullycompatible withtheirs. The UED states can be produced through nine new production processes (ISUB=311 to 319), listed in Table 2. These employ tree-level differential cross section expressions [5,11] and their dependence on1/Risillustrated inthetwoplotsofFigure3(fordefaultchoicesofallother PYTHIA parameters, such as the strong coupling, parton distributions, and renormalization and factorization scales). These can be compared to those in [5,12]. UED processes generated using an external generatorcanofcoursealsobeinterfaced, usingtheexistingLHA[16]andLHEF[17,18]interfaces, inwhichcase PYTHIA willhandlethesubsequent decays, radiation, andfragmentation. Finally, the mass-splitting decay modes as well as their typical branching ratios and widths are given in Table 3. Again, externally calculated branching ratios can also be interfaced, if so desired, using the existing interface to SLHA decay tables [19]. As mentioned previously, in this version of PYTHIA,theexcitedstatesoftheHiggsarenotimplemented, andtheonlyavailablegravitymediated decayisthatoftheexcitedphoton, γ∗ → γ +G(∗). 4 PDGparticlename Particlecode PYTHIA particlename d(1) 5100001 d∗ L D u(1) 5100002 u∗ L D e(1)− 5100011 e∗− L D ν(1) 5100012 ν∗ eL eD g(1) 5100021 g∗ γ(1) 5100022 γ∗ Z(1)0 5100023 Z∗0 W(1)+ 5100024 W∗+ d(1) 6100001 d∗ R S u(1) 6100002 u∗ R S e(1)− 6100011 e∗− R S Table1: PDGand PYTHIA notations andcodesforthefirstlevelKKexcitations. ISUB Productionprocess Note 311 g+g → g∗ +g∗ 312 g+q→ g∗+q∗; g∗ +q∗ D S 313 q +q → q∗ +q∗ ; q∗ +q∗ alli,j i j Di Dj Si Sj 314 g+g → q∗ +q¯∗; q∗ +q¯∗ D D S S 315 q+q¯ → q∗ +q¯∗; q∗ +q¯∗ D D S S 316 q +q¯ → q∗ +q¯∗ i6= j i j Di Sj 317 q +q¯ → q∗ +q¯∗ ; q∗ +q¯∗ i6= j i j Di Dj Si Sj 318 q +q → q∗ +q∗ alli,j i j Di Sj 319 q +q¯ → q∗ +q¯∗ alli,j i i Dj Dj Table2: UEDproduction processes andtheirassociated PYTHIA ISUBprocess number. 4.2 PYTHIA userswitches and subroutines forUED TheUEDparameterswhichcanbemodifiedbytheuserare: • thecompactification scaleorcurvatureoftheextradimension, 1/R, • thecutoffscaleofthetheory, Λ(or,alternatively, Λ×R), • thenumberofquarkflavors, • whether to use the extension to (4+N)-dimensional gravity and hence allow LKP decay by graviton emission, andifso, • thenumberoflargeextradimensions whereonlythegraviton propagates, N, • andthe(4+N)-dimensional Planckscale,M , D The Higgs boson mass is also a free parameter in the UED theory but it is set through the usual PYTHIA pmas(25,1)parameter. In the code, the UED switches and parameters are stored in the newcommonblock: 5 Figure 3: Cross sections for the production of two stable KK final states in proton-proton collisions at Ecm = 14 TeV(LHC),generatedusing PYTHIA6.4.20. Ontheleft-handfigureareshownthecrosssectionsversus1/Rforquasi degenerateKKparticlemassesmKK ≃1/R(userswitchIUED(6)=0;seeSection4.2),forthedifferentproductionsources: gg, gqandqq, andforthesumofthethree. Ontheright-handfigureareshownthecrosssectionsfor theproduction of twohardphotonswithmissingtransverseenergyinthefinalstate,whereKKparticlemassesincluderadiativecorrections (IUED(6)=1,theuserswitchdefaultvalue),andwiththefollowingkinematiccuts: pγ1,pγ2 >200GeV/c2andEmiss > T T T 200GeV,forN =2and6.Forallcases,ΛR=20. COMMON/PYPUED/IUED(0:99),RUED(0:99) IUED(1)= ThemainUEDON(=1)/OFF(=0)switch Defaultvalue=0 IUED(2)= On/Off switch for the extension to(N +4)-dimensional gravity (switching it onenablesgravity-mediated LKPdecay): ON(=1)/OFF(=0) Defaultvalue=0 IUED(3)= ThenumberofKKexcitation quarkflavors Defaultvalue=5 IUED(4)= N, the number of large extra dimensions where only the graviton propagates. OnlyusedwhenIUED(2)=1. Defaultvalue=6(canbesetto2,4or6) IUED(5)= Selects whether the code takes Λ (=0) or ΛR (=1) as input. See also RUED(2:3). Defaultvalue=0 IUED(6)= Selects whether the KK particle masses include radiative corrections (=1) or arenearlydegenerate m ≃ 1/R(=0). KK Defaultvalue=1 6 Decaymode Branchingratio TotalWidth(GeV) l∗ → l+γ∗ 100% 1.23×10−4 S d∗ → q+γ∗ (exceptforq = t) 100% 1.39×10−2 S u∗ → q+γ∗ (exceptforq = t) 100% 5.82×10−2 S ν∗ → ν +γ∗ 100% 1.16×10−3 D l∗ → l+γ∗ 100% 1.16×10−3 D q∗ → all 100% 1.56×10−1 D q∗ → q+Z∗ (exceptforq = b,t) 1/3 D q∗ → q +W∗ (exceptforq = b,t) 2/3 Di j b∗ → b+Z∗ 100% 5.21×10−2 D t∗ → b+W∗ 100% 1.04×10−1 D W∗± → l±+ν∗ (andν +l∗±) 1/6 3.75×10−1 D D Z∗ → ν¯+ν∗ (andν +ν¯∗)(andl∓ +l∗±) 1/12 1.92×10−1 D D D g∗ → all 100% 53.9 g∗ → q+q¯∗ (andq∗ +q¯)(downtype) 6.4% S S g∗ → q+q¯∗ (andq∗ +q¯)(uptypeexceptforq = t) 6.0% S S g∗ → q+q¯∗ (andq∗ +q¯)(exceptforq = t) 3.8% D D Table3: UEDdecaymodes,branchingratiosandwidthsfor1/R = 500GeVandΛR = 20. Notethat certaindecaysarekinematicallysuppressedforlowervaluesof1/R. Thisisthecasewhen1/R = 500 GeV for t∗ → t+γ∗, b∗ → t+W∗, t∗ → t+Z∗ and g∗ → t+¯t∗ . The q∗ → Z∗ + q and S D D SorD S Z∗ → l∗ +ldecayshavebeenswitchedoffduetothefactthattheyaresuppressedbyafactorsin2θ , S 1 the level 1 Weinberg angle which is of order 10−2 − 10−3, whereas the W∗ → l∗ + ν decay is S forbidden [20]. RUED(1)= 1/R,thecurvature oftheextradimension Defaultvalue=1000GeV RUED(2)= M ,the(4+N)-dimensional Planckscale. OnlyusedwhenIUED(2)=1. D Defaultvalue=5000GeV RUED(3)= Λ,thecutoffscale. UsedwhenIUED(5)=0. Defaultvalue=20000GeV RUED(4)= ΛR, the cutoff scale times the radius of the extra dimension. Used when IUED(5)=1. Defaultvalue=20 Fournewsubroutines andtwonewfunctions wereaddedtohandleUED-specifictasks: SUBROUTINE PYXDIN toinitialize UniversalExtraDimensions SUBROUTINE PYUEDC tocomputeUEDmassradiativecorrections SUBROUTINE PYXUED tocomputeUEDcrosssections SUBROUTINE PYGRAM togenerate theUEDKKgraviton massspectrum FUNCTION PYGRAW tocomputeUEDpartialwidthstoG∗ FUNCTION PYWDKK tocomputeUEDdifferential widthstoG∗ 7 Inaddition, several PYTHIA routines weremodifiedtofacilitate theUEDimplementation. Theseare SUBROUTINE PYGIVE nowacceptsinputalsoforIUEDandRUED SUBROUTINE PYINIT addedcalltoPYXDINtoinitialize UED SUBROUTINE PYMAXI smallextensionforUEDoverestimates SUBROUTINE PYPTFS smallextensionforshoweringKKgluons SUBROUTINE PYRAND extendedtochooseflavorsinUEDprocesses SUBROUTINE PYRESD addedcalltoPYGRAMtochoosegraviton massfrom continuous spectrum inUEDdecaystogravitons SUBROUTINE PYSCAT extendedtoincludeUEDprocesses SUBROUTINE PYSIGH smallextensiontocallPYXUEDforUED SUBROUTINE PYWIDT extendedtocomputeKKdecaywidths 5 Conclusion and outlook The minimal UED (mUED) model with one extra dimension has been implemented in the PYTHIA generatorfromversion6.4.18onwards. Theadditionalpossibilityofgravitymediateddecayshasalso been included. The model uses 1-loop corrected mass formulae and tree-level expressions for cross sectionanddecaywidthcalculations. The main point of this work is to facilitate complete collider phenomenology studies of UED signatures, by combining the leading-order production and decay matrix elements discussed in the main body of this paper with the more traditional components of the PYTHIA generator: sequential resonance decays 2,partonshowers,hadronization, andmodelingoftheunderlying event. Duetothe typically large absolute massscales and relatively smallmass differences in the mUEDmodel, addi- tional QCD jets from initial-state radiation can be an important source of combinatorial error when attempting to identify the jets emitted in decays of colored KK particles 3. The UED implementa- tion is compatible with both the old (Q2-ordered [23–25]) and new (p2-ordered [26]) shower and ⊥ underlying-event models available in PYTHIA 6.4. Hopefully, this willmake iteasier to evaluate not onlytheoverallimpactoftheQCDcorrections, butalsotogainsomeinsight intotheiruncertainties. LargeQCDuncertainties maysometimes bereduced bytheapplication ofmatrix-element-to-parton- shower matching methods (see, e.g., the reviews in [22,27–29]), but this was deemed beyond the scopeofthepresentwork. This work was started at the Les Houches Workshop in 2005 [30] first using the CalcHEP and CompHEPeventgenerators[31]andsincethenongoingworkhasbeencarriedoutintheATLAS[32– 34],International GDR[35],andMC4BSM[36]contexts. ThenextstepwillbetoimplementthemodelinC++inPYTHIA8 [37]. Wefurthermoreintendto includethewholesetofgravitymediateddecaywidths,butdeemedthislowpriorityatpresent, since only a small region of parameter space is concerned, where the mass splitting and gravity mediated widths areof thesame order ofmagnitude. Likewise, for studies concentrating onthe top sector, the doublet-singletmixingeffectsintheKKtopsectorshouldbeincluded. Finally,itwouldbeinteresting 2Asanalternativetothedecaysincludedinthisimplementation,externallygenerateddecaytablesfortheUEDparticles canalsobereadin,e.g.,usingtheSLHAformat[19]. 3Forillustration,see,e.g.,thecorrespondingcaseforSUSY,studiedin[21,22]. 8 toincludealsotheexcitationsoftheSMHiggsfieldsaswellastheeffectsofpotentially resonantKK numberviolating interactions mediatedbythe2ndlevelKKstates[9,20,38]. Acknowledgments We warmly thank Torbjo¨rn Sjo¨strand and Steve Mrenna for help with the implementation. Without their consent but also keen collaboration, this work would not have been possible. We are indebted to C. Macesanu, C. McMullen and S. Nandi for sharing both their knowledge and their codes for widthsandradiativelycorrectedmasseswithus. WealsothankG.Azuelos,P.H.Beauchemin,B.Do- brescu, K.C. Kong, K. Matchev and M. Schmaltz for many useful discussions and comments on the manuscript. For financial support, we thank : Fermi Research Alliance, LLC,under Contract No. DE-AC02- 07CH11359 with the United States Department of Energy, the European Community’s Marie-Curie ResearchTrainingNetworkundercontractMRTN-CT-2006-035606‘MCnet’,theLesHouchesWork- shop; the Calorime´trie e´lectromagne´tique a` argon liquide d’ATLAS GDRI between IN2P3/CNRS, France, theUniversities Joseph FourierofGrenoble, Me´diterrane´e ofAix-Marseille IIandofSavoie, theMoroccanCNRST,KTHSwedenandthePAIMA/02/38;LAPP,Universite´deSavoie,IN2P3/CNRS; Universite´ deMontrealandNSERC. FinallywethankCERNforitshospitality andfineworkingenvironment. References [1] T.Appelquist, H.-C.Cheng,B.A.Dobrescu,Phys. Rev.D64035002 (2001)[hep-ph/0012100]. [2] T.AppelquistandH.U.Yee,Phys.Rev.D67(2003) 055002[hep-ph/0211023]. [3] C.Lin,FERMILAB-THESIS-2005-69,CDFNote7980(2005). [4] A. DeRujula, A. Donini, M.B. Gavela and S. Rigolin, Phys. Lett B482 (2000) 195 [hep-ph/0001335]. [5] C.Macesanu, C.D.McMullenandS.Nandi,Phys.Rev.D66(2002)015009 [hep-ph/0201300]. [6] J.L.Feng,A.RajaramanandF.Takayama,Phys.Rev.D68(2003)085018[hep-ph/0307375]. [7] N.R.ShahandC.E.M.Wagner,Phys.Rev.D74(2006)104008[hep-ph/0608140]. [8] T.Sjo¨strand, S.MrennaandP.Skands,JHEP05(2006)026[hep-ph/0603175]. [9] H.Cheng,K.MatchevandM.Schmaltz,Phys.Rev.D66(2002)036005 [hep-ph/0204342]. [10] C. Macesanu, private communication. Routine for calculating radiative corrections to the KK excitation massesandtheirmasssplittingdecaywidths.See http://wwwlapp.in2p3.fr/∼przys/macesanu.f. [11] P.-H.Beauchemin andG.Azuelos,ATL-PHYS-PUB-2005-003. [12] C.Macesanu, C.D.McMullenandS.Nandi,Phys.LettB546(2002)253-260 [hep-ph/0207269]. [13] C.MacesanuInt.J.Mod.Phys.A21(2006)2259[hep-ph/0510418]. 9 [14] Thepygrav.fsubroutine forcalculating gravitymediateddecaywidthsisavailable at http://wwwlapp.in2p3.fr/∼przys/pygrav.f. [15] C.Macesanu,A.MitovandS.Nandi,Phys.Rev.D68(2003)084008 [hep-ph/0305029]. [16] E.Boosetal.,hep-ph/0109068. [17] J.Alwalletal.,Comput.Phys.Commun.176(2007)300[hep-ph/0609017]. [18] J.Alwalletal.,arXiv:0712.3311 [hep-ph]. [19] P.Skandsetal.,JHEP0407(2004)036[hep-ph/0311123]. [20] H.Cheng,K.MatchevandM.Schmaltz,Phys.Rev.D66(2002)056006[hep-ph/0205314]. [21] T.Plehn,D.RainwaterandP.Skands,Phys.Lett.B645(2007) 217[arXiv:hep-ph/0510144]. [22] J.Alwall,S.deVisscherandF.Maltoni, arXiv:0810.5350 [hep-ph]. [23] T.Sjo¨strand, Phys.Lett.B157,321(1985). [24] M.Bengtsson andT.Sjo¨strand, Phys.Lett.B185(1987)435;Nucl.Phys.B289(1987)810. [25] T.Sjo¨strandandM.vanZijl,Phys.Rev.D36(1987)2019. [26] T.Sjo¨strandandP.Z.Skands,Eur.Phys.J.C39(2005)129[arXiv:hep-ph/0408302]. [27] S.MrennaandP.Richardson, JHEP0405(2004)040[arXiv:hep-ph/0312274]. [28] M.A.Dobbsetal.,arXiv:hep-ph/0403045. [29] S. Ho¨che, F. Krauss, N. Lavesson, L. Lo¨nnblad, M. Mangano, A. Scha¨licke and S. Schumann, arXiv:hep-ph/0602031. [30] B.C. Allanach et al., FERMILAB-CONF-06-338-T, SLAC-PUB-11770, Feb. 2006 [hep-ph/0602198]. [31] Forinformation onMUEDinCalcHEP/CompHEP,seeK.C.Kong’spage, http://home.fnal.gov/∼kckong/mued [32] SeeATLASUEDTwikipage, https://twiki.cern.ch/twiki/bin/view/Atlas/UniversalExtraDimensions [33] See talk given by H. Przysiezniak in the ATLAS Exotics Meeting 06.12.2007, “Pythia UED validation withATLFAST”, http://indico.cern.ch/conferenceDisplay.py?confId=24100 [34] See talk given given by H. Przysiezniak in the ATLAS Monte Carlo Generator Meeting 10.12.2007, “UniversalExtraDimensionsinPythia”, http://indico.cern.ch/conferenceDisplay.py?confId=10890 [35] See talk given given by H. Przysiezniak at the EURO-GDR 2007 International Meeting in Brussels12-14.11.2007, “ToolsforExtra-Dimensions”, http://indico.in2p3.fr/conferenceOtherViews.py?view=standard&confId=422 10