ebook img

Ondrej Kreibich Wireless diagnostic methods in an aerospace application PDF

117 Pages·2014·8.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ondrej Kreibich Wireless diagnostic methods in an aerospace application

Czech Technical University in Prague Faculty of Electrical Engineering DOCTORAL THESIS Ondˇrej Kreibich Wireless diagnostic methods in an aerospace application Department of Measurement Supervisor ˇ of the doctoral thesis: doc. Ing. Radislav Sm´ıd, PhD. Study programme: Electrical Engineering and Information Technology Specialization: Air Traffic Control February 2014 Acknowledgement Thereareanumberofpeoplewithoutwhomthisthesismightnothavebeenwritten, and to whom I am greatly indebted. First and foremost, I have to thank my parents and my brother for their love and support throughout my life. A very special acknowledgement goes to my girlfriend Ester, who loved and supported me during the final, critical months of my dissertation. I would like to give my sincerely thanks to my supervisor, Associate Prof. Radislav Smid, PhD., for his guidance and support throughout my studies, and especially for his confidence in me. His comments and questions have helped me greatly in completing the manuscript. I am grateful to him for discussing and inter- preting some of the results presented in this thesis. Finally, my thanks to all my friends who have supported me or influenced me along the way. I declare that I carried out this doctoral thesis independently, and only with the cited sources, literature and other professional sources. In Prague date ............ signature of the author Na´zev pra´ce: Metody bezdra´tov´e diagnostiky v letecky´ch aplikac´ıch Autor: Ing. Ondˇrej Kreibich ˇ Katedra: Katedra mˇeˇren´ı, CVUT v Praze, FEL ˇ Vedouc´ı disertaˇcn´ı pr´ace: doc. Ing. Radislav Sm´ıd, Ph.D., Katedra mˇeˇren´ı Abstrakt: Strategie pla´novan´e u´drˇzby je zaloˇzena na pr˚ubˇeˇzn´em sledova´n´ı stavu zaˇr´ızen´ı se syst´emem vˇcasn´eho varova´n´ı pˇred nestandardn´ımi stavy v chov´an´ı sle- dovan´eho zaˇr´ızen´ı. Vyuˇzit´ı bezdra´tov´e technologie WSN v t´eto oblasti by pˇrineslo ˇradu vy´hod vycha´zej´ıc´ıch z konstrukce senzorov´eho uzlu s´ıtˇe, ke kter´emu nevede ˇza´dny´ pˇr´ıvod. Takov´e ˇreˇsen´ı usnadn´ı monta´ˇz senzor˚u na tˇeˇzko dostupna´ m´ısta, ale za´rovenˇ otev´ıra´ moˇznosti pro zcela nov´e aplikace, napˇr´ıklad mˇeˇren´ı na pohy- blivy´chˇc´astech zaˇr´ızen´ı. Aby takovy´ syst´em mohl by´t nasazen do pr˚umyslov´e praxe, je potˇreba zaruˇcit spolehlivy´ pˇrenos informace mezi senzorovy´mi uzly a bra´nou napojenou na nadˇrazeny´ kontrol´er, ˇci poˇc´ıtaˇc. Tato pr´ace navrhuje syst´em pro sledova´n´ı stavu stroj˚u zaloˇzeny´ na technologii WSN schopny´ pˇrekonat faleˇsn´e in- dikace zp˚usoben´e doˇcasnou ztra´tou dat, ruˇsen´ım sign´alu nebo pˇrenosem neplatny´ch dat a to za pouˇzit´ı multi – senzorov´e datov´e fu´ze rozhoduj´ıc´ı se dle parametru kvality, zas´ılan´em senzorovy´m uzlem spolu s daty. Tento ukazatel je zaloˇzen na stavu senzorov´eho uzlu (nap´ajen´ı, s´ıla signa´lu) a porovn´an´ı aktu´aln´ı hodnoty s hod- notami v pˇredchoz´ıch datovy´ch za´znamech. Algoritmus datov´e fuze rovnˇeˇz ten- to indika´tor poskytuje. Tento novy´ pˇr´ıstup umoˇznˇuje ˇs´ıˇren´ı informace o nejistotˇe mˇeˇren´e hodnoty ze zdrojov´eho uzlu aˇz k br´anˇe a za´rovenˇ vyˇrazuje neplatna´ data na uzlech datov´e fuze. T´ım moˇznost degradace pos´ılan´e diagnostick´e informace znaˇcnˇe klesa´. Pˇrenos rychly´ch sign´al˚u je zajiˇstˇen extrakc´ı a pˇrenosem pˇr´ıznak˚u ze surovy´ch dat, t´ım docha´z´ı k u´spoˇre pˇrenosov´e ˇs´ıˇrky pa´sma s´ıtˇe. Koncept byl experimenta´lnˇe ovˇeˇren nejen matematickou simulac´ı, ale i na rea´ln´em WSN hardware (Imote2). Pˇredpokl´adana´ efektivita syst´emu byla vyhodnocena pomoc´ı pomˇeru signa´l / ˇsum (SNR) a vlastn´ım detektorem ˇcetnosti vy´skytu chyb (FAR). Vy´sledky potvrzuj´ı, ˇze se navrhovany´ pˇr´ıstup vyrovna´ dra´tov´emu propojen´ı senzoru s mˇeˇric´ı u´stˇrednou. A proto lze takovy´ syst´em aplikovat i na kritick´a zaˇr´ızen´ı, jako jsou pohonn´e jednotky ultralehky´ch letadel, kde se syst´em vˇcasn´e kontroly za´vad doposud nevyuˇz´ıv´a. Kl´ıˇcova´ slova: Bezdr´atov´e senzorov´e s´ıtˇe (WSN), Sledov´an´ı stavu stroj˚u (MCM), Technicka´ diagnostika v letectv´ı, Datov´a f˚uze I Title: Wireless diagnostic methods in an aerospace application Author: Ing. Ondˇrej Kreibich Department: Department of Measurement ˇ Supervisor: doc. Ing. Radislav Sm´ıd, Ph.D., Department of Measurement Abstract: The early alert monitoring system for an effective scheduled maintenance strategy based on a wireless technology requires reliable transfer of diagnostic in- formation between the sensor and the gateway. This thesis presents a WSN-based machine condition monitoring (MCM) system capable of overcoming a false indica- tion caused by temporary loss of data, signal interference or invalid data. We use multi-sensor fusion driven by a quality parameter, produced by each sensor node according to the data history outliers and the actual state of the node. The fusion node also provides a quality evaluation on its output. This novel approach enables the propagation of information about the uncertainty of a measured value from the source node to the sink node. Thus potential degradation of acquired or transferred diagnostic information is minimized. Instead of raw data the signal features are transferred, so that bandwidth savings are improved considerably. The proposed concept was experimentally verified on real WSN hardware. The performance eval- uated using the Signal-to-Noise ratio and false alarm rate detection demonstrates the effectiveness of the proposed approach. The results confirm that the proposed system has similar reliability to a sensor connected by wire to a central unit. The machineconditionmonitoringsystembasedonWSNwithmulti-sensorfusionisable to monitor a critical application, and even to monitor light aircraft powerplants. Keywords: Multisensor Information Fusion, Machine Condition Monitoring, Indus- trial Wireless Sensor Networks, Condition-based Monitoring in Aviation II List of Figures Figure 1.1: Cylinder head damage . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 1.2: FFT indication examples of mechanical looseness . . . . . . . . . 5 Figure 2.1: OSA CBM Compliant Modular System . . . . . . . . . . . . . . 9 Figure 2.2: Distributed data processing within CM standard architecture . . 10 Figure 2.3: An example of the most widely-used centralized CM system . . . 14 Figure 2.4: An example of the SKF broadband centralized wireless CM system 15 Figure 2.5: AnexampleoftheTIMKENlow-energyconsumptioncentralized wireless CM system . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 2.6: Fundamental structure of a sensor node . . . . . . . . . . . . . . 17 Figure 2.7: The Mica experimental platform by Crossbow . . . . . . . . . . 18 Figure 2.8: EM35x WSN System-on-Chip by Silicon Labs . . . . . . . . . . 19 Figure 2.9: IRTs connecting rod wireless measurement technology . . . . . . 20 Figure 2.10: WSN network topologies . . . . . . . . . . . . . . . . . . . . . . 24 Figure 2.11: Street lighting monitoring based on WSN . . . . . . . . . . . . . 24 Figure 4.1: WSN monitoring system based on information fusion . . . . . . 34 Figure 4.2: Sensor node structure for MCM . . . . . . . . . . . . . . . . . . 38 Figure 4.3: Compression of the amplitude spectrum . . . . . . . . . . . . . . 38 Figure 4.4: Reliability graph of parallel connected components . . . . . . . . 39 Figure 4.5: Feature fusion level arrangements . . . . . . . . . . . . . . . . . 40 Figure 4.6: A history buffer waveform construction at one feature sample position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 4.7: Formation of a quality indicator with respect to outliers . . . . . 45 Figure 5.1: Sensor node scheme . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 5.2: Fusion node scheme . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 5.3: The Dempster-Shafer-based data fusion process . . . . . . . . . 55 Figure 5.4: The fuzzy logic based data fusion process . . . . . . . . . . . . . 57 Figure 6.1: Fundamental WSN Matlab code flowchart . . . . . . . . . . . . 61 Figure 6.2: Sensor node function flowchart in Matlab . . . . . . . . . . . . . 63 Figure 6.3: Imote2 stackable boards . . . . . . . . . . . . . . . . . . . . . . 65 Figure 6.4: Verification of proposed methods . . . . . . . . . . . . . . . . . . 66 Figure 6.5: Sensor node flowchart in TinyOS . . . . . . . . . . . . . . . . . . 68 Figure 6.6: Fusion node flowchart in TinyOS . . . . . . . . . . . . . . . . . . 69 Figure 7.1: Comparison of quality indicators . . . . . . . . . . . . . . . . . . 75 Figure 7.2: Envelope thresholds for determining the false alarm rate (FAR) . 76 III Figure 7.3: Dependence of FAR on segment size . . . . . . . . . . . . . . . . 77 Figure 7.4: Dependence of computing time consumption on size of segment . 78 Figure 7.5: Frequency spectrum comparison . . . . . . . . . . . . . . . . . . 79 Figure 7.6: Data compression setting . . . . . . . . . . . . . . . . . . . . . . 80 Figure 7.7: NI control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 7.8: Placement of the accelerometers in the vibrodiagnostics simulator 81 Figure 7.9: Fusion efficiency - real measurement . . . . . . . . . . . . . . . . 83 Figure 7.10: Data fusion from three sensor nodes . . . . . . . . . . . . . . . . 84 IV

Description:
e.g. Centurion 2.0 or SMA SR305-230 used in small Cessna, Diamond and many other airplanes. Present-day engines combust mainly aviation gasoline
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.