ebook img

On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium

Mon.Not.R.Astron.Soc.000,1–??(2003) Printed2February2008 (MNLATEXstylefilev2.2) On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium 1 2 3 4 5 James Reeves , Chris Done , Ken Pounds , Yuichi Terashima , Kiyoshi Hayashida 8 5 5 3 0 Naohisa Anabuki , Masahiro Uchino , Martin Turner 0 1AstrophysicsGroup,SchoolofPhysicalandGeographicalSciences,KeeleUniversity,Keele,Staffordshire,ST58EH,UK. 2 2DepartmentofPhysics,UniversityofDurham,SouthRoad,DurhamDH13LE,UK n 3DepartmentofPhysicsandAstronomy,UniversityofLeicester,UniversityRoad,Leicester,LE17RH,UK. a 4DepartmentofPhysics,EhimeUniversity,Matsuyama790-8577,Japan J 5DepartmentofEarthandSpaceScience,OsakaUniversity,Toyonaka,Osaka560-0043,Japan 0 1 SubmittedtoMNRAS ] h p ABSTRACT - Wepresentacomparisonbetweenthe2001XMM-Newtonand2005Suzakuobservationsof o r the quasar, PG1211+143 at z = 0.0809. Variability is observed in the 7 keV iron K-shell t absorptionline(at7.6keV in thequasarframe),whichissignificantlyweakerin 2005than s a duringthe 2001 XMM-Newtonobservation.From a recombinationtimescale of < 4 years, [ thisimpliesanabsorberdensityn>4×103cm−3,whiletheabsorbercolumnis5×1022 < 1 NH < 1×1024cm−2. Thusthesizescale ofthe absorberis too compact(pc scale) andthe surface brightness of the dense gas too high (by 9-10 orders of magnitude) to arise from v 7 localhotgas, such as the localbubble,groupor Warm/Hot IntergalacticMedium(WHIM), 8 as suggested by McKernan et al. (2004, 2005).Instead the iron K-shell absorptionmust be 5 associatedwithanAGNoutflowwithmildlyrelativisticvelocities.Finallyweshowthatthe 1 theassociationoftheabsorptioninPG1211+143withlocalhotgasissimplyacoincidence, . the comparisonbetweenthe recession andiron K absorberoutflowvelocitiesin otherAGN 1 0 doesnotrevealaonetoonekinematiccorrelation. 8 Keywords: accretion,accretiondiscs–atomicprocesses–X-rays:galaxies 0 : v i X 1 INTRODUCTION rest.Foranysingleobjecttheapproximatematchbetweenthepu- r a tativeblueshiftedoutflowvelocityandthegalaxyredshiftcouldbe ThecosmologicalrequirementthathalfthebaryonsintheUniverse coincidental, but McKernan et al (2004; 2005) pointed out three areinawarm/hotintergalacticmedium(WHIM)hasmotivatedUV AGNshowingthistrend,withredshiftsspanning∼ 0.008−0.15 andX–rayabsorptionlinestudiestodetectthisotherwiseinvisible (MCG–6–30–15, PG1211+143 and PDS 456). However, the de- gas,usingabsorptionagainstabrightAGNtoprobethelineofsight rivedcolumnsofN ∼ 1023 cm−2 arehighevenforanintrinsic H material (Bregman 2007). However, most AGN (except blazars) AGNoutflow(Poundsetal2003,hereafterP03;Reevesetal2003). haveintrinsiccolumnsofwarmabsorbinggasintheirnuclei,and Iftheseareinsteadoflocaloriginthenitrequiresatremendously thefactthatthisisgenerallyconnectedtoanuclearoutflow(Blustin significantchangetoourunderstanding oftheGalactichaloenvi- etal2005)complicatesseparatingthisintrinsicabsorptionfromex- ronment(McKernanetal2004;2005). trinsicline–of–sightmaterialusingvelocityinformation.Nonethe- HereweusenewSuzakudatatoshowthatthehighlyionised less, various studies have looked for absorption lines (predomi- FeabsorptioninPG1211+143isvariableonatimescaleofyears. nantly OVII/VIII) as signatures of the WHIM, though all current ThisconclusivelydemonstratesthatitisintrinsictotheAGN,and detections are more likely to be associated with material in our notassociatedwithourGalaxyorLocalGroup.Wecollaterecent Galactic halo or Local Group (Bregman & Lloyd–Jones 2007). resultstoshowthatthisisalsothecaseformostotherAGNwith Thesehavevelocitieswithinafewhundredkm/softhelocalstan- strongFeK absorption lines, showing that powerful outflowsare dard of rest, and indicate columns of OVII/VIII > 1016 cm−2, associatedwithluminousaccretionflows. equivalenttoHydrogencolumnsofN ∼1019cm−2. H Muchmorecontroversialwasthepotentialassociationofsub- stantially higher columns of gas to such local material. McK- 2 THEIONISEDABSORPTIONINPG1211+143 ernan et al (2004; 2005) noticed that several AGN with strong He– or H–like Fe absorption features had these lines at energies ChandraandXMM–Newtongratingsgavethefirsthighresolution which were approximately consistent with the local standard of X–ray spectra of the warm absorbers in AGN (e.g. Blustin et al 2 J. Reeves et al. 2005, McKernan, Yaqoob & Reynolds 2007). However, only the ChandraHETGScancovertheFeKregion,andthishasverysmall effective area. Thus most of the information on these absorption loinneXsMarMef-rNomewtthoen.laTrgheeseeffsehcotiwveedartehaa,tmsoomdeeraptoewreesrofulultAioGnNCChDav’es eV)−1 0−3 k 1 strongabsorptionlinesat7keV(observedframe)associatedwith s −1 2× largecolumnsofhighlyionisediron(PG1211+143:P03;Pounds m −2 &Page2006,hereafterPP06;PDS456:Reevesetal2003). s c TheresultsonPG1211+143,ataredshiftofz=0.0809,were on ot initiallycontroversial.P03claimedthatthedipinthespectrumat h P l∼ike7FkeeVKwαa(s6a.9n7abkseoVr,ptliaobn–flriname,ew).hGicihvethneythienistoiaulrlcyeidreednstihfiieftdtHhi–s keV (2 10−3 requiresanoutflowvelocityof∼24,000km/si.e.0.08cassuming anoriginintheAGN.Other,weakerbutstillsignificantabsorption lines in the CCD spectra at 2.68 and 1.47 keV could also be in- 0.5 1 2 5 10 terpretedasarisingfrommaterialwiththesameoutflowvelocityif Energy (keV) thesearefromH–likeSandMgKα,respectively.(P03,PP06).The higherresolutionRGSinstrumentalsoshowslinesfromlowerZel- Figure1.Fluxedspectrafromthe2001XMM-Newton(redcrosses),2004 ementsatlowenergies.P03identifiedthesewithtransitionswhich XMM-Newton (green circles) and 2005 Suzaku (black crosses) observa- required similarly high velocities as the high ionisation material, tionsofPG1211+143,comparedtoaΓ = 2continuum.Thespectraare plottedintheobservedframe(atz = 0).Thedownturnatlowerenergies whileKaspi&Behar(2006)useddifferentidentificationstoobtain isduetotheGalacticcolumnof2.8×1020cm−2.StrongsoftX-rayex- alowervelocityoutflowsolutionfortheselines. cessesbelow1keVareobservedinall3spectra,whicharemostprominent Nonetheless, theoriginof theRGSfeaturesisnot themajor inthe2001and2005observations.Thedeepabsorptionfeatureat7keVis issue. Only the CCD’son XMM-Newton can show the existence detectedinthe2001XMM-Newtonobservation,butnotinthe2004XMM- ofmaterialwhichissohighlyionisedthatheavyelements(S,Mg, Newtonand2005Suzakuobservations.Thespectrahavebeenre-binnedby Fe)arepredominantlyHe–orH–like.Surprisingly,Kaspi&Behar afactor×2forclarity. (2006) identifiedtheSandMgK-shelllineswithweakerHe-like Kβlines(withlittlevelocityoffset),insteadoftheblue-shiftedH- likeKαtransitions,whichbegsthequestionastowhythecorre- responsefiles(rmfs)andancillaryresponsefiles(arfs)weregener- spondingstrongerKαlinesarenotseen.Theseauthorsalsomodel atedusingthe XISRMFGENand XISSIMARFGENscriptsincluding theFeKabsorptioninthe2001XMM-Newtondatawithanedge correctionforthehydrocarboncontaminationontheopticalblock- at7.27keV(restframe)ofopticaldepthτ ∼ 0.5,corresponding ingfilter(Ishisakietal.2007).AnetXISsourceexposureof97.5 toalargecolumn(NH > 1023cm−2)ofverylowionisationstate ks was obtained for each of the 4 XIS chips. The 3 front illumi- matter (Fe VII/VIII);this should have substantial low energy ab- natedXISchips(XIS0,2,3)wereusedinthispaper,astheyhave sorptionwhichisclearlynotpresentinthedata.Asweshowbelow, thegreatestsensitivityatironK.Thesechipswerefoundtoproduce accountingforanylowionisationabsorption(viapartialcovering) consistentspectrawithinthestatisticalerrors,sothespectraandre- inaselfconsistentphotoionisationmodeldoesnotremovethere- sponseswerecombinedtomaximisesignaltonoise.Thenetsource quirementfortheblue-shiftedhighlyionisedironKabsorber. countrateforthe3XIScombinedwas0.7984±0.003countss−1, Theonlyself–consistentoptionforthefeaturesaround7keV withbackgroundonly3%ofthesourcerate.TheXISsourcespec- intheXMM-NewtondataisKαabsorptionlinesfromH–orHe– trumwasbinnedtoaminimumof100countsperbintoenablethe like iron. This requires a large blueshift (0.08c or 0.14c respec- useofχ2minimisation.Errorsarequotedto90%confidencefor1 tively)iftheabsorptionisintrinsictotheAGN,withtheimplica- parameter(i.e.∆χ2 =2.7). tionbeingthatthekineticenergyassociatedwiththismaterialcan dominatetheAGNenergetics(Pounds&Reeves2007). 3.2 XMM-NewtonAnalysis XMM-NewtonobservedPG1211+143twice,on2001June15for 3 DATAREDUCTION 53ksand2004June21for57ksbutthissecondexposurewasaf- fectedbyhigh particlebackground, resultinginonly 25ksof us- 3.1 SuzakuAnalysis abledata.TheEPIC-pnspectrausedinthispaperareidenticalto thosedescribedinPP06andPounds&Reeves(2007),whichwere PG1211+143 wasobserved bySuzaku (Mitsuda etal. 2007) be- processedusingtheXMM-NewtonSASv6.5software.TheEPIC- tween24-27November 2005.Inthispaper wediscussdatataken MOSspectraareconsistentwiththeEPIC-pn,withthesame7keV withthe4XIS(X-rayImagingSpectrometer;Koyamaetal.2007) absorptionfeaturepresentintheironKband,asdiscussedbyPP06. CCDs.Eventsfilesfromofficialversion2.0oftheSuzakupipeline processingwereused.ThePG1211+143Suzakueventfileswere screenedusingidenticalcriteriatothosedescribedinReevesetal. (2007)fortheSuzakuobservationofMCG-5-23-16. 4 ACOMPARISONBETWEENSUZAKUAND Subsequently source spectra from the XIS CCDs were ex- XMM-NEWTONOBSERVATIONS tractedfromcircularregionsof2′ radiuscentredonthesource,in the off-axis HXD nominal pointing position. Background spectra The 2001–2005 spectra from 0.4-10 keV are plotted in Figure 1, wereextractedfrom4′circlesoffsetfromthesourceregion,avoid- relative to a Γ = 2 power-law continuum. The CCD’s on both ingthecalibration sourceson thecorners of theCCDchips. XIS XMM-NewtonandSuzakuhavesimilarresponsessothedataare IronK-shellabsorptionisnot fromtheWHIM 3 directlycomparable.AGalacticcolumnof2.8×1020cm−2isin- cludedinallthespectralfits.Fromthespectra,itisclearthatthere islittlechangeintheoverallspectralshapeornormalisation.All3 5 observationsshowastrongsoftX-rayexcessbelow1keV,though 1. it is marginally more prominent during the 2001 XMM-Newton and2005 Suzaku observations. However thedeep ironKabsorp- tionfeatureobservedat7keVin2001(Poundsetal.2003)whichis o readilyapparentevenonthisbroadbandspectralplot,isnotpresent ati R atthesamestrengthineitherthe2004or2005 data.Thisfeature 1 hasvariedsignificantly,rulingoutalocaloriginfortheabsorber. To quantify this, we use only the 2001 XMM-Newton and 2005 Suzakuobservations asthesehavethebest signal–to–noise. We fit the datasets simultaneously over the 2–10keV bandpass toavoidthecomplexity associated withthe soft X–rayexcess. A 5 power law withfixedGalacticabsorption gives averysimilarin- 0. 5 6 7 8 dexbetweenthetwodatasetsasthecontinuaareverysimilar(see Observed Energy (keV) Fig1),buttheoverallfitispoor(χ2/dof =374/154and369/249 fortheXMM-NewtonandSuzakudata,respectively).Fig.2shows Figure2.Data/ModelratioresidualsatironKtoasimplepower-lawfitto theratioofthedatatothemodelforthisfit,whereaswellasthe the2–10keVspectrumofPG1211+143.The2001XMM-Newtonobser- obvious absorption feature in the XMM-Newton data, it is clear vationisinred,2005Suzakuinblack.Theabsorptionfeatureat7keV(7.6 thatbothspectrahaveironemissionat∼6.5keV.AddingaGaus- keVQSOrestframe)isapparentintheXMM-Newtondata,butnotinthe Suzakuobservations,showingthattheironKabsorptionhasvariedover4 sian line (with intrinsic width constrained to be equal across the years.BroadironKαemissionispresentinallobservationsat6keV(6.5 two datasets) gives a line energy and equivalent width consistent keVrestframe),aswellascurvature at4-6keV whichcanbemodelled between the two datasets, at 6.5 keV and 250 eV respectively. eitherbyaverybroad,redshiftedlineorbycontinuumcomplexity. The intrinsic line width is resolved with a FWHM velocity of 25000kms−1i.e.typicalofradii ∼< 100R fromtheblackhole. g However, there is still significant curvature in the spectrum, ingfractionismuchlargerintheXMM-Newtonspectrum(80per asshownbythepoorcombinedχ2 = 582/398.Thiscanbephe- centcomparedto40percent),showingthatthespectralcurvature ν nomenologically modelled by an additional Gaussian line, again ismore evident in these data. We use these two different models with intrinsic width tied between the two datasets. This gives an (hereaftertermedGauandPcfxi,respectively)toassesstherobust- acceptable fit,withχ2 = 441.3/393, for averybroad line, with ness of the change in the narrow absorption features to different anintrinsicwidthof1.1±0.2keV.Thelineenergyisconsistent continuumplacement. Notethepartialcoveringmodel isinsensi- betweenthetwodatasetsat∼ 4.4keVbutitsequivalentwidthis tive to the turbulence assumed, as its effect from 2–10keV is to muchlargerintheXMM-NewtondatathanintheSuzakudata,at reproducethecontinuumcurvatureinthespectrum, frombound– ∼800eVcomparedto∼290eV(seeTable1),showingthatthere freeabsorptionsuchastheironK-shelledge. is more curvature in the XMM-Newton data. Since it is also the Fig3showstheχ2residualstothepower-law,GauandPcfxi XMM-Newton data which show the line absorption feature, it is models, respectively. The absorption line is still present in the possiblethat thiscurvature isassociatedwiththeabsorber, rather XMM-Newtondata,evenagainstthePcfximodelwhichcontains thanwithabroad,redshiftedironlinefromreflectionfromthevery the iron K-shell edge and its associated absorption line structure innermost(i.e.<10Rg)accretiondisc. (Figure 13, Kallman et al. 2004). We fit an additional inverted Wephenomenologicallymodelthisbypartialcoveringofthe Gaussianoffixedwidth(σ = 0.1keV)totheXMM-Newtondata sourcebypartiallyionisedmaterial(e.g.Milleretal.,2007;Turner andfindthatthefitissignificantlyimproved,toχ2 = 418.7/391 ν etal.,2007),usingagridofXSTAR(v2.1l)photoionisationmodels and417.6/391 for theGauandPcfxicontinuum models, respec- baseduponthepubliclyavailabletabulated’grid25’.Thisusesthe tively.Thelineenergyandequivalent widthinbothis∼ 7.6keV Fe K treatment of Kallman et al. (2004), a turbulent velocity of (7.05±0.05keVobserved)and110+−4450eV,respectively.Weallow σ =200kms−1andsolarabundances(Grevesse&Sauval1998), alinewiththesameenergyandwidthintheSuzakudata,andfind whiletheilluminatingcontinuumfrom1–1000RydbergshasΓ = a90%confidenceupperlimittoitsequivalentwidthof<25eV. 2.2 rather than Γ = 2, and spans a wider (but coarser) range of column (0.05 to 500×1022 cm−2, 10 points) and logξ (-3 to 6, 12points).Thispartiallyionisedabsorptionisappliedtoafraction 5 THEORIGINOFTHEIRONKSHELLABSORPTION f of the assumed continuum, whilethe remaining (1−f) isnot affectedbythismaterial.1 Thustheabsorptionlineissignificantlyweakerinthe2005Suzaku WefixtheredshiftofthepartialcoverertothatoftheAGN, data,sotheabsorption haschanged onatimescaleof < 4years. andtietheionisationparameterofthismaterial(butnotitscover- Eitherthecolumnhasphysicallymoved,oritsionisationstatehas ingfraction)betweenthetwodatasets.Thismodelgivesanequally changed (or both). The former puts alimit on the sizescale of 4 good fit as the broad Gaussian model, with χ2 = 439/393 for lightyears,unfeasiblysmallforanydiffuseGalactichaloorinter- logξ ∼ 1.2. The column of the ionised material is consistent galacticemission(whichshouldbeonkpcscales),whilethelatter between the two datasets at ∼ 2 × 1023 cm−2, but the cover- sets a limit on the density through the recombination timescale, τ = 1/(α (T)n ),whereα istherecombinationrate,whichis r r e r dependentonthetemperature,T.ForaWHIMorigin,theabsorp- 1 ThismodelispubliclyavailableasanadditionalmodelforXSPECfrom tionlinemustbeassociatedwithFeXXVIinorderthatitsenergy http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/newmodels.html matchesthatobserved. Suchmaterialshouldalsobecollisionally 4 J. Reeves et al. Model Γa Norm×10−3a lineE(keV)b σ(keV)b EW(eV)b lineE(keV)c σ(keV)c EW(eV)c χ2 ν NHcm−2 logξ CovFrac po 1.77±0.03 0.88 1.76±0.03 0.99 744/403 Gau 1.93±0.05 0.96 6.63±0.09 0.24±0.04 250+−8700 4.36+−00..2239 1.07+−00..2240 810+−211800 1.87±0.04 1.07 6.52+0.04 270±50 4.39+0.38 290±100 441.4/393 −0.05 −0.48 Pcfxi 2.50+0.16 4.07 6.55+0.09 0.20±0.04 235±50 20+8 2.18+0.29 0.78+0.08 −0.17 −0.07 −4 −1.20 −0.08 2.10+−00..1120 2.00 6.53+−00..0052 210±45 16+−162 0.42+−00..0192 439.6/393 Table1.Fitparametersanduncertainties (∆χ2 = 2.7)fortheXMM-Newton2001andSuzaku2005spectrafromPG1211+143forthemodelsshownin Fig3.aContinuumphotonindexandnormalisation(unitsphotonscm−2s−1keV−1at1keV).bEnergy(keV),intrinsicwidthσ(keV)andequivalentwidth (eV)oftheironline,quotedinthequasarrestframe.cEnergy(keV),intrinsicwidthσ(keV)andequivalentwidth(eV)ofthebroadredshiftedGaussian(Gau model),orforthepartialcovering(Pcfxi)model,columndensityNH(units×1022cm−2),ionisationparameterξ(unitsergcms−1)andcoveringfraction. trinsicwidthof thelineof σ < 0.2 keV. Thisgivesacolumn of 8±3×1022cm−2,withanionisationparameteroflogξ=2.8+0.2 −0.3 atanobservedredshiftofz =−0.07±0.01i.e.implyinganAGN outflowvelocityof∼ 0.15c. Whilethederivedcolumnisdepen- dentontheturbulentvelocity,thecurveofgrowthisinthelinear regimehere,soincreasingtheturbulentvelocitydoesnotincrease theequivalentwidthoftheline,leadingtoarobustlowerlimitof NH >5×1022cm−2. Thelowerlimitonthedensity,combinedwiththecolumnden- sity,cangiveanupperlimitonthesizescale∆Roftheabsorber asN =n∆R.AhugecolumnofN ≥ 1025 cm−2 isrequired H H inorder toproduce aniron absorption linewithequivalent width of 100 eV if the gas velocity is simply set by its temperature of 107.5 K(Kotanietal.2000;2006)asexpectedfromanylocalhot gas.Suchalargecolumnisinconsistentwiththespectrum,asthis produces a strong dip at 8–10 keV (rest frame) due to the FeK- shelledgestructure(Kallmanetal2004), whichisnotpresent in thedata.IndeedfromthelackofanironKedgeinPG1211+143, thissetsanupperlimittothecolumnof<1024cm−2andrequires that there must be substantial turbulent velocity (> 1000kms−1 derived from the curve of growth) in excess of the thermal mo- tionstomodelthelineEW.ThisitselfisinconsistentwithaWHIM origin. With this, the upper limit on the absorber size scale is ∆R < N /n = 1024/4×103 < 2.5×1020 cm. This is un- H feasiblylow tobe associated witheven thesmallest local diffuse hotgas,thekpcscaleGalactichalo. Another constraint on the properties of the material comes from theemission measure EM = n2V where V = 4πR2∆R Figure3.∆χ2residualsagainstapowerlaw(top),ironemissionlineand is the volume, assuming that the gas is distributed evenly in a broadredshiftedGaussian(middle)andironemissionlineandpartialcov- spherical shell at distance R. The total bremsstrahlung luminos- ering by partially ionised material (bottom) for the XMM-Newton 2001 ityisLbrems ∼ 2×10−27T1/2EM,sothesurfacebrightnessin (red) and Suzaku 2005 (black) data, respectively. The absorption feature solidangledΩisL /(4πR2)(dΩ/4π).Forasolidangleof1 brems at∼ 7keVintheXMM-Newtondataissignificantlystrongerthaninthe arcmin2 = 10−7 srthisgives∼ 1.3×10−35T1/2nN > 10−5 H Suzakudatairrespectiveofthephenomenologicalcontinuummodel. ergss−1cm−2arcmin−2,i.e.brighterthantheCrabineverysquare arcmin in X-rays. Indeed the observed upper limit to the diffuse skysurfacebrightnessinthe3/4keVbandis∼ 2×10−4 counts ionised, and requires temperatures > 107.5 K in order to be the s−1arcmin−2(Bregman&Lloyd–Davies2007),correspondingto dominantion.Thisgivesarecombinationrateofα ∼2.5×10−12 afluxof<2×10−15ergss−1cm−2arcmin−2,10ordersofmag- r cm3 s−1 (e.g. Arnaud & Rothenflug 1985), so for this to be less nitudebelowthepredictedvalue. than 4 years requires densities > 4×103 cm−3, which is 6 or- Thusthevariabilityandcolumnappeartoruleoutanysortof dersof magnitude above thetypical density evenfor alocal halo non-AGNoriginfortheabsorbingmaterial.Thebestfitidentifica- component(e.g.Bregman&Lloyd–Davies2007). tionbyPP06ofthehighlyionisedabsorptionasbeingdominated WemodeltheFeKabsorptionlineusingtheWARMABSXS- byHe–like Fealsorulesout alocal origin asthelineisthen not TARphoto-ionisationcodeincorporatedintoXSPEC,adoptingso- closetotherestwavelengthofthetransition,showing ablueshift lar abundances. Weassume aturbulent velocityof 5000 kms−1, withrespecttothelocalframeof−0.07.ThisisbecausetheMg, below theupper limitof < 8000 kms−1 setby theobserved in- SiandSK-shellabsorptionseenintheXMM-NewtonCCDspec- IronK-shellabsorptionisnot fromtheWHIM 5 showironKabsorptionfeaturesclearlyshowarangeof(intrinsic andobserved) velocities,removingtheapparenttrendfortheline 105 PDS 456 energy to appear at the rest energy for these transitions. Thus it isclear that thismaterial isamildly relativisticoutflow from the s)−1 PG 1211 AGN.Itshighvelocitymeansthatitskineticenergycanbecom- m parable to the bolometric radiated luminosity of the AGN (King k y ( &Pounds 2003; Pounds etal 2003; Pounds&Reeves2007), yet ocit itshighionisationmeansthatitiseffectivelyinvisibleinallother Vel 104 wavebands. While such a major component of AGN energetics ow could go unnoticed in individual objects, there is increasing ev- utfl idence that strong AGN feedback controls galaxy formation and O evolution.Mildlyrelativisticwindsprovidemoreefficientheating than the jet due to their impact on a larger area, so these highly 0 ioniseddiscwindsmaybethekeytounderstandingthegrowthof 0 0 structureintheUniverse. 11000 104 105 Recession Velocity (km s−1) Figure4.TheinferredoutflowvelocityfortheFeKαabsorptionlinesver- REFERENCES susthehostgalaxyrecessionvelocity.Onlythethreelowestvelocitypoints (crosses)arekinematicallyconsistent(withinuncertainties)withalocalrest ArnaudM.,RothenflugR.,1985,A&AS,60,425 frame energy (left to right; NGC 1365, Risaliti et al. 2005; MCG-6-30- BlustinA.J.,PageM.J.,FuerstS.V.,Branduardi-RaymontG.,AshtonC.E., 15,Youngetal.2005;IRAS13197-1627,Miniuttietal.2007).Thefilled 2005,A&A,431,111 circles represent the blue-shifted Fe K absorbers in the Seyfert galaxies BraitoV.,etal.,2007,ApJ,670,978 MCG-5-23-16(Braitoetal.2007),IC4329a(Markowitzetal.2006)and BregmanJ.N.,2007,ARA&A,45,221 Markarian509(Dadinaetal.2005).Starsrepresentabsorptionsystemsob- BregmanJ.N.,Lloyd-DaviesE.J.,2007,ApJ,669,990 servedinnearbyquasars(PG 1211+143,thispaper;PG0844+349,Pounds ChartasG.,BrandtW.N.,GallagherS.C.,2003,ApJ,595,85 et al. 2003b; PDS 456, Reeves et al. 2007, in prep). The filled squares ChartasG.,BrandtW.N.,GallagherS.C.,GarmireG.P.,ApJ,579,169 correspondtotwoBALquasars,PG1115+080 (Chartas etal.2003)and DadinaM.,CappiM.,MalagutiG.,PontiG.,deRosaA.,2005,A&A,442, APM08279+5255(Chartasetal.2002). 461 GrevesseN.,SauvalA.J.,1998,SpaceSci.Rev.,85,161 IshisakiY.,etal.,2007,PASJ,59,113 trumcanbefitwiththesamelayerofabsorptioniftheionisation KallmanT.R.,PalmeriP.,BautistaM.A.,MendozaC.,KrolikJ.H.,2004, stateofironislowerthanH-like.Thismismatchbetweentheout- ApJS,155,675 flowvelocityoftheabsorberandrecessionalvelocityoftheAGN KaspiS.,BeharE.,2006,ApJ,636,674 iscommon. Thereare now many other AGN withblueshifted Fe Kotani,T.,etal.,2000,ApJ,539,413 Kαindicatinganoutflow,andwecollatethesefromtheliterature Kotani,T,etal.,2006,ApJ,651,615 KingA.R.,PoundsK.A.,2003,MNRAS,345,657 inFig.4.Asidefromthe3lowvelocityexamplesinFigure4,none KoyamaK.,2007,PASJ,59,23 oftheAGNoutflowvelocitiescoincidewiththerecessionvelocity. MarkowitzA.,ReevesJ.N.,BraitoV.,2006,ApJ,646,783 InIC4329a andMCG-5-23-16theabsorptionlinesareobserved McKernanB.,YaqoobT.,ReynoldsC.S.,2007,MNRAS,379,1359 at7.7keV(Markowitzetal.2006;Braitoetal.2007)inconsistent McKernanB.,YaqoobT.,ReynoldsC.S.,2005,MNRAS,361,1337 withtherestenergyofanyFeKαtransitionline.Afurtherexam- McKernanB.,YaqoobT.,ReynoldsC.S.,2004,ApJ,617,232 pleisfromthenew2007SuzakudatafromPDS456(Reevesetal. MillerL.,TurnerT.J.,ReevesJ.N.,GeorgeI.M.,KraemerS.B.,WingertB., 2007, in prep), which shows iron K absorption lines observed at 2007,A&A,463,131 7.6and8.2keV,inconsistentwithlocalabsorptionfromironKα. MiniuttiG.,PontiG.,DadinaM.,CappiM.,MalagutiG.,2007,MNRAS, Indeed the iron K absorption features seen in high redshift BAL 375,227 QSO’sarelikewiseveryfarfromtheironKαrestenergiesforlo- Mitsuda,K.,etal.,2007,PASJ,59,1 PoundsK.A.,ReevesJ.N.,2007,MNRAS,374,823 calmaterial(Chartasetal2002,2003). PoundsK.A.,PageK.L.,2006,MNRAS,372,1275 Pounds K.A., Reeves J.N., King A.R., Page K.L., O’Brien P.T., Turner M.J.L.,2003,MNRAS,345,705 6 CONCLUSIONS PoundsK.A.,King,A.R.,PageK.L.,O’BrienP.T.,2003b,MNRAS,346, 1025 We show that the observed variability in the absorption line in Pounds K.A., Reeves J.N., King A.R., Page K.L., O’Brien P.T., Turner PG1211+143 between theXMM-Newton andSuzakudatataken M.J.L.,2003b,MNRAS,345,705 4 years apart conclusively rules out a diffuse gas origin such as ProgaD.,KallmanT.R.,2004,ApJ,616,688 thelocalGalactichaloorWHIM.Thegasmustbeassociatedwith ReevesJ.N.,etal.,2007,PASJ,59,301 the AGN, as is further evidenced by its large column density in ReevesJ.N.,O’BrienP.T.,WardM.J.,2003,ApJ,593,L65 theXMM-Newton2001datawhichisfartoohighforlocalorin- RisalitiG.,BianchiS.,MattG.,BaldiA.,ElvisM.,FabbianoG.,ZezasA., tergalactic gas. The conclusive identification with the AGN, and 2005,ApJ,630,L129 theimplausibilityofanyalternativelinetransitionotherthaniron TurnerT.J.,MillerL.,ReevesJ.N.,KraemerS.B.,2007,A&A,475,121 Kαmeansthatthelargeoutflowvelocityof∼0.1cisinescapable. YoungA.J.,LeeJ.C.,FabianA.C.,ReynoldsC.S.,GibsonR.R.,Canizares C.R.,2005,ApJ,631,733 Suchmaterialispredictedfromthewindswhichareproducedfrom luminousaccretiondiscsinAGN(Proga&Kallman2004). Thecoincidenceoftheoutflowvelocitywiththesourcered- shift in these data is not significant. Other powerful AGN which

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.