ebook img

On tree hook length formulae, Feynman rules and B-series [Master thesis] PDF

110 Pages·2014·1.414 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On tree hook length formulae, Feynman rules and B-series [Master thesis]

On tree hook length formulae, Feynman rules and B-series by Bradley Robert Jones B.Sc., Simon Fraser University, 2012 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mathematics Faculty of Science © Bradley Robert Jones 2014 SIMON FRASER UNIVERSITY Fall 2014 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Bradley Robert Jones Degree: Master of Science (Mathematics) Title of Thesis: On tree hook length formulae, Feynman rules and B-series Examining Committee: Dr. Paul Tupper, Associate Professor Chair Dr. Karen Yeats, Associate Professor Senior Supervisor Dr. Cedric Chauve, Professor Supervisor Dr. Tamon Stephen, Associate Professor Examiner Date Approved: September 25, 2014 ii Partial Copyright Licence iii Abstract This thesis relates similar ideas from enumerative combinatorics, Hopf algebraic quantum field theory anddifferentialanalysis. Hooklengthformulae, fromenumerativecombinatorics, areequationsthatcan lead to bijections between tree classes and other combinatorial classes. Feynman rules are maps used in quantumfieldtheorytogenerateintegralsfromparticleinteractiondiagrams. HereweconsiderFeynman rules from the Hopf algebra perspective. B-series are powers series that sum over trees and are used in differential analysis to analyze Runge-Kutta methods. The aim of this thesis is to bring together the ideas of the three communities. We show how to use differential equations to obtain new hook length formulae. Some of these new hook length formulae result in new combinatorial bijections. We use hook length formulae to express differential equations combinatorially. We also provide a generalization to hook length. Finally we include a catalogue of known hook length formulae. iv To my parents. v “Vix prece finita torpor gravis occupat artus, mollia cinguntur tenui praecordia libro, in frondem crines, in ramos bracchia crescunt, pes modo tam velox pigris radicibus haeret, ora cacumen habet: remanet nitor unus in illa.” Metamorphoses, Ovid vi Acknowledgements I would foremost like to thank my senior supervisor, Karen Yeats. Without you I would not have found this topic. I am very appreciative of all the input regarding this thesis, without which this thesis would merely be a mass of theorems and equations. Thank you for motivating me to write paragraphs and actually finish this work. Iwouldalso liketo thankmy othersupervisor, CedricChauve. Thankyou forremindingmethatI have to justify my work. My thanks to Marni Mishna who kindled my interest in combinatorics. Thanks to Philippe for reassurance and advice and to Justin for using every chance he could get to tell people that I study trees. Finally, I wish to thank my parents for their love, support and learning how to say com·bi·na·or·ics. IwouldliketothanktheOnlineEncyclopediaofIntegerSequences(OEIS)[50],whichIusedmanytimes to check for sequences. Sequences I looked up include: A003319 (connected permutations), A000311 (Schröder’s 4th problem), A000111 (Euler numbers), A006963 (planar embedded trees), A000312 (nn), A113583 (permutations with no local minima at even pos), A038037 (mobiles), A048802 (labelled dec- orated trees), A007317 (decorated plane tree), A007106 (number of labelled odd degree trees with 2n nodes) and A151374 (a class of walks n the quarter plane). I also created a new entry to the OEIS, A227917, forlabelledbinary treeswhere eachlabelis greaterthan thelabelsof itsancestors ofdegree2. I used Maple’s [41] dsolve function to solve most of the differential equations appearing in this paper. I also developed a small script to calculate hook length formulae coefficients using Maple. vii Contents Approval ii Abstract iv Dedication v Quotation vi Acknowledgements vii Contents viii List of Tables xi List of Figures xii I Introduction 1 II Hook length formulae 6 2.1 Combinatorial classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Simple tree classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Hook length series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Hook length formulae and isomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Some new hook length formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Decorated trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 General hook length operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 IIIThe Connes-Kreimer Hopf algebra and hook length 40 3.1 Hopf algebra of rooted trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 The L∗ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 B 3.2.1 Examples of L∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 B 3.2.2 The universal property and L∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 B viii IVDifferential equations of hook length series 50 4.1 B-series and Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Mazza’s differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Hypergeometric differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 New hook length formulae using Mazza’s differential equation . . . . . . . . . . . . . . . 57 4.5 The differential equation for decorated trees and general hook length operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 New methods of finding hook length formulae . . . . . . . . . . . . . . . . . . . . . . . . 63 4.6.1 Leafless method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.6.2 System method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6.3 Scaled method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.7 Representing differential equations combinatorially . . . . . . . . . . . . . . . . . . . . . . 70 4.7.1 More on the theta operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7.2 Combinatorial solutions to differential equations. . . . . . . . . . . . . . . . . . . 73 V Conclusion 77 VICatalogue of hook length formulae 81 6.1 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3 Complete binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4 Semicomplete binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.5 Fibonacci trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.6 Motzkin trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.7 r-ary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.8 Complete r-ary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.9 Plane trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.10 Fat plane trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.11 Labelled unordered trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.12 Labelled unordered binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.13 Labelled unordered complete binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.14 Labelled unordered even trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.15 Labelled unordered odd trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.16 Cyclic trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.17 Schröder trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.18 Plane forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.19 Labelled unordered forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.20 Cyclic forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.21 Single forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Bibliography 93 ix Definitions 97 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.