SCT-16694;NoofPages5 Surface&CoatingsTechnologyxxx(2011)xxx–xxx ContentslistsavailableatScienceDirect Surface & Coatings Technology journal homepage: www.elsevier.com/locate/surfcoat On time-of-flight ion energy deposition into a metal target by high-intensity pulsed ion beam generated in bipolar-pulse mode ⁎ J.P. Xin, X.P. Zhu, M.K. Lei SurfaceEngineeringLaboratory,SchoolofMaterialsScienceandEngineering,DalianUniversityofTechnology,Dalian116024,China a r t i c l e i n f o a b s t r a c t Availableonlinexxxx Theenergydepositionofhigh-intensitypulsedionbeam(HIPIB)intoatitaniumtargetwasstudiedinTEMP-6 apparatusofbipolar-pulsemodeusingaself-magneticfieldmagneticallyinsulatediondiode(MID),where Keywords: anodeplasmawaspre-generatedbyafirstnegativevoltageandthenmixedcarbonionsandprotonbeamwas High-intensitypulsedionbeam extractedduringthepositivestageofthebipolarpulse.Accordingwiththetime-of-flight(TOF)ofions,C+ Irradiation arriving at the target 14cm downstream from the MID was delayed by 55ns relative to H+ at a peak Energydeposition acceleratingvoltageof250kVandtheionenergyspectrumvariedgreatly,startingwithaGaussianprofileat Time-of-flighteffect exitofMIDandarrivingwithamulti-energycomplexdistribution.TheTOFionenergydepositionofHIPIB Subsurfaceheating showedthattheenergydepositionproceededfirstlyinadeeperdepthdeliveredbyH+andthenmoved towardsatoplayerdominatedbyC+.Itisfoundthat,thecontributionofH+totheenergydepositionis negligibleatthebeamcompositionof70%C+and30%H+.Asaresult,thegradientofenergydepositionprofile intargetisnegativebyC+depositionthroughthewholepulse.ThisuniquefeatureofHIPIBenergydeposition canleadtodifferentthermalanddynamiceffectsascomparedtopreviousstudiesofH+-abundantHIPIB, electronorlaserbeam,especiallylimitingsubsurfaceheatingthatisconcernedasamajorcauseofdroplet ejectionandsurfacecrateringandwavinessformation. ©2011ElsevierB.V.Allrightsreserved. 1.Introduction ejectionfrom thesurfaces,causinga surfacedisturbancein themelt state.However,thefactorsdirectlyconnectingwithHIPIBparameters High-intensitypulsedionbeam(HIPIB)techniqueisapowerfultool arelessexploredanditisshowninourrecentstudythattheionbeam recentlydevelopedfortheresearchanddevelopmentofmaterials,such characteristicsduetotime-of-flight(TOF)effectofionscangreatlyaffect assurfacemodification,materialsynthesis,andhighheatfluxtestingof theionenergydepositionprocess[10].Inordertounderstandtheroleof materials being developed for nuclear fusion [1–4]. The high energy HIPIB characteristics on the process of HIPIB-target interactions, i.e., density(N1J/cm2)duringHIPIBirradiationcanbedeliveredinatarget excludingmaterialfactorsmentionedabove,ionenergydepositioninto withinaveryshortpulseduration(usuallyfromtenstohundredsns), ametaltargetwasinvestigatedinTEMP-6HIPIBapparatusinthisstudy whichleadstotherapidmelting,vaporizing,ablatingandresolidifica- by using a self-magnetic field magnetically insulated diode (MID) tion on material surface and the generation of shock stress inside operated in bipolar-pulse mode, in which a first negative pulse is materials[5–7].Consequently,thesignificantthermo-dynamicaleffects intendedtoformtheanodeplasma,andthenafollowingpositivepulse inmaterialsurfacewithahightemperaturegradient,resultinginthe appliedafteracertaindelaytimetoaccelerateandextracttheionbeam modificationofmaterialpropertiesinsurfaceregion,suchasimprove- [11].TheresultswerecomparedwithourpreviousstudyusingHIPIB ments in hardness, corrosion resistance, and wear resistance of the generatedinunipolar-pulsemodeandofdifferentionbeamcomposi- irradiatedmaterialsurfaceforsurfacemodificationapplications[5,7–9]. tion.Moreover,theinfluenceofHIPIBenergydepositionprocessonthe ExploringtheinteractionsbetweentheHIPIBandtargetisthusbasic subsequentthermalanddynamiceffectswasdiscussed,takingsurface and crucial for understanding the resultant surface modifications or cratering and roughening on metals as an example that was also evendeteriorations.Forinstance,craterformationandsurfacewaviness commonlyreportedincaseofhigh-intensitypulsedlaserorelectron ontheirradiatedsurfaceswithincreasedroughness,hasbeenobserved beamirradiationintosolids. asatypicalconsequenceofHIPIB-targetinteractions[2,7,9],whichmay be ascribed to impurities, surface irregularity and second phase can 2.HIPIB-matterinteractionunderbipolar-pulsemode induceapreferentialheatingandthusselectiveablationwithdroplet 2.1.HIPIBcharacteristicsofbipolar-pulsemode ⁎ Correspondingauthor.Tel.:+8641184707255. High-intensitypulsedionbeamwasgeneratedfromaself-magnetic E-mailaddress:[email protected](M.K.Lei). fieldMIDonTEMP-6HIPIBapparatusoperatedinbipolar-pulsemode 0257-8972/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved. doi:10.1016/j.surfcoat.2011.04.052 Pleasecitethisarticleas:J.P.Xin,etal.,Surf.Coat.Technol.(2011),doi:10.1016/j.surfcoat.2011.04.052 2 J.P.Xinetal./Surface&CoatingsTechnologyxxx(2011)xxx–xxx [11].TheprincipleoftheMIDoperationisschematicallyillustratedin Fig. 1. A cylindrical configuration has been adopted in both graphite anodeandstainlesssteelcathodetoachievethegeometricalfocusingof kV Ud Ji HIPIB, and the cathode has an array of silts with a total of 60% 0 0 transparencyforionbeamextraction.Thecurvatureradiiofanodeand 1 cathodeare15and14cm,respectively.Theionbeamofabout70%C++ A 30%H+isextractedfromtheanodeplasmaformedintheA–Kgapafter k 5 applyingaspeciallyshapedbipolarpulsefromthepulsedpowersystem. 2 Thefirstnegativepulseisappliedtoformtheanodeplasmaongraphite surfacebasedonexplosiveelectronemissionandelectronimpact,and 2 m thenafollowingpositivepulsewithcontrolleddelaytimetoaccelerate c andextracttheionbeamfromtheformedboundaryofanodeplasma A/ uponasufficientanodeplasmaformationandexpansion. 00 Id 1 The typical waveforms of diode voltage (U ), diode current (I ), d d and ion current density (J) from the self-magnetic field MID of i bipolar-pulsemodearegiveninFig.2.Theioncurrentdensitywitha 100 ns fulldurationofabout200nsandamaximumvalueof350A/cm2is measuredbyFaradaycupatadistance(d)of14cmfromtheMID.It shouldbementionedthat,inthebipolar-pulsemodetheionbeamis Fig.2.Typicalwaveformsofdiodevoltage(Ud),diodecurrent(Id),andioncurrent accelerateddirectlybythepositivevoltage,whereasintheunipolar- density(Ji)fromtheself-magneticfieldMIDoperatinginbipolar-pulsemodeonHIPIB pulsemodethefrontpartofpositivevoltagewastogenerateanode apparatus. plasmabasedonthepolymersurfacebreakdownandelectronimpact [10].Therefore,thetime-dependentkineticenergyofextractedions attheexitofMIDisinaccordancewiththeapplyinghistoryofpositive time points correspond to U and J , respectively. y is the central 0 0 0 voltageinthepresentcase.Thepositivevoltagehasapeakvalueof coordinateofionbeamincidentonmaterialsurface,yistheposition 250kVwithafulldurationof100nsandtheanalysisoftheionenergy awayfromy onmaterialsurface.σ ,σ andσ areconstantsdetermined 0 1 2 3 spectrumatthetargetsurfaceandsubsequentionenergydeposition bytheprofileofpositivepulseandioncurrentdensity,respectively. processismainlyassociatedwiththepositivepulsestage. Assuminga sufficientplasmaformedintheA–Kgapfortheion extractioninthepositivepulsestageofthebipolarpulse,andignoring 2.2.EnergydepositionofHIPIBirradiationwithTOF thebehaviorofionsinsideMIDbeforetheirextraction,theionenergy E whileextractingfromMIDcanbegivenasE =qU,whereqisthe 0 0 Based on the experimental observation of diode voltage and ion ioncharge.ThentheTOFofionst canbeexpressedas TOF currentdensity,assumingthepositivepulseinthebipolarpulseandion pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi currentdensityhaveaGaussianprofile,respectively,andisthusexpressed t =d= 2E =m; ð3Þ TOF 0 i as h =(cid:1) (cid:3)i wheredistheiondriftdistancebetweendiodeandtarget,miistheion UðtUÞ=U0exp −ðtU−tU0Þ2 2σ12 ; ð1Þ mass.Takingtdasthedelaytimeofioncurrentdensityfromthepositive voltage,therelationbetweent andtcanbeobtainedast=t +t − TOF J J TOF U (cid:1) (cid:3) h (cid:1) (cid:3)i (cid:4) (cid:1) (cid:3) (cid:1) (cid:3)(cid:5) t . The ion energy E acting on material surface is given by E and J y;t =J exp −ðy−y Þ2= 2σ2 exp − t−t 2= 2σ2 ; ð2Þ cdorrelatedtot.Thetostaldepositedenergyprofileindepthofat0arget J 0 0 2 J J0 3 J byHIPIBirradiationatposition(x,y)duringapulsecanbewrittenas wpohseitrieveUp0,uJl0seananddtUio,ntJcaurrerethnetdmenaxsiitmy,urmespvealcutievselayn.dtUd0uarnadtiotJn0saoreftthhee ddEx =∫0τddExs J coqsθdt; ð4Þ wheredE/dxistheionenergylosswithakineticenergyE atthetarget s s surfaceandcalculatedbytheSRIMcode[12],θtheincidentangleofion beam,τthedurationofioncurrentdensity.Inthepresentcase,θ=0°and Anode plasma y=y havebeenadopted.Fortheenergydepositionofmixedionbeam 0 withm%M++n%N++…,thedepositedenergycanbeobtaineduponthe Bipolar pulse fractionofionspeciesintheionbeam,andcanbewrittenas Ion beam (cid:7) (cid:8) (cid:7) (cid:8) dE dE dE s =m% s +n% s +⋅⋅⋅; ð5Þ dx dx Mþ dx Nþ 3.Resultsanddiscussion Target 3.1.TOFionkineticenergyspectrumattargetsurface Anode B Cathode Fig. 3 shows the profile of ion energy (E) versus t and t, U J Self-magnetic field respectively.TheTOFofionsisdifferinginthesameflightdistanceof ionsbetweendiodeandtargetsurfaceinvacuum,asdeterminedby Current thespecificionenergyandmassaccordingwithEq.(3).Notethat,the maximumenergyforthesinglechargedionsis250keVaccordingto Fig.1.Principleoftheself-magneticfieldMIDoperatinginbipolar-pulsemode. thepeakvalueofthepositivevoltageofthebipolarpulse,buttheion Pleasecitethisarticleas:J.P.Xin,etal.,Surf.Coat.Technol.(2011),doi:10.1016/j.surfcoat.2011.04.052 J.P.Xinetal./Surface&CoatingsTechnologyxxx(2011)xxx–xxx 3 2.0 250 @ 0 ns @ 5 ns 200 H+ C+ 3 kJ/g) 1.6 @@ 1105 nnss )V 150 -y (10 1.2 @ 20 ns e g k r ( E 100 ene 0.8 d e 50 osit p 0.4 e D 200 0 160 20 120 0.0 40 60 80 (n s) 0.0 0.4 0.8 1.2 1.6 tU (ns) 80 40 tJ Depth (µm) 100 0 Fig.4.TheenergydepositionprofileperionintitaniumtargetbyHIPIBirradiationof Fig.3.Theionkineticenergydistributionrelativetotheapplyinghistoryofaccelerating 70%C++30%H+atthedifferenttimepointsduring0–20nsofsingleH+phase. voltage(tU)andthearrivalofionsatthetargetsurface(tJ),respectively. energyforH+andC+firstlyarrivingattargetsurfaceis140keVH+ Fig.5showsthetypicalionenergydepositionprofileswithin50– and230keVC+,respectively.Thisfeatureofionkineticdistributionat 70ns,duringtheperiodwithtransitionfromsingleH+tomixedH+ the target surface is obviously different from that of the unipolar- andC+phase.Itisclearlyshownthattheenergydepositionprofiles pulsemodewheretheionsfirstlyarrivedatthetargetsurfacehada byC+haveanegativegradientwithpeakingvalueattheoutermost peakingkineticenergyofthepulse[10].Itcanbeunderstoodthatthe surface,differentfromthatofH+peakingatadeeperdepthcloseto anodeplasmaofbipolar-pulsemodeisproducedpriortothestageof theionrange[10].Itshouldbepointedoutthat,theenergydeposited positive voltage output, and then the ions are accelerated and perunitmasswithC+inthisperiodconcentratedinadepthofabout extractedaccordingwithapplyinghistoryofthepositivevoltage.In 0.5μm with a value of 0.3–0.5kJ/g, two orders higher than that of the TOF relation, firstly arrived ions are of the medium energies singleH+speciesphase(Fig.4). acceleratedduringrisingphaseofthepositivevoltageinthebipolar- Fig. 6 shows the ion energy deposition evolution in a titanium pulse mode, whereas in the case of unipolar-pulse mode major targetbyHIPIBirradiationwith70%C++30%H+atapeakioncurrent portion of ions could be only extracted after dense anode plasma densityof350A/cm2onTEMP-6HIPIBapparatusoperatedinbipolar- generationbysurfacebreakdowninthepeakregionofdiodevoltage. pulse mode. The deposited energy was integrated for each 20ns Consequently,theionsextractedattheMIDoriginallyhasakinetic periodupto200nsduringthefullpulseduration.Althoughtheion energydistributioncorrelatingwith the positive voltage with a full energydepositionprocessalsopresentedatypicalshallowingtrend Gaussianprofileinthiscase.Similartotheunipolar-pulsemode,the starting from a deeper depth with H+ of larger ion range to a pulse width of the ion current density is noticeably extended as a shallowerrangewiththeheavierC+,aspreviouslyobservedincaseof resultofTOF,toabout200ns,twotimesofthatofthepositivepulse forionacceleration.DuetothedifferenceinTOFforthevariousion species,adelaytimeof55nsforC+firstlyarrivingatmaterialsurface was observed relative to that of H+, at which the ion energy 0.5 distribution has a sharp transition to a multi-energy complex @ 50 ns distribution with two ion species and kinetic energies at the target surface,fromaninitialGaussianprofileofdistributionextractingfrom 0.4 @ 55 ns MID.TheTOFeffectofionsthuschangestheionenergydistributionat g) @ 60 ns the target surface, which in turn affects the subsequent ion energy kJ/ @ 65 ns deposition as a thermal source leading to the significant thermo- y ( 0.3 @ 70 ns g dynamicaleffectsunderHIPIBirradiation. r e n e d 0.2 e 3.2.TOFionenergydepositioninthetarget sit o p Fig.4givestheionenergydepositionprofilesinthetitaniumtarget De 0.1 atthedifferentmomentswith5nsintervalduringthefirst20nsof the single ion species phase of H+. The energy deposition profiles 0.0 haveacharacteristicstep-likeformduetoanoverlapofenergylossby H+withdifferentionkineticenergiessimultaneouslyarrivingatthe 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 surface.ItisshownthattheionenergydepositiondeliveredbyH+ Depth (µm) proceededwithintheionrangeofabout1.0μmatthebeginningand extendedtoamaximalrangeofabout1.6μmat10nscorresponding Fig.5.TheenergydepositionprofileperionintitaniumtargetbyHIPIBatirradiationof withthemaximalionkineticenergyof250keV,andthenfollowedby 70%C++30%H+ at thedifferent time points during 50–70ns with transition from acontinuousshallowingtrend.Theprotonenergydepositiondensity singleH+tomixedC+andH+phasewherethearrivalofC+atthetargetsurfacestarts hasapeakvalueofnomorethan0.002kJ/g. from55ns. Pleasecitethisarticleas:J.P.Xin,etal.,Surf.Coat.Technol.(2011),doi:10.1016/j.surfcoat.2011.04.052 4 J.P.Xinetal./Surface&CoatingsTechnologyxxx(2011)xxx–xxx higher kinetic energy and lighter ion species; and the mixed ion 0-20 ns species of H+ and C+ with the ion kinetic energy and ion current 12 20-40 ns density correlated by the TOF relation results in a discrete concen- g) 10 40-60 ns tratedenergydepositionwithseparatedpeakscorrespondingtothe kJ/ 60-80 ns differentionspeciesatHIPIBcompositionof70%H++30%C+. y ( 8 80-100 ns However, the HIPIB concerned in this study, has a different g principle for ion beam generation and a different ion beam r ne 100-120 ns composition of 70%C++30%H+, as compared tothe unipolar-pulse d e 6 120-140 ns mode, and consequently, the HIPIB energy deposition process e posit 4 114600--116800 nnss vdiuretutaollythdeifpfereresednicnetohfepfroel-lporwoidnugcetdwoanaosdpeecptlsa.sOmnae, tthheeioonnekihnaentdic, e energy extracted from the ion source correlates to the accelerating D 180-200 ns 2 historyofthepositivevoltageofbipolar-pulseandthefirstlyarrived ionshaveamediumenergydeterminedbytheTOFrelation.Onethe 0 otherhand,theenergydepositionofH+canbeignoredincomparison withthatofC+,duetothehigherC+contentinthemixedionbeam 0.0 0.2 0.4 0.6 1.6 andtheionenergyprofileevolutionisdeterminedbyC+species.The Depth (µm) latter characteristic of ion energy deposition should have a more profound influence on the HIPIB-material interactions since the Fig.6.TheevolutionofHIPIBenergydepositionof70%C++30%H+withapeakion energylossofC+hasanegativegradientindepthwithpeakvalue currentdensityof350A/cm2andapeakkineticenergyof250keV,wheretheprofilesof attheoutermostsurface(Figs.5–7),whereastheH+hasapositive depositedenergywereintegratedforeach20nsperiodupto200ns,respectively. gradient peaking in a deeper depth leading to a higher energy depositioninthesubsurface[10]. TheHIPIB-materialinteractionsmaybegreatlyaffectedduetothe unipolar-pulsemodeduetospecificionenergyspectrumofTOFeffect changesinthefeatureofionenergydepositionbythebipolar-pulse [10], the energy density delivered by the H+ can be neglected as mode.Forinstance,theenergydepositionwithanegativegradientin compared to that of C+ in the present case. The corresponding depthwilllimittheenergydensityconcentratinginasubsurface,and cumulative energy deposited at the different time periods during a thusrestrictthepreferentialheatinginthesubsurface.Moreover,the pulse is presented in Fig. 7. It is confirmed again that the energy energydepositionwillalsonotstartfromadeeperlayerasobserved deposition was predominated by C+ implantation, and the process in unipolar-pulse mode, since the firstly ions arrived at the target wasmainlycarriedoutwithinadepthof0.5μmcorrespondingtothe surfacehaveamediumkineticenergyduetotheionaccelerationat ionrangeofCionsatapeakacceleratingvoltageof250keV. therisingstageofacceleratingvoltage,otherthanenergydeposition starting with a peak value of kinetic energy in the unipolar-pulse mode.Asaresult,surfacemorphologyortopographyoftitaniummay 3.3.EffectofionenergydepositiononHIPIB-materialinteractions differundertheHIPIBirradiationofthesetwomodes;inthecaseof unipolar-pulsemodetheroughersurfacewithcratersofsharpedge As revealed in our previous study [10], the ion TOF effect has a wasobservedwithobviousdropletejection[13],whereasthesurface significant influence on the ion energy deposition process during cratering with blurred edge and efficient surface smoothing can be HIPIB-material interactions, where two unique characteristics of resultedfromtheHIPIBirradiationinthebipolar-pulsemode[9]. HIPIB-material interactions should be noted here, i.e. the TOF ion Ithasbeenalsoreportedthat,duringtheinteractionbetweenlaser kinetic energy spectrum at the target surface initiates the beam- beam and material, the explosive boiling due to subsurface super- materialinteractionsinasubsurfaceduetothelargerionrangefor heatingbythephotonenergyabsorptionresultedinatypicalcrater andwavinessformationontheirradiatedsurface[14,15],asaresultof surfacedisturbanceinamoltenstatefrozenbyfastsolidification.This isalsotrueinhigh-intensityelectronbeamcasesincetheelectrons deposit most of the energy in their penetration depth and led to 20 ns 40 concentratedheatinginthedeepzoneunderthesurface[16],which 40 ns mayfavorsurfacecrateringandroughening.Thesurfaceroughening, g) 60 ns cratering or even cracking should be avoided under high power kJ/ 32 80 ns particle beams including electron, ion and laser beams for surface y ( 100 ns modificationofmaterials,sincetheymaysignificantlydeterioratethe g er 24 120 ns material properties such as corrosion resistance and mechanical sited en 16 114600 nnss pthareroagpteientrgtaieboslnaettitohcn.eMtbaoyrrgeteohtvesessreh,oienunletdhrgebeectiacaslespoaorfrtetichsltiernicbfiteelmadmadsne,dptohpseriteisvouenbnsfturolrafmargceea po 180 ns dropletdefectsinthepreparedthinfilmsfromthedropletejection e D 8 200 ns duetotheexplosiveboilingorablation. 0 4.Conclusions 0.0 0.2 0.4 0.6 1.6 Depth (µm) TheenergydepositionofHIPIBirradiationintomatterwasstudied asconsideringtheTOFeffectofionsontheTEMP-6HIPIBapparatus operatedinbipolar-pulsemode,inwhich70%C++30%H+ionbeam Fig.7.ThecumulativeenergyprofilesdepositedintitaniumtargetbyHIPIBirradiation of70%C++30%H+atthedifferenttimepointsduringapulseof200ns,obtainedfrom was extracted from anodeplasma pre-generated in a self-magnetic thedatainFig.6. fieldmagneticallyinsulatediondiodebyafirstnegativevoltageand Pleasecitethisarticleas:J.P.Xin,etal.,Surf.Coat.Technol.(2011),doi:10.1016/j.surfcoat.2011.04.052 J.P.Xinetal./Surface&CoatingsTechnologyxxx(2011)xxx–xxx 5 thenacceleratedbyadelayedpositivevoltage.Basedontheresultsof Foundation of China (NSFC) under Grant no. 50701009 and the thisstudy,itisconcludedthat: Scientific Research Foundation for Returned Scholars, Ministry of EducationofChina. (1) Theionkineticdistributionatthetargetsurfacehasacomplex distributionasaresultofionaccelerationfromapre-generated plasma by a peak voltage of 250kV with a Gaussian profile References where the kinetic energy for firstly arrived H+ and C+ is 140keV and 230keV, respectively, and the HIPIB-target [1] D.J.Rej,H.A.Davis,J.C.Olson,G.E.Remnev,A.N.Zakoutaev,V.A.Ryzhkov,V.K. interaction is featured by the ions impinging simultaneously Struts,I.F.Isakov,V.A.Shulov,N.A.Nochevnaya,R.W.Stinnett,E.L.Neau,K.Yatsui, W.Jiang,J.Vac.Sci.Technol.A15(1997)1089. withthesameionspeciesofdifferentkineticenergiesand/or [2] T.J.Renk,P.P.Provencio,S.V.Prasad,A.S.Shlapakovski,A.V.Petrov,K.Yatsui,W. differentionsofdifferentkineticenergies. Jiang,H.Suematsu,ProceedingsIEEE.92(2004)7. (2) The ion energydensity delivered by C+ is two ordershigher [3] T.J.Renk,T.J.Tanaka,C.L.Olson,R.R.Peterson,T.R.Knowles,J.Nucl.Mater.329– thanthatofenergybyH+atthe70%C+and30%H+ionbeam 333(2004)726. [4] J.Linke,F.Escourbiac,I.V.Mazul,R.Nygren,M.Rodia,J.Schlosser,S.Suzuki,J.Nucl. composition, by which the energy deposition process is Mater.367–370(2007)1422. predominated by the C+ implantation with TOF ion energy [5] G.E.Remnev,I.F.Isakov,M.S.Opekounov,V.M.Matvienko,V.A.Ryzhkov, V.K. spectrumandioncurrentdensityatthetargetsurface. Struts, I.I. Grushin, A.N. Zakoutayev, A.V. Potyomkin, V.A. Tarbokov, A.N. Pushkaryov,V.L.Kutuzov,M.Yu.Ousyannikov,Surf.Coat.Technol.114(1999) (3) TheenergydepositionprocessbyC+proceedswithanegative 206. gradientindepthduringthewholepulseofHIPIBirradiation, [6] X.Y.Le,S.Yan,W.J.Zhao,B.X.Han,Y.G.Wang,J.M.Xue,Surf.Coat.Technol.128– with a peak of deposited energy at the outermost surface, 129(2000)381. [7] V.A.Shulov,N.A.Nochovnaya,G.E.Remnev,F.Pellerin,P.Monge-Cadet,Surf.Coat. greatlydifferingfromH+-abundantHIPIBwherethecontribu- Technol.99(1998)74. tionofH+ledtoanenergydepositionpeakinadeeperdepth. [8] H.Akamatsu,T.Ikeda,K.Azuma,E.Fujiwara,M.Yatsuzuka,Surf.Coat.Technol. Asaresult,thesubsurfaceheatingofatargetcanberestricted 136(2001)269. [9] X.P.Zhu,M.K.Lei,Z.H.Dong,S.M.Miao,T.C.Ma,Surf.Coat.Technol.173(2003) that is recognized as a major cause of explosive boiling or 105. ablationduringinteractionsbetweenhigh-intensitylaserand [10] J.P.Xin,X.P.Zhu,M.K.Lei,LaserPart.Beams28(2010)429. electronbeamsandmaterials. [11] X.P.Zhu,M.K.Lei,T.C.Ma,Rev.Sci.Instrum.73(2002)1728. [12] J.F.Ziegler,J.P.Biersack,U.Littmark,TheStoppingandRangeofIonsinSolids, PergamonPress,NewYork,1996. Acknowledgments [13] Z.H.Dong,Z.Zhang,C.Liu,X.P.Zhu,M.K.Lei,Appl.Surf.Sci.253(2006)2557. [14] A.Miotello,R.Kelly,Appl.Phys.Lett.67(1995)3535. TheauthorswouldliketothankProf.G.E.Remnev,andDrs.V.A. [15] V.Cracium,N.Bassim,R.K.Singh,D.Cracium,J.Hermann,C.Boulmer-Leborgne, Appl.Surf.Sci.186(2002)288. Tarbokov and D. Wu for their technical assistance and helpful [16] V.Lavrentiev,C.Hammerl,B.Renner,M.Zeitler,B.Rauschenbach,N.Gaponenko, discussion. This work is supported by the National Natural Science Yu.Lonin,A.Pisanenko,Surf.Coat.Technol.114(1999)143. Pleasecitethisarticleas:J.P.Xin,etal.,Surf.Coat.Technol.(2011),doi:10.1016/j.surfcoat.2011.04.052