ebook img

On the strong law of large numbers for sums of random elements in Banach spaces PDF

112 Pages·2001·4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the strong law of large numbers for sums of random elements in Banach spaces

ONTHESTRONGLAWOFLARGENUMBERSFOR SUMSOFRANDOMELEMENTSINBANACHSPACES By AMYM.CANTRELL ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2001 ACKNOWLEDGMENTS Iwouldliketothankmyadvisor,AndrewRosalsky,forhisinspirationalatti- tudeandunderstanding. Hisdirectionandmotivationhavemadethisworkpossible. Iwouldalso liketothankthemembersofmy dissertationcommittee, Dr. Malay Ghosh,Dr.RamonLittell,Dr.JamesHobert,andDr.IreneHueter. IthankDr.Ron Randlesforhissupportandencouragementbeforeandthroughoutmystudyatthe UniversityofFlorida. IthankmyparentsforalwaysbelievingthatIcouldaccomplishmygoals,and fortheirconstantloveandsupport. Ithankmyhusband,Emory,forhislove,en- couragementandunderstanding. Igivemythankstoalloftheteachersthatinspiredandmotivatedmydesireto learn,withspecialthankstoRitaCater,RonGoolsby,JamesBentley,andThomas Polaski. I wishtogivespecialthankstoMrs. AnneClosefor hermanyyears of support,encouragementandfriendship. 11 TABLEOFCONTENTS ACKNOWLEDGMENTS ii ABSTRACT iv CHAPTERS 1 INTRODUCTION 1 2 STRONGLAWSOFLARGENUMBERSFORSUMSOFRANDOM ELEMENTS 11 2.1 Introduction 11 2.2 NecessaryConditionsforaSLLN 14 2.3 SufficientConditionsforaSLLN 21 2.3.1 SLLNsfor SumsofIndependent RandomElementsinRade- macherTypepBanachSpaces 21 2.3.2 SLLNsforCompactlyUniformlyIntegrableSequencesofInde- pendentRandomElements 36 2.3.3 SLLNsforBanachSpaceValuedSummandsIrrespectiveof TheirJointDistributions 44 2.4 SomeInterestingExamples/Counterexamples 51 3 STRONGLAWSOFLARGENUMBERSFORSUMSOFRANDOM VARIABLES 65 3.1 Introduction 65 3.2 NecessaryConditionsforaSLLN 65 3.3 SufficientConditionsforaSLLN 66 3.3.1 SLLNsforSumsofIndependentRandomVariables 66 3.3.2 SLLNsforRandomVariableSummandsIrrespectiveofTheir JointDistributions 77 3.4 SomeInterestingExamples/Counterexamples 80 4 SUMMARYANDIDEASFORFUTURERESEARCH 97 4.1 Summary 97 4.2 IdeasForFutureResearch 98 REFERENCES 101 BIOGRAPHICALSKETCH 105 iii AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ONTHESTRONGLAWOFLARGENUMBERSFOR SUMSOFRANDOMELEMENTSINBANACHSPACES By AmyM.Cantrell May2001 Chairman: AndrewRosalsky MajorDepartment:Statistics Forasequenceofrandomelements{Vn, n>1}inarealseparableBanachspace A,sufficientconditionsareprovidedforthestronglawoflargenumbersX^Li(Vj~ Ci)/bn —> 0 almostcertainlytoholdwhere {c„,ra > 1} and {bn > 0,n > 1} are suitablesequencesofcenteringelementsinXandnormingconstants,respectively. Inthecaseofindependentrandomelements,separatenecessaryconditionsare alsoprovidedforastronglawoflargenumbers. Thenecessityresultextendsareal lineresultofMartikainentoaBanachspacesetting.Thesufficiencyresultsinthecase ofindependentsummandsarenewevenwhenXisthereallineandaredividedinto twocategories. ThefirstassumesthatXisofRademachertypep(1<p<2). The resultisgeneralenoughtoincludeasspecialcasesastronglawofAdler,Rosalsky, andTaylorforsumsofindependentandidenticallydistributedrandomelementsand astronglawofHeydeforsumsofindependent(real-valued)randomvariables. The secondimposesnoconditionsontheunderlyingBanachspace; instead,itassumes IV thatthesequenceofrandomelementsiscompactlyuniformlyintegrable. Theresult includesasspecialcasesastronglawofAdler,Rosalsky,andTaylorforcompactly uniformlyintegrablesequencesandastronglawofTaylorandWeiforuniformlytight sequences. Strong laws are also provided where no conditions are imposedon thejoint distributionsoftherandomelementsorontheunderlyingBanachspace,andthese resultsarenewevenwhentheBanachspaceistherealline. Illustrativeexamplesareprovidedwhichcomparetheresultsorwhichshowhow theresultsimproveuponoraredifferentfromotherresultsintheliterature.Examples arealsoprovidedwhichshowthattheresultsaresharp. v > CHAPTER 1 INTRODUCTION Thehistoryand literatureofinvestigationon laws oflarge numbers arevast andrich,asthisconceptiscrucialinprobabilityandstatisticaltheoryandintheir application. Thereisnothingmorefundamentaltotheveryfoundationofstatistical sciencethanthelawsoflargenumbers. Itisthelawsoflargenumberswhichelucidate thenotionthatprobabilityisalimitingrelativefrequencyandhencethelawsoflarge numbersprovidejustificationforKolmogorov’s(1933)axiomatictheoryofprobability beingaphysicallyrealisticsubject. Indeed,thelawsoflargenumbersprovidearig- orousformulationandjustificationforthenotionthat“thesamplemeanapproaches thepopulationmeanasthesamplesizeapproachesinfinity”(i.e.,thesamplemeanis aconsistentestimatorofthepopulationmean). Itistheareaofconsistencywherein thelawsoflargenumbershavemanyapplications. Thefirsttheoremonthelawoflargenumbers,duetoBernoulliinthelate1600’s, wastheweaklawoflargenumbers (WLLN)forBernoullitrialswhichstatesthatif Snisthenumberofsuccessesobservedinnindependentidenticaltrialswithsuccess probabilitypineachtrial, then Sn/n —»pinprobabilityasn — oo. Bernoulli’s resultwastoutedbyKolmogorovin1986asthebeginningofprobabilityproper(see Bingham(1989)). AfterLebesgue’sworkonmeasuretheoryintheearly1900’s,the (first) stronglawoflargenumbers (SLLN) couldbeformulated. Thefirstofsuch SLLNsiscreditedto Borel (1909) and isthe extension ofBernoulli’sresultfrom convergence in probabilitytoconvergencewithprobabilityone (oralmostcertain (a.c.) convergence). Itisinterestingtoobservethattherewasoveratwohundred 1 2 yeargapbetweenthisSLLNanditsearlierWLLNcounterpart. Cantelli(1917) is creditedwiththefirstSLLNregardingthea.c.convergenceofthesamplemeanto thepopulationmean(seeSeneta(1992)). Thelawsoflargenumbersprovidetheconsistencyofmanyestimatorsincluding numerouscommonstatistics (suchas, ofcourse, thesamplemean), aswellasfor estimatesfoundbyMonteCarlosimulation.Manyoftheseconceptsandapplications canbeextended. InterestingapplicationsofSLLNsalsooccurinphysicsandcom- puterscience. Thefieldofergodictheory,whichliesattheinterfaceofprobability theoryandstatisticalphysics,hasasitsfoundationtheSLLNtyperesultprovidedby theBirkoff-Khintchine-vonNeumannpointwiseergodictheorem(see,e.g., Breiman (1968,Chapter6)orStout(1974,Section3.5)). Thisresultgivesconditionsforan “ensembleaverage” tobeestimatedbya “timeaverage.” ASLLNwasderivedby Wehr(1997)withapplicationstorandomresistornetworksandthedurabilityofcom- positefibers. OtherapplicationsoftheSLLNtoresistancecanbefoundinEssohand Bellissard(1989). Anotherinterestingand“non-statistical”applicationoccursinthe fieldofnumbertheoryintheinvestigationofnormalnumbersx€ [0,1] (seeRevesz (1968,pp.151-157)). The primaryobjectiveofthecurrentwork isto investigate conditions under which the SLLN for independent Banach space valued random elements obtains, althoughsomeresultswillbepresentedforwhichtheassumptionofindependenceis notneeded. Beforediscussionofthisobjectivesomenotationanddefinitionsmust beintroduced. LetA"bealinearspaceoverM;thatis,A”isavectorspaceoverM. Let||•||: X-*[0,oo)beafunctionsatisfyingthefollowingthreeproperties: (i)Forv6X,||v||=0ifandonlyifv—0. 3 (ii)||av||=|a||M|forallvGAandaGM. (Hi)||«i+W2II<IKII+11^211forallvuv2GA. Thefunction ||•||iscalledanormonA,andXisthensaidtobearealnormed linearspace(withnorm|| ||). Asequence{vn,n>1}inAissaidtoconvergetovGXiflim^oo||un—v||=0. Arealnormedlinearspaceissaidtobe complete ifeveryCauchysequencein X convergestoamemberofX. (ACauchysequenceinXis, ofcourse,asequence {vn,n>1}inXsuchthat mnl——i>>m0000|K-i>m||=0.) ArealnormedlinearspaceXwhichiscompleteissaidtobearealBanachspace. A realBanachspaceissaidtobeseparableifitcontainsacountabledensesubset. Let(f2,P,P)beaprobabilityspace,letAbearealseparableBanachspacewith norm ||•||,andletXbeequippedwithitsBorelcr-algebraB; thatis,Bisthea- algebrageneratedbytheclassofopensubsetsofXdeterminedby viathemetric 11 11 d(vi,v2) = |K—v2\\,Vi,v2 G X. A randomelement AinAisanJF-measurable transformationfrom12tothemeasurablespace(A,B). Theexpectedvalueormean ofA,denotedEA,isdefinedtobethePettisintegralprovideditexists;thatis,Ahas expectedvalueEVinAifL(EV)=E(L(A))foreveryLinX*whereA*denotes the(dual) spaceofallcontinuouslinearfunctionalsonA. Werecallthatalinear functionalisafunctionL:A-4EsatisfyingL(av+bw) =aL(v)+bL(w)forall v,wGAandalla,6GM. Ofcourse,alinearfunctionalLiscontinuousifwhenever {vn, n>1}isasequenceinAwithvn-»vGAwehaveL(v„)-»L(v). Asufficient conditionforEVtoexististhat£||A|| < 00 (see,e.g., Taylor(1978, p.40)). A completecharacterizationofwhenthePettisintegralexistswasprovidedbyBrooks ) 4 (1969). SeeHilleand Phillips (1957, pp. 76-85) forfurtherdiscussionanddetails regardingthepropertiesofthePettisintegral. An exampleillustratingexpectationin Banach spacesfollows: Let 1 < p < ooandX =CP(M.)where,asusual,thisdenotestheclassofLebesguemeasurable functions/: R —>• Rsuch that fR|/(x)|pdx < oo where thenorm isdefinedby ||/|| = Ifp\f(x)\pdx) . Thisclass isaBanach spaceaccordingtothefamous Riesz-Fischertheorem(see,forexample,Royden(1988,p. 125)). ForfixedfoEX andintegrablerandomvariablesXandY,definetherandomelementV=A”/o+Y. WeclaimthatEV = E(X)fo+E(Y). Toverifythis,notethatforanyL E X*, wehaveL(E(X)f0+E(Y))=E(X)L(f0)+E(Y)L(1)=E(XL(f0))+E(YL(1))= E(XL(f0)+YL{1))=E(L{Xf0+Y)) =E{L{V))andthusthecandidateEV= E(X)fo+E(Y)satisfiesthedefiningpropertyL(EV)=E(L(V)).Weremarkthatthe dualspaceX*canbecompletelycharacterizedforthisexample. ForeverygE£g(M) whereq—^(1<q<oo),thefunctionalLdefinedby L{f)=J[rf{x)g(x)dx (/€ Cp) (1.1) isinX* (see,e.g.,Royden(1988,p. 131)). Conversely,thefamousRieszRepresen- tationTheorem(see,e.g.,Royden(1988,p.132))assertsthateveryLEX*isofthe form(1.1)forsomefunctiongE£,(M)whereq= (1<q<oo). Thefunctiong isuniqueuptosetsofLebesguemeasure0. Let n > 1} beasymmetric Bernoullisequence; that is, {F„, n > 1} is asequenceofindependent andidenticallydistributed (i.i.d.) randomvariables withP{Y{ =1}=P{YX = -1} = 1/2. LetX°° =XxXxXx •• anddefine C(X) ={(vi,v2,... E X°° :Y^=iYnvnconvergesinprobability}.Let 1 <p< 2. ThenXissaidtobeofRademachertypepifthereexistsaconstant0<C<oo 1 5 suchthat OO P E IKIIPfora11(«i,«*,-••)€ C(X). n=l n-l Itshouldbepointedoutthattheconditionthattheseries Y„vnconverges inprobabilityisequivalenttotheconditionthattheseries Ynvnconvergesa.c. Indeed, ItoandNisio (1968) provedthataseriesofindependent randomelements convergesinprobabilityifandonlyifitconvergesa.c.therebyextendingthecele- bratedtheoremofLevy(see,e.g.,ChowandTeicher(1997,p.72))fromtherealline toBanachspaces. Hoffmann-JprgensenandPisier(1976)provedfor1<p<2thatarealseparable BanachspaceisofRademachertypepifandonlyifthereexistsaconstant0<C<oo suchthat E (1-2) «=i i- foreveryfinitecollection{Pi,-••,Vn}ofindependentrandomelementswithEV{= 0, 1<f<n. OthercharacterizationsofaBanachspacebeingofRademachertype pareprovidedbyWoyczyriski(1978). IfarealseparableBanachspaceisofRademachertypepforsome1 <p<2, thenitisofRademachertypeqforall1<q<p.EveryrealseparableBanachspaceis ofRademachertype(atleast)1whilethe£p-spacesand^-spacesareofRademacher typemin{2,p} forp > 1. (SeeWoyczynski (1978, pp. 343-353) fordetails and a thoroughdiscussion.) EveryrealseparableHilbertspaceandrealseparablefinite- dimensionalBanachspaceisofRademachertype2(seePisier(1986)). Inparticular, thereallineIRisofRademachertype2.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.