In Scientia Magna, Vol.1, No.1, 3 p. ONTHESMARANDACHEFUNCTIONANDSQUARE COMPLEMENTS ∗ ZhangWenpeng ResearchCenterforBasicScience,Xi’anJiaotongUniversity,Xi’an,Shaanxi,P.R.China [email protected] XuZhefeng DepartmentofMathematics,NorthwestUniversity,Xi’an,P.R.China [email protected] Abstract Themainpurposeofthispaperisusingtheelementarymethodtostudythemean valuepropertiesoftheSmarandachefunction,andgiveaninterestingasymptotic formula. Keywords: Smarandachefunction;Squarecomplements;Asymtoticformula. §1. Introduction Let n be an positive integer, if a(n) is the smallest integer such that na(n) isaperfectsquarenumber,thenwecalla(n)asthesquarecomplementsofn. ThefamousSmarandachefunctionS(n)isdefinedasfollowing: S(n) = min{m : m ∈ N,n|m!}. In problem 27 of [1], Professor F. Smarandache let us to study the properties of the square complements. It seems no one know the relation between this sequence and the Smaradache function before. In this paper, we shall study the mean value properties of the Smarandache function acting on the square complements, and give an interesting asymptotic formula for it. That is, we shallprovethefollowingconclusion: ∗ThisworkissupportedbytheN.S.F.(10271093,60472068)andtheP.N.S.F.ofP.R.China. 2 SCIENTIAMAGNAVOL.1,NO.1 Theorem. Foranyrealnumberx ≥ 3,wehavetheasymptoticformula (cid:195) (cid:33) (cid:88) π2x2 x2 S(a(n)) = +O . 12lnx ln2x n≤x §2. Proof of the theorem To complete the proof of the theorem, we need some simple Lemmas. For convenience,wedenotethegreatestprimedivisorofnbyp(n). √ Lemma1. Ifnisasquarefreenumberorp(n) > n,thenS(n) = p(n). Proof. (i)nisasquarefreenumber. Letn = p p ···p p(n),then 1 2 r p |p(n)!, i = 1,2,···,r. i Son|p(n)!,butp(n)†(p(n)−1)!,son†(p(n)−1)!,thatis,S(n) = p(n); √ (ii)p(n) > n. Letn = pα1pα2···pαrp(n),sowehave 1 2 r √ pα1pα2···pαr < n 1 2 r then pαi|p(n)!, i = 1,2,···,r. i Son|p(n)!,butp(n)†(p(n)−1)!,soS(n) = p(n). ThisprovesLemma1. Lemma2. Letpbeaprime,thenwehavetheasymptoticformula (cid:195) (cid:33) (cid:88) x2 x2 p = +O . √ 2lnx ln2x x≤p≤x Proof. Letπ(x)denotesthenumberoftheprimesuptox. Notingthat (cid:181) (cid:182) x x π(x) = +O , lnx ln2x fromtheAbel’sidentity[2],wehave (cid:90) (cid:88) √ √ x p = π(x)x−π( x) x− π(t)dt √ √ x x≤p≤x (cid:195) (cid:33) x2 1 x2 x2 = − +O lnx 2lnx ln2x (cid:195) (cid:33) x2 x2 = +O . 2lnx ln2x ThisprovesLemma2. Nowweprovethetheorem. Firstwehave (cid:88) (cid:88) S(a(n)) = S(n)|µ(n)| n≤x m2n≤x (cid:88) (cid:88) = S(n)|µ(n)|. (1) √ m≤ xn≤ x m2 OntheSmarandachefunctionandsquarecomplements1 3 Totheinnersum,usingtheabovelemmasweget (cid:88) S(n)|µ(n)| n≤ x (cid:88)m2 (cid:179) (cid:180) 3 = p|µ(n)|+O x2 np≤ x √m2 p≥ np (cid:88) (cid:179) (cid:180) 3 = p|µ(n)|+O x2 np≤ x √m2 p≥ x (cid:88)m2 (cid:88) (cid:179) (cid:180) 3 = |µ(n)| p+O x2 √ √ n≤ x x ≤p≤ x m2 m2 nm2 (cid:195) (cid:33) (cid:88) |µ(n)|x2 (cid:88) |µ(n)|x2 x2 = + +O 2n2m4ln x √ 2n2m4ln x m4ln2x n≤ln2x nm2 ln2x<n≤ x nm2 (cid:195) (cid:33) m2 ζ(2)x2 x2 = +O . (2) 2ζ(4)m4lnx m4ln2x Combining(1)and(2),wehave (cid:88) ζ(2)x2 (cid:88) 1 x2 (cid:88) 1 S(a(n)) = +O 2ζ(4)lnx √ m4 ln2x √ m4 n≤x m≤ x m≤ x (cid:195) (cid:33) ζ(2)x2 x2 = +O . 2lnx ln2x Notingthatζ(2) = π2,sowehave 6 (cid:195) (cid:33) (cid:88) π2x2 x2 S(a(n)) = +O . 12lnx ln2x n≤x ThiscompletestheproofofTheorem. Reference [1]F.Smaradache,OnlyProblems,NotSolutions,XiquanPublishingHouse, Chicago,1993. [2] Tom M. Apostol, Introduction to Analytic Number Theory, Springer- Verlag,NewYork,1976,pp. 77. [3] Pan Chengdong and Pan Chengbiao, Element of the Analytic Number Theory,SciencePress,Beijing,1991.