ebook img

On the similarity and apparent cycles of isotopic variations in East Antarctic snow-pits PDF

29 Pages·2017·3.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the similarity and apparent cycles of isotopic variations in East Antarctic snow-pits

TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) On the similarity and apparent cycles of isotopic variations in East Antarctic snow-pits ThomasLaepple1,ThomasMünch1,2,MathieuCasado3,MariaHoerhold4,AmaelleLandais3,and SeppKipfstuhl4 1AlfredWegenerInstituteHelmholtzCentreforPolarandMarineResearch,TelegrafenbergA43,14473Potsdam,Germany 2InstituteofPhysicsandAstronomy,UniversityofPotsdam,Karl-Liebknecht-Str.24/25,14476Potsdam,Germany 3LaboratoiredesSciencesduClimatetdel’Environnement-IPSL,UMR8212,CEA-CNRS-UVSQ,GifsurYvette,France 4AlfredWegenerInstituteHelmholtzCentreforPolarandMarineResearch,AmAltenHafen26,27568Bremerhaven, Germany Correspondenceto:ThomasLaepple([email protected]) Abstract. Stable water isotopes in polar ice provide a wealth of information about past climate evolution. Snow pit studies allowustorelateobservedweatherandclimateconditionstothemeasuredisotopevariationsinthesnow.Theythereforeoffer thepossibilitytotestourunderstandingofhowisotopesignalsareformedandstoredinfirnandice.Asstablewaterisotopes inthesnowfallarestronglycorrelatedtoairtemperature,isotopesinthenearsurfacesnowaresupposedtodepicttheseasonal 5 cycleatagivensite.Accordingly,variationbetweensitesinaccumulationrateisexpectedtobematchedbyvariationinthe numberofseasonalcycles.However,snowpitstudiesfromdifferentaccumulationconditionsinEastAntarcticareportedsimilar isotopicvariabilityandcomparableapparentcyclesintheδ18OandδDprofileswithtypicalwavelengthsof 20cm.These ∼ observations are unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80mmw.e.yr 1 − ( 5–25cmofsnowperyear).Variousmechanismhavebeenproposedtoexplaintheisotopicvariationsindividuallyateach ∼ 10 site; however, none of these is consistent with the similarity of the different profiles independent of the local accumulation conditions. Here,wesystematicallyanalyzethepropertiesandoriginsofisotopicvariationsinhigh-resolutionfirnprofilesfromeight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of 20cm by counting ∼ theisotopicmaxima.Spectralanalysisfurthershowsastrongsimilaritybetweenthesitesbutindicatesnodominantperiodic 15 features.Finally,theapparentcyclelengthincreaseswithdepthformostEastAntarcticsites,whichisinconsistentwithburial andcompressionofaregularseasonalcycle.Weshowthattheseresultscanbeexplainedbyisotopicdiffusionactingonanoise dominated isotope signal. The firn diffusion length is rather stable across the East Antarctic and thus leads to similarpower spectraldensitiesoftheisotopicvariations.Thisinturnimpliesasimilardistancebetweenisotopicmaximainthefirnprofiles. Ourresultsexplainalargesetofobservationsdiscussedintheliterature,providingasimpleexplanationfortheinterpretation 20 ofapparentcyclesinshallowisotoperecords,withoutinvokingcomplexmechanisms.Finally,theresultsunderlineprevious suggestionsthatisotopicsignalsinsingleicecoresfromlow-accumulationregionshaveasmallsignal-to-noiseratioandthus likelydonotallowthereconstructionofinterannualtodecadalclimatevariations. 1 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) 1 Introduction Stablewaterisotoperecordsfromicecorescanbeusedtoinferpastlocaltemperaturevariations(Dansgaard,1964)andassuch areanimportantclimateproxyatinterannualtoglacial-interglacialtimescales(Jouzeletal.,2007;Johnsenetal.,2001).The depthandaccumulationrateofanicecoreaffectsthetemporalscaleandresolutionoftheclimatereconstructionthatcanbe 5 obtained.IncentralEastAntarctica,lowaccumulationratesanddeepicecoresallowclimatereconstructionstobemadethat coverthelast800000years(EPICAcommunitymembers,2004),whilethehigheraccumulationratesincoastalareasallow forhigherresolutionreconstructionsinwhichtheseasonalclimatesignalcanberecoveredfromtheiceisotopiccomposition (Morgan,1985;Masson-Delmotteetal.,2003;vanOmmenandMorgan,1997;Kütteletal.,2012). High-resolutionisotopedata,thoughttocorrespondtosub-seasonalvariationsarenowroutinelymeasuredatdeepicecore 10 sites(Gkinisetal.,2011);however,itisuncleartowhichextentisotopicsignalsontimescalesshorterthanmultidecadalcan beinterpretedasindicatingclimate(Ekaykinetal.,2002;Baronietal.,2011;Poletal.,2014;Münchetal.,2016),especially forthelow-accumulationregionsthataretypicalontheEastAntarcticPlateau(<100mmw.e.yr 1).Asthelinkiscomplex − betweenisotopiccompositionandtheclimaticconditionscreatingthem(Jouzeletal.,1997),numerousstudieshavesampled the upper meters of firn in order to compare the isotopic variations with instrumental climate data (Masson-Delmotte et al., 15 2008;Fernandoyetal.,2010;Steen-Larsenetal.,2014).Manyofthesehavereportedoscillationsinsnowpitrecordsfromthe EastAntarcticPlateau,includingatVostok,DomeC(EDC),DomeA,DomeF(DF),SouthPole(SP)andKohnenStationat thetheEPICADronningMaudLanddrillingsite(EDML)(Jouzeletal.,1983;Petitetal.,1982;Ekaykinetal.,2002;Hoshina et al., 2014, 2016; Münch et al., 2016). Interestingly, despite the very different annual snow layer thicknesses at these sites, whichrangefrom6cmto21cm,theirisotopeprofilesappeartohaveverysimilarpeak-to-peakdistances(Fig1)andarecent 20 systematic counting effort of isotopic maxima in firn profiles (Casado et al., 2016) suggested a characteristic wavelength of 15–25cmacrossallanalysedEast-Antarcticsites. ForsitessuchasEDMLandSouthPole,theirapparentcyclelengthsmatchwellwiththeirannualsnowlayerthicknesses andconsequentlytheircycleshavebeenexplainedasreflectingseasonalclimatevariation(Oerteretal.,2004;Münchetal., 2016;Jouzeletal.,1983;Whitlowetal.,1992).However,thisexplanationisnotconsistentwiththesamecyclelengthbeing 25 observed at lower accumulation sites, where the annual snow layer thickness is often less than 10 cm (Petit et al., 1982). Instead, a range of alternative explanations have been proposed for the oscillations at individual sites. At Vostok, Ekaykin etal.(2002)attributedtheoscillationstohorizontallymovingdunes(Frezzottietal.,2002)leadingtoisotopiccyclesduring burial.However,similarcyclesarefoundatcoresiteswithdifferentdunefeatures,windspeedsandaccumulationrates,and thus a varying speed of dune movement and burial. At EDC, Petit et al. (1982) explained the mismatch between seasonal 30 andisotopiccyclesasbeingduetomissingyearsresultingfromthecombinedeffectsofsuccessiveprecipitationfreemonths, erosionassociatedwithblowingsnow,andfirndiffusion.Inamulti-sitestudy,Hoshinaetal.(2014,2016)suggestedthatthe multi-yearoscillationscouldbeformedbythecombinationofvariableaccumulationandpost-depositionalmodifications,such asventilation.Finally,thecoarsesamplingresolutioninsomestudies(5cmorlonger)wouldnotresolvetheseasonalcycle, butsimilarcharacteristicswerefoundforprofilessampledatarangeofresolutions(Ekaykinetal.,2002).Thus,noneofthe 2 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) 0 EDML profile T1P2 ‰) 1 ( 5 . m o n 0 a O 5 8 - 1 δ 0 1 - 0 EDC DCoxy80 1 ) ‰ ( 5 depth (cm) . m o 0 n a O 5 - 8 1 δ 0 1 - 0 0.50 1.00 1.50 2.00 snow depth (m) Figure1.ExampleisotopeprofilesfromEDMLandEDC.Bothprofilesarevisuallysimilardespitethedifferingtimeperiodscovered, 10 ∼ yrforEDMLand 25yrforEDC,andannualsnowlayerthicknesses, 21cmforEDMLand 8cmforEDC.Alsoshownisanexample ∼ ∼ ∼ oftheautomaticestimationofisotopiccyclelength.Redandblackdotsshowtheidentifiedmaximaandminima.Theshorthorizontallines underneaththesedotsindicatethe 6cmregionamaximum(minimum)mustbeabove(below)tobeidentifiedasanextremum.Thelonger ± blackandredhorizontallinesatthebottomofthefigureindicatetheidentifieddistancesbetweensubsequentmaximaorminima. existing interpretations explain why the apparent observed cycles are so similar across sites and largely independent of the accumulationrateandrelatedclimaticconditions. HerewecombineastatisticalanalysisofisotopeprofilesfromeightEastAntarcticPlateausiteswiththeoreticalconsidera- tionsandnumericalsimulationsofthefirnsignal.Wesuggestthatthepresenceofapparentcyclesinthefirn,andtheirlargely 3 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) Annual mean surface air temperature (°C) 0o -5 30o W 30oE -10 -20-15 6o0W EDMLMDPK 60Eo DF -25 o90W South Pole 90Eo -30 Vostok S2 EDC 80oS -35 -40 120Wo 70oS 12o0E -45 -50 150oW 150o E 180oW Figure2.Locationofthesamplingsitesusedinthisstudy(solidsquares).The2500ma.s.l.,elevationcontourismarkedbyagreyline, coloursindicatetheannualmeansurfaceairtemperature(NicolasandBromwich,2014). invariant length, can be explained by a combination of deposition-related noise in the surface isotope signal and isotopic diffusion(Johnsenetal.,2000),whichisratherconstantacrosstheEastAntarcticPlateau. 2 DataandMethods We first introduce the dataset and the method used to compare the power spectral density of observed isotope profiles with 5 those from a null model of diffused noise. We then provide an analytic solution for the expected distance between isotopic maxima (’cycle length’) and a method to estimate this cycle length from the observed firn profiles. Finally we provide a minimalnumericalforwardmodelfortheisotopicvariations. 2.1 Data WeanalysedatafromeightsitesontheEastAntarcticPlateau,forwhichverticalisotopeprofilesofδ18OorδDareavailable 10 with lengths of at least 2m and minimum resolutions of 3.5cm per sample (Fig. 2 and Table 1). We focus our analysis on theupper4moffirnwithinwhichcycleshavebeendescribedandinterpreted.FortheSouthPoleandEDML,acombination ofsnowpitandshallowfirncoredataallowsustoextendtheanalysisdowntoasnowdepthof18m.Allrecordshavebeen published (Table 1), except those for EDML for which we use 22 3.4m deep profiles sampled from snow trenches (T15) as describedandpartlyanalysedinMünchetal.(2017),togetherwithnewisotopedatafromthefirncoresB41andB50.These 4 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) two cores were drilled close to Kohnen Station in 2012/13, approximately 1 km apart (Alfred-Wegener-Institut Helmholtz- ZentrumfürPolar-undMeeresforschung,2016).Isotoperatioswereanalysedataresolutionof3cm,usingalaserinstrument attheAlfredWegenerInstitute(AWI)inBremerhavenandfollowingtheprotocoldescribedinMasson-Delmotteetal.(2015). 2.2 Spectralanalysis 5 Spectra are estimated using Thomson’s multitaper method with three windows (Percival and Walden, 1993). The depth pro- files are linearly detrended before analysis. For profiles with non-equidistant sampling, the data is interpolated to the lowest resolutionafterlow-passfilteringtoavoidaliasingeffectsasdescribedinLaeppleandHuybers(2013).Inthecaseofmultiple profilesatasinglesiteweshowthemeanoftheindividualspectra. Significancetestingofthepowerspectraldensityisperformedagainstanullhypothesisofnoiseaffectedbyfirndiffusion. 10 Morespecifically,weassumethesumofwhite(temporallyindependent)noisesubjecttoisotopicdiffusionwithadepthvarying diffusionlengthandadditivewhitemeasurementnoise.Themodelingoftheisotopicdiffusionandthesitespecificparameters aredescribedlaterindetail. Thereisnosimpleclosedformexpressionforthepowerspectrumofadiffusedsignalundervaryingdiffusionlengths.We thusresorttoaMonteCarloprocedurebysimulatingdiffusedwhitenoiseprofilesona2mmresolution,resamplingthemto 15 the actual resolution of the observed profiles to include the effect of discrete sampling, adding measurement noise and then estimating the spectra on these surrogate datasets using the same method as for the observed profiles. The variance of the diffusedwhitenoisesignalandthemeasurementnoisearefreeparametersandarechosentominimizetherootmeansquare deviationoftheobservedandthenull-hypothesisspectrum. Finally,wescalethenull-hypothesisspectrumbythe95%percentquantilesofaχ2distributiontoobtaincriticalsignificance 20 levels.Thesemarktherangeofspectralpowerexpectedifthetime-serieswerediffusednoise.Thislevelhastobeovercomefor apeaktobelocally(thusatagivenfrequency)significant.Thedegreesoffreedom(DOF)oftheχ2distributionaretheproduct oftheDOFfromthespectralestimatorandtheeffectivenumberofindependentprofiles.Weassumeindependencebetween profilesforallsitesexceptfortheEDMLtrenchdata.Forthisdatasetconsistingof22nearbyprofilesthatweresampledina singleseason,weassumefiveeffectivedegreesoffreedom. 25 2.3 Rice’sformulafortheexpectednumberoflocalextrema The’wiggliness’oftimeseries,assumingastationaryrandomprocess,isdeterminedbythefirstmomentsofthespectralden- sity.ThisrelationshipknownasRice’sformula(Rice,1944,1945)wasshowntohaveimportantimplicationsforinterpreting paleoclimaterecords(Wunsch,2006)andcanbeusedtoderivetheexpectednumberµoflocalextremes(maximaandminima) perunittime.Specifically,forastationaryGaussianprocess(e.g.Lindgren,2012),µis 1 Ω 4 30 µmax=µmin= 2π Ω , (1) r 2 whereΩ andΩ denotethesecondandthefourthmomentofthespectraldensityoftheGaussianprocess. 2 4 5 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) onding arenot 18δOo corresp ntsthat vertedt h e n c m o orea sure wasc f a deandelevationabovesealevel; eprofileshavesinglemissingme δDδDearregressionto.ForSP, Reference Ekaykinetal.(2002) Ekaykinetal.(2002) Ekaykinetal.(2002) Ekaykinetal.(2002) Touzeauetal.(2016) Casadoetal.(2016) Casadoetal.(2016) Touzeauetal.(2016) Hoshinaetal.(2014) Hoshinaetal.(2014) Touzeauetal.(2016) Hoshinaetal.(2014) Münchetal.(2017)+thisstudy thisstudy thisstudy Jouzeletal.(1983) Jouzeletal.(1983) Whitlowetal.(1992) u m n udy.Foreachsitewelistlatitude,longit dproxyandoriginaldatareference.So OsamplesinDCoxy80werefilledbyli DepthResolutionProxy mcm 182.52δOδD, 183.12δOδD, 183.12δOδD, 1832.03.5δOδD–, 1833δOδD, 18212δOδD–,† 182.53.33.6δOδD–, 1823δOδD, 1842δOδD, 1822δOδD, 1832.93.0δOδD–, 1842δOδD, 183.42.23.0δOδDs)–, ?18122δOδD, ?18122δOδD, 18102δOδD,‡ ??17.91.92.5δD– 1860.91.4δO– 9.6dataavailableforfirstm. mdepth. SummaryofthedrillingandsnowpitsitesusedinthisstTable1. recorditsname,theanalyseddepth,samplingresolution,measure 18δincludedintheprovidedsamplingresolution.The35missing 18δOusingaslopeof8togetacompletedataset SiteLat.Lon.ElevationName °N°Ema.s.l. 78.5106.83488VostokVK14−ST61 ST73 ST30 VK56 75.1123.33233EDCDCoxy5−DCoxy80 Vanish12 77.339.73810DFDF− 76.831.83733DKDK− 76.3120.03229S2S2− 74.043.03656MPMP− 75.00.12892EDMLT15(22profile−B41 B50 90.00.02835SPSP78P−SP78C SP92 ???3Topmremovedfromanalysisduetobadcorequality.No 04.9Incomplete.Missingvalueslinearlyinterpolated.Only–†‡ 6 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) AdiffusedwhitenoiseprocesshasthepowerspectraldensityP exp( ω2σ2)(vanderWeletal.,2015a),whereP isthe 0 0 − totalpoweroftheundiffusedwhitenoise,σthediffusionlengthandωangularfrequency.Thesecondandfourthmomentsare Ω = √πσ 3andΩ = 3√πσ 5.Thus,fromEq.(1)theaveragedifferencebetweentwomaximais 2 4 − 4 8 − 2 ∆z =1/µ =2π σ, (2) max max 3 r 5 hencealinearfunctionofthediffusionlengthσ–aremarkablysimplerelationship. 2.4 Automaticestimationoftheisotopiccyclelengthandamplitude To investigate the isotopic variations in a similar way as visual cycle counting (Casado et al., 2016), we use an automatic proceduretoidentifytheminimaandmaximainisotopeprofiles.Forthesakeofsimplicitywecallthetypicaldistancebetween subsequentmaxima(orminima)cyclelength,notingthatthisdoesnotimplyaperiodicitythatwouldappearasapeakinthe 10 powerspectrum. Toimproverobustnessagainstmeasurementnoise,wedefinealocalmaximum(orminimum)asthatvalueofaprofilewhich isabove(orbelow)allothervalueswithinawindowof 6cmcenteredatthegivenpoint.Thisnaturallylimitstheminimum ± possiblecyclelengthto6cm;however,weexpectthatmostcyclesarelongerthanthisandtheresultsarethusinsensitivetothis choice.Sinceweapplythesamemethodtotheobservationsaswellastothesimulations,theirintercomparisonisunbiased. 15 Wedeterminealllocalextremesforeachobservedorsimulatedprofileinthedescribedmannerandrecordthedistancesbe- tweensubsequentextremes(i.e.,thedistancesbetweentwoneighboringmaximaaswellasbetweentwoneighboringminima) asafunctionofdepth(midpointofdepthbetweenthetwoextremes,Fig.1).Wesorttherecordeddistances(cyclelengths)into depthrangebins,e.g.1.5–2mdepth,formingadistributionofdistancesforeachspecificbin.Forthesimulations,andalsofor severalofourstudysites,multipleprofilesareavailable,allowingabetterestimateofthecycle-lengthasafunctionofdepthto 20 bemadebybinningthedistancesfrommultipleprofilestogether.Thebinwidthischosenasatrade-offbetweenmaximising theresolutionandminimizingthevarianceoftheestimation.Specifically,wechoose1mforsiteswithoneortwoprofiles(S2, DF,SK,MP,SP,EDMLbelow3.4msnowdepth)and0.5mforsiteswithmorethantwoprofiles(EDC,VostokandEDML above3.4msnowdepth).Fortheresultingdistributions,wereportthemeanandtwostandarderrors(2 se).Toestimatethe × standarderror,weassumeindependenceoftheprofilesexceptforEDML,whereweassumefiveeffectivedegreesoffreedom 25 asinthespectralanalysis. 2.5 Minimalforwardmodelforisotopictimeseries Asatooltounderstandtheobservations,weconstructthefollowingminimalisticmodeltosimulateartificialisotopeprofiles intheuppermetersofAntarcticfirn.Weapproximatethelocalclimateconditionsbythelocalnear-surfaceairtemperatures, T (t),andassumethattheseshapetheisotopesignaloffreshlyformedsnow,δ18O (t).Subsequently,thesnowistrans- air snow 30 ported to the surface by precipitation where it is redistributed and mixed by wind, giving rise to the surface isotope signal δ18O (t). Finally, the surface signal is buried in the firn column which is accompanied by diffusional smoothing of the surface signalanddensificationofthelayers(Münchetal.,2017).Analysingasnowpitorfirncoreduringthisprocessthenrepresents 7 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) Vostok 0-4m mean S2 0 EDC 8 4 DF DK gth (cm) 30 MESDPPML 6 O (cm) en 18δ ycle l ngth c 0 4 e Expected 2 Diffusion l 10 2 0 0 2 4 6 8 10 Snow depth (m) Figure3.Estimateddiffusionlengthsforthedifferentsites.Thediffusionlengthsforδ18O(rightscale)areshownagainstdepth.Alsoshown aretheimpliedcyclelengths(leftscale)assumingdiffusedwhitenoise.Formostsites,themeancyclelengthsinthetop4m(triangles)are around20cm. asnapshotofthefirnisotopesignalδ18O (z).Wedescribetheprocesshereforδ18Obuttheanalogousapproachalsoapplies firn toδD.Wewillnowdiscussthesestepsindetail. Onmonthlytomulti-decadaltimescales,thelocaltemperaturesinAntarcticaaredominatedbytheseasonalcycle.Atour studied sites, the seasonal cycle explains more than 90% of the variance in the temperature evolution of the last decades 5 (ERA-interimreanalysis,Deeetal.(2011))whenevaluatedonamonthlyresolutionandconsideringthefirsttwoharmonics oftheseasonalcycle(Table2).Wethereforeapproximatethelocalclimateconditionsbyparameterizingtheseasonalcyclein temperatureas T (t)=T +A cos(ωt+φ )+A cos(2ωt+φ )+(cid:15) . (3) air 0 1 1 2 2 T Here, ω is angular frequency, t time, T annual mean temperature, and A , A and φ , φ denote amplitude and phase of 0 1 2 1 2 10 thefirsttwoharmonicsoftheseasonalcycleand(cid:15)T theremainingtemperaturevariability.Weestimatetheparametersfrom temperatureobservationsofnearbyautomaticweatherstations(Table2).Forourstudysites,φ andφ aresmall(<5°)and 1 2 are for simplicity set to zero. For converting the near-surface air temperatures into oxygen isotope ratios, we use the mean Antarcticspatialslopeofβ=0.8‰°C−1(Masson-Delmotteetal.,2008), δ18O (t)=βT (t)+(cid:15) , (4) snow air δ 8 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) where(cid:15) reflectstheisotopicvariabilitynotcapturedbythelinearrelationship.Weneglecttheinterceptofthecalibrationsince δ the absolute isotope values have no influence on the results of our analyses and note that our results, except for the spectral comparison(Figure8),areindependentoftheamplitudesandthusthechoiceofthecalibration.Astrongtemporalrelationship hasbeenconfirmedbetweentheseasonalcycleoflocaltemperatureandthewaterisotopesmeasuredinprecipitationsamples 5 (Eq.4)atseveralsitesinEastAntactica(FujitaandAbe,2006;Touzeauetal.,2016)althoughtheestimatedslopesvaryfrom 0.3–1‰°C−1betweensites. Goingfromtheisotopesignalinthesnowtothesurfacesignal,thevariabilityoftheseasonalcycleisaffectedbyaliasingdue toprecipitationintermittency(Helsenetal.,2005;Simeetal.,2009;Laeppleetal.,2011;Perssonetal.,2011),byredistribution ofsnow(Fisheretal.,1985;Münchetal.,2016;Laeppleetal.,2016),andbyinterannualvariationintheaccumulationrate 10 andtheaccumulationseasonality(CuffeyandSteig,1998).Wenotethatexchangebetweenatmosphericwatervaporandthe snowmightfurtherinfluenceδ18O (Steen-Larsenetal.,2014;Touzeauetal.,2016;Casadoetal.,2016).However,even surface in this case, the variations in δ18O might still follow the temperature variations. To a first approximation, precipitation surface intermittency,snowredistributionandinterannualaccumulationvariabilitydonotaffectthetotalvarianceoftheinputsignal butrathermainlyredistributeitsenergyacrossfrequencies,similartotheeffectofaliasing(Kirchner,2005).Thus,tosimplify 15 matters,wedescribethecombinationoftheseprocessestogetherwith(cid:15)T and(cid:15)δ bytemporallyindependent(=white)noise, and set the variance of the total surface signal (seasonal cycle + noise) to the variance of the original seasonal cycle in the snow(Eq.4).Thechoiceofwhitenoiseisthesimplestoptionhereandtheresultsareactuallynotsensitivetothisassumption (AppendixA). Ourmodelfortheisotopicsurfacesignalthenis 20 δ18Osurface(t)=β (1−ξ)1/2Tair(t)+ξ1/2σTair(cid:15)(t) , (5) (cid:16) (cid:17) whereσ isthestandarddeviationoftheseasonalcycleintemperature(Eq.3),and(cid:15)(t)areindependentnormallydistributed Tair randomvariables(whitenoise)withzeromeanandstandarddeviation=1.Theparameter0 ξ 1determinesthefraction ≤ ≤ ofnoiseinthesurfacesignal:ξ=1representingthecaseofpurenoise(completelyreshuffledseasonalcycle)andξ=0the caseofafullypreservedseasonalcycle.Themodelalsoincludesoneimplicitparameter,theresolutionatwhichweevaluate 25 the variance of the noise (cid:15)(t). This is required as, in contrast to the seasonal cycle, white noise is not a band-limited signal. Descriptively,theparameter(cid:15)(t)representsthesmallestspatialscaleonwhichisotopicvariationsarepossible.Weassume1 cmhere,thusimplyingthecompletemixingofanyvariationsoccurringonsmallerspatialscales. Finally,theburialofthesurfacesnowtransfersthesurfacesignaltimeseriesintothedepthprofileδ18O (z).Weapprox- firn imatethisprocessassumingaconstantaccumulationrategivenbythepresent-dayobservations(Table2)astheintraseasonal 30 andinterannualvariationsinaccumulationarealreadyincludedin(cid:15)(t).Duringburial,theisotopesignalisinfluencedbyden- sification,layerthinningbyiceflowandisotopicdiffusion.Thinningofthelayersisnegligibleinthetopmetersanalysedhere and therefore neglected in our analysis. Densification is modeled using the Herron-Langway model (Herron and Langway, 1980)assumingconstantsurfacedensityandtemperatureforeachsitewhicharesettothemodernobservations(Table2).The resultsarenotsensitivetothesesimplificationssincetheoveralleffectofdensificationissmallinthetopmetersoffirn. 9 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-199 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:11September2017 c Author(s)2017.CCBY4.0License. (cid:13) Table 2. Meteorological conditions and model parameters at the study sites. Listed are the annual mean temperature (T0), amplitude of thefirsttwoharmonicsoftheseasonalcycle(A1,A2),annualmassaccumulationrate(b˙),firnsurfacedensity(ρ0),averageatmospheric pressure(P0)andfractionofvarianceinERA-interimmonthlysurfacetemperatureexplainedbytheseasonalcyclealone(Fseas).Ifborehole temperaturemeasurementsexist,weusethe10mfirntemperatureforT0 insteadofairtemperatureobservations,astheyprovideamore accurateestimateoftherelevanttemperatureforthediffusion.Ifnotemperatureobservationexists,thetemperaturefromthenearestsitewas usedbyaddingthetemperatureanomalybetweenthesitesfromreanalysisdata(Deeetal.,2011) Site T0 A1 A2 b˙ ρ0 P0 Fseas °C °C °C kgm−2yr−1 kgm−3 mbar % Vostoka 55.3 16.7 6.6 21 350 624 97 − S2b 55.1 17.4 6.3 21 350 642 97 − EDCc 51.4 17.4 6.3 27 350 642 95 − DFd 54.4 16.4 6.6 27.3 368 592 95 − DKe 53.1 16.7 6.6 35.5 368 592 94 − MPf 48.6 15.5 6.6 40.9 372 592 93 − EDMLg 44.5 13.2 4.9 72 345 677 93 − SPh 49.9 15.7 6.4 83.5 350 682 95 − aEkaykinetal.(2002). bTouzeauetal.(2016),A1,A2andP0fromEDC. cTouzeauetal.(2016). dKamedaetal.(2008). eHoshinaetal.(2014),A1,A2andP0 adaptedfromDF. fHoshinaetal.(2014),A1,A2andP0adaptedfromDF. gEPICAcommunitymembers(2006). hCaseyetal.(2014). Theeffectoffirndiffusionontheoriginalisotopesignalδ18O ismodelledastheconvolutionwithaGaussiankernel surface (Johnsen et al., 2000) which leads to an overall smoothing of the input signal. The amount of smoothing is governed by the width of the convolution kernel given by the diffusion length σ, which is sensitive to ambient temperature, pressure and the densityofthefirn(WhillansandGrootes,1985).WetreatthedependencyondensityaccordingtoGkinisetal.(2014),with 5 diffusivity after Johnsen et al. (2000). The temperature dependency of the diffusion length is highly nonlinear, with warmer temperaturesleadingtoastrongerchange.Thus,theseasonalcycleinfirntemperatureinthetopmetersincreasestheeffective diffusionlength.Toapproximatethiseffect,wefollowtheapproachofSimonsenetal.(2011).Wemodeltheseasonalcyclein firntemperatureaccordingtothegeneralheattransferequation,drivenbysurfacetemperaturesforconstantthermaldiffusivity andnegligibleheatadvection(e.g.Paterson,1994).Wethencalculatethediffusionlengthforparcelsstartingineverymonthof 10 theyearandcomputetheaveragediffusionlengthoverallparceltrajectories.Forthesakeofsimplicity,weassumeaconstant densityforthefirntemperaturemodeling,whichissettotheobservedsurfacedensities(Table2). TheresultingeffectivediffusionlengthsforourstudysitesareshowninFig.(3).Interestingly,thecombinedeffectoflower accumulationratesandcoldertemperatureslargelycompensateeachother,leadingtoaratherconstantdiffusionlengthacross theEastAntarcticPlateau. 10

Description:
However, snowpit studies from different accumulation conditions in East The firn diffusion length is rather stable across the East Antarctic and thus
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.