CERN-PH-TH/2012-023 On the Scalar Manifold of Exceptional Supergravity Sergio L. Cacciatori1,4, Bianca L. Cerchiai2,4, and AlessioMarrani3 2 1 0 2 n 1DipartimentodiScienzeedAltaTecnologia, a Universita` degliStudidell’Insubria,ViaValleggio11,22100Como,Italy J [email protected] 1 3 2DipartimentodiMatematica, ] Universita` degliStudidiMilano,ViaSaldini50,20133Milano,Italy h [email protected] t - p 3PhysicsDepartment,TheoryUnit,CERN, e CH1211,Geneva23,Switzerland h [ [email protected] 1 4INFN,SezionediMilano v ViaCeloria,16,20133Milano,Italy 7 6 6 6 . 1 0 2 Abstract 1 v: WeconstructtwoparametrizationsofthenoncompactexceptionalLiegroupG=E7(−25),basedona i fibrationwhichhasthemaximalcompactsubgroupK = E6×U(1) asafiber.ItiswellknownthatGplays X animportantroleintheN =2d=4magicexceptionalsupZe3rgravity,whereitdescribestheU-dualityof r thetheoryandwherethesymmetricspaceM= G givesthevectormultiplets’scalarmanifold. a K First,bymakinguseoftheexponentialmap,wecomputearealizationof G,thatisbasedontheE K 6 invariantd-tensor,andhenceexhibitsthemaximalpossiblemanifest[(E ×U(1))/Z ]-covariance.This 6 3 providesabasisforthecorrespondingsupergravitytheory,whichistheanalogueoftheCalabi-Vesentini coordinates. ThenwestudytheIwasawadecomposition.ItsmainfeatureisthatitisSO(8)-covariantandtherefore it highlights the role of triality. Along the way we analyze the relevant chain of maximal embeddings whichleadstoSO(8). Itisworthnoticingthatbeingbasedonthepropertiesofa“mixed”Freudenthal-Titsmagicsquare,the wholeprocedurecanbegeneralizedtoabroaderclassofgroupsoftypeE . 7 TalkgivenattheXVIIEuropeanWorkshoponStringTheory,heldattheUniversityofPadua,September5-9,2011 1 The “mixed” magic square and the 56 of the Lie algebra e 7( 25) − ExceptionalLiegroupsactassymmetriesinmanyphysicalsystems. Inparticular,noncompactformsofthe groupE enterasU-dualityofd= 3andd = 4supergravitytheories. Herewefocusonthe = 2d = 4 7 N magicexceptionalsupergravity,wheretherelevantrealformisG=E . 7( 25) As the first step we needto constructthe Lie algebrae . To th−is aim, we are goingto followthe 7( 25) techniqueoutlinedinSec. 7of[1],whichisbasedonthenon−-symmetric“mixed”magicsquare[2,3,4]: Table1:The“mixed”magicsquare R C H O R SO(3) SU(3) USp(6) F 4( 52) C SU(3) SU(3) SU(3) SU(6) E − 6( 78) H Sp(6,R) SU⊕(3,3) SO (12) E − S ∗ 7( 25) O F E E E − S 4(4) 6(2) 7( 5) 8( 24) − − TherowsandthecolumnscontainthedivisionalgebrasoftherealnumbersR,thecomplexnumbersC, thequaternionsH,theoctonionsOandtheirsplitformsH andO . S S ThentheTitsformulagivestheLiealgebra correspondingtorowAandcolumnBas[4]: L (A,B)=Der(A) Der(J (B))∔(A J (B)). (1) L ⊕ 3 ′⊗ ′3 Here, the symbol denotes direct sum of algebras, whereas ∔ stands for direct sum of vector spaces. Furthermore, Der m⊕eans the linear derivations, J (B) denotes the rank-3 Jordan algebra on B, and the 3 priming amounts to considering only traceless elements. One of the main ingredients entering in the last termistheLieproduct,whichextendsthemultiplicationtoA J (B). ItsexplicitexpressionforA=H andB=Ocanbefounde.g.in[5]. ′⊗ ′3 S FortheLiealgebraofE theTitsformula(1)yields: 7( 25) − e = (H ,O)=Der(H ) Der(J (O))∔(H J (O))=sl(2,R) f ∔(H J (O)).(2) 7(−25) L S S ⊕ 3 ′S⊗ ′3 ⊕ 4 ′S ⊗ ′3 The second step is to identify the subalgebra K generating the maximal compact subgroup K :=(E U(1))/Z of E . This can be achieved by using the Tits formula (1) once more 6( 78) 3 7( 25) tocompute−them×anifestlyf -covaria−ntexpressionfore : 4 6( 78) − e = (C,O)= (R,O)∔(i J (O))=Der(J (O))∔(i J (O))=f ∔(i J (O)),(3) 6(−78) L L ⊗ ′3 3 ⊗ ′3 4 ⊗ ′3 wherewearepickingtheonlyimaginaryuniti H whichsatisfiesi2 = 1. Thus,weobtain: S ∈ − K=ad Der(J (O))∔(i J (O)), (4) i⊕ 3 ⊗ ′3 with ad H the adjoint action of i, generating the maximal compact subgroup U(1) of the group i S SL(2,R)a∈ppearingin(2). An explicitconstructionofthematricesφ , I = 1,...,78, realizingthe e subalgebrainits irre- I 6( 78) duciblerepresentationFund = 27hasbeenperformede.g. inSec. 2.1of[6]b−ymakinguseof(3)andof theexplictexpressionoff initsirrep. Fund=26previouslycomputedin[7]. 4( 52) Finally,byputtingtogeth−eralltheseingredients,wefindthatanexplicitsymplecticrealizationoftheLie algebrae initsirreduciblerepresentationFund=56isasfollows[8]. 7( 25) Thegenera−torsofthemaximalcompactsubgroupK (antihermitianmatrices): φI −→027 027 −→027 T T −→0 0 −→0 0 27 27 e : Y = , I =1,...,78; (5) 6( 78) I − 027 −→027 −φTI −→027 T T −→0 0 −→0 0 27 27 1 √i6I27 −→027 027 −→027 −→0T i 3 −→0T 0 27 − 2 27 u(1): Y = ; (6) 79 027 −→0q27 −√i6I27 −→027 −→0T27 0 −→0T27 i 32 q Thegeneratorsofthecoset =G/K (hermitianmatrices): M 027 −→027 2iAα i√2−→eα 1 −→0T27 0 i√2−→eTα 0 Y = , α=1,...,27; (7) α+79 2 −2iAα −i√2−→eα 027 −→027 −i√2−→eTα 0 −→0T27 0 027 −→027 2Aα √2−→eα − 1 −→0T27 0 √2−→eTα 0 Y = , α=1,...,27. (8) α+106 2 −2Aα √2−→eα 027 −→027 √2−→eTα 0 −→0T27 0 HereIn isthen n identitymatrix,027 isthe27 27nullmatrix,−→0n isthezerovectorinRn, and e ,α=1,...,27,is×thecanonicalbasisofR27. × −→α ThematricesA aredefinedintermsofthed-tensorofthe27ofE . Thereisacubicform,which α 6( 78) isdefinedforanyj ,j ,j J (O)as[9,10,11]: − 1 2 3 3 ∈ 1 1 1 Det(j ,j ,j ):= Tr(j j j )+ Tr(j )Tr(j )Tr(j ) Tr(j )Tr(j j )+cyclicperm. ,(9) 1 2 3 1 2 3 1 2 3 1 2 3 3 ◦ ◦ 6 −6 ◦ (cid:16) (cid:17) where is the product in J (O). By choosing a basis j of J (O) normalized as j ,j := ◦ 3 { a}a=1,...,26 ′3 h a bi Tr(j j ) = 2δ , a completionto a basis forJ (O) can beobtainedbyaddingj = 2I . Thenthe a ◦ b ab 3 27 3 3 matricesAα’sare 27 27symmetricmatrices, whosecomponents,explicitlycomputediqn[5], satisfythe × followingrelation[9]: 3 1 (A )β = Det(j ,j ,j )=: d , (10) α γ 2 α γ β √2 αγβ where d = d is the totally symmetric rank-3 invariant d-tensor of the 27 of of E , with a αγβ (αγβ) 6( 78) normalization suitable to match Det(j ,j ,j ) given by (9). Whenever the choice of the b−asis j is α γ β α { } exploitedinordertodistinguishtheidentitymatrixfromthetracelessones,thed ofE hasamaximal αβγ 6 manifestlyF -invarianceonly. However,itiscrucialto pointoutthat, beingexpressedonlyin terms 4( 52) ofthe invarian−td-tensor, theresult(10) doesnotdependonthe particularchoiceof the basis j . Thus, α theexpressionsofY (7)andofY (8) exhibitthemaximalmanifestcompact[(E {U(1}))/Z ]- α+79 α+106 6 3 × covariance. AcoupleofremarksonthepropertiesofthematricesY ’sareinorder.Thefirstisthattheysatisify: A Y usp(28,28), A=1,...,133. (11) A ∈ Moreover, in order to guarantee that the period of the maximal torus in the E subgroup equals 4π, the 6 standardchoice for the periodof the spin representationsof the orthogonalsubgroups[7, 6], the matrices 2 1 YA’s are orthonormalizedas Y,Y′ 56 := Tr(YY′) with signature( 79,+54). As a consequence,the h i 12 − components(A )β :=A arenormalizedasA Aηβγ =5δη. α γ αβγ αβγ α This is consistent with the normalization of the d-tensor (of E ) adopted e.g. in [12], which is 6( 26) dictatedbytheexpressionf(z) := 1d zαzβzγ fortheKa¨hler-inv−ariant( X0 2-rescaled)holomorphic 3! αβγ prepotentialfunctioncharacterizingspecialKa¨hlergeometry(seee.g.[13,14,15],andRefs. therein). (cid:0) (cid:1) 2 Manifestly [(E U(1))/Z ]-covariant Construction of the Coset 6 3 × M In this Section we construct a manifestly [(E U(1))/Z ]-covariant parametrization of the symmetric 6 3 × space = E7(−25) . As we have seen in the previous Sec. 1, it is generated by the matrices Y ,M(7)and(E(86()−w78i)t×hUI(1=))/1Z,3...,54.Throughtheexponentialmapping,itcanbedefinedasfollows: 79+I 27 :=exp x Y +y Y , withx R,y R, forα=1,...,27. (12) α 106+α α 79+α α α M ! ∈ ∈ α=1 X Inordertomakethecomplexstructureof manifest,itisconvenienttointroducethefollowingcom- M plexlinearcombinationsofthematrices: 1 1 ζ := (Y +iY ), ζ¯ := (Y iY ) (13) α 79+α 106+α α 79+α 106+α √2 √2 − togetherwiththecorrespondingcomplexlinearcombinationsoftheparameters: 1 1 z := (y +ix ), z¯ := (y ix ), (14) α α α α α α √2 √2 − whichallowstorewrite(12)as 27 :=exp z¯ ζ +z ζ¯ . (15) α α α α M ! α=1 X 27 Byintroducingthe27dimensionalcomplexvectorz := z ~e ,describingthescalarfields,andthe28 α α × α=1 X 27 √2 z¯ A z α α − 28matrix := α=1 ,theexpressionfor (15)enjoysthesimpleform: A X M zT 0 Sh(√ ) Ch( †) A†A AA A √ :=exp 0 A = p A†A . (16) M A† 0 ! Sh(pAA†)A† Ch(√A†A) † AA ThisisaHermitianmatrix,ofthesamefpormasthefinitecosetrepresentativeworkedout[16]forthesplit (i.e. maximally non-compact)counterpart = E7(7) , which is the scalar manifold of maximal = 8,D = 4supergravity,associatedtoJM(NO=8). HoSwUe(8v)e/rZ,2while isreal,becauseof(11) is 3 S =8 N MN M anelementofUSp(28,28). 3 By using the machinery of special Ka¨hler geometry (see e.g. [13, 14, 15], and Refs. therein), the symplecticsectionsdefiningthesymplecticframeassociatedtothecosetparametrizationintroducedabove canbedirectlyreadfrom(16): uΛ(z,z) v (z,z) i iΛ =: , (17) M viΛ(z,z) ui (z,z) Λ where the symplectic index Λ = 0,1,...27 (with 0 pertaining to the = 2, D = 4 graviphoton), and N i=α,28. Thus,thesymplecticsectionsread(seee.g.[17,15]andRefs. therein;subscript“28”omitted): fΛ : = 1 (u+v)Λ = fΛ,fΛ := LΛ,LΛ =exp 1K XΛ,XΛ ; (18) i √2 i α Dα 2 Dα (cid:16) (cid:17) (cid:16) (cid:17) (cid:18) (cid:19)(cid:16) (cid:17) i 1 h : = (u v) = h ,h := M ,M =exp K F ,F , (19) iΛ −√2 − iΛ α|Λ Λ Dα Λ Λ 2 Dα Λ Λ (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) where istheKa¨hler-covariantdifferentialoperator, D := LΛ,M T =exp 1K XΛ,F T (20) Λ Λ V 2 (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) isthesymplecticvectorofKa¨hler-covariantlyholomorphicsections,and K := ln i XΛF XΛF (21) Λ Λ − − h (cid:16) (cid:17)i istheKa¨hlerpotentialdeterminingthecorrespondinggeometry. Amoreexplicitexpressionfor(16)would be needed in order to check that the prepotential F does not exist (i.e., 2F = XΛF = 0 [18]) in the Λ symplectic frame we have just introduced, which can be considered the analogue of the Calabi-Vesentini basis[19,18],whosemanifestcovarianceisthemaximalone. 3 The Iwasawa Decomposition and the role of triality Now we are goingto find anotherparametrizationfor the coset , providedby the Iwasawa decomposi- M tion. Inthiscasethemaximalmanifestcovarianceisbrokendowntoa subgroupSO(8), thusprovidinga manifestlytriality-symmetricdescription. The manifold has rank 3, which means that the maximal dimension of the intersection between a M CartansubalgebraofE andthegeneratorsof is3. Inparticular,wecanpick3suchgeneratorsto 7( 25) bethediagonalgenerators−oftheJordanalgebraJ (OM)itself,namelyh =Y ,h =Y andh =Y . 3 1 123 2 132 3 133 The followingstep is to determinea basis of 54 3 = 51 positive rootsλ+, i = 1,...,51 with W+ − i respecttoH . ThentheIwasawadecompositionofthecoset isdefinedas: 3 M 51 :=exp(x h +x h +x h )exp( y λ+). (22) M 1 1 2 2 3 3 i i i=1 X Asanticipated,oneofitsmainfeaturesisthatsincetheelementsh ,h , h h commutewitha28- 1 2 3 3 ∈ dimensionalsubalgebraso(8), theIwasawaparametrizationof exhibitsamaximalmanifestcovariance M given by SO(8). Therefore, the 51-dimensional linear space Λ generated by the positive roots is + + W invariantunderthe(adjoint)actionofSO(8),anditdecomposesintoirreps. ofSO(8)as: Λ =13+82+82+82, (23) + v c s whichisamanifestlytriality-symmetricdecomposition.Inparticular,atthelevelofalgebrasso(8)=tri(O) withtheautomorphismgroupAut(t(O))=Spin(8)ofthenormedtrialityovertheoctonionsO[20]. 4 Itisworthremarkingthattheappearanceofthesquareforthethree8irreps. in(23)isaconsequenceof thecomplex(specialKa¨hler)structureofthecoset . M Moreover,itshouldbeobservedthattheSO(8)enteringin(23)canbeidentifiedas: SO(8) (SO(10) U(1)) F . (24) 4( 52) ⊂ × ∩ − This can be und(cid:2)erstood by noticing that it ca(cid:3)n be obtained from both the following chains of maximal symmetricembeddings[21]: E7( 25) E6( 78) U(1)′ SO(10) U(1)′ U(1)′′ SO(8) U(1)′ U(1)′′ U(1)′′′(25) − ⊃ − × ⊃ × × ⊃ × × × and E7( 25) E6( 78) U(1)′ F4( 52) U(1)′ SO(9) U(1)′ SO(8) U(1)′. (26) − ⊃ − × ⊃ − × ⊃ × ⊃ × Inthelastlineof(25)thefirsttwoU(1)factorshavethephysicalmeaningof“extra”T-dualitiesgenerated bytheKaluza-Kleinreductions,respectivelyD =5 D =4,andD =6 D =5. DenotingwithsubscriptsU(1)-charges,theadjoi→ntirrep.133ofE →branchesaccordingto(25)as 7( 25) (seee.g.[22]): − 133 = 78 +1 +27 +27 0 0 2 ′+2 − = 1 +16 +16 +45 +1 0,0 0, 3 ′0,+3 0,0 0,0 − +1 +10 +16 (27) 2,+4 2, 2 2,+1 − − − − +1+2, 4+10+2,+2+16′+2, 1 − − = 1 +8 +8 +8 +8 0,0,0 c,0, 3,1 s,0, 3, 1 c,0,+3, 1 s,0,+3,+1 − − − − +1 +8 +8 +28 +1 0,0,0 v,0,0,+2 v,0,0, 2 0,0,0 0,0,0 − +1 +1 +1 +8 +8 +8 2,+4,0 2, 2,+2 2, 2, 2 v, 2, 2,0 c, 2,+1,+1 s, 2,+1, 1 − − − − − − − − − − − +1 +1 +1 +8 +8 +8 . +2, 4,0 +2,+2, 2 +2,+2,+2 v,+2,+2,0 c,+2, 1, 1 s,+2, 1,+1 − − − − − 4 Final Remarks Itisveryinterestingtoremarkthatbeingbasedonlyonthealgebraicpropertiesofthe“mixed”Freudenthal- Tits magic squarein Table 1, the constructionof the basis with the maximalpossible covariance(16) and the computationof the Iwasawa decomposition(22) describedhere can be bothgeneralized[8] at least to abroaderclassofminimallynon-compact,simplegroupsoftypeE [23]. Moreover,italsoturnsoutthat, 7 like for , in all these cases the maximal covariance (at least at the Lie algebra level) of the Iwasawa M decompositionisgivenbytheautomorphismalgebraofthecorrespondingnormedtriality[20]. Acknowledgements TheworkofB.L.C.hasbeensupportedinpartbytheEuropeanCommissionundertheFP7-PEOPLE-IRG- 2008GrantNo. PIRG04-GA-2008-239412StringTheoryandNoncommutativeGeometrySTRING. References [1] I.Yokota,ExceptionalLieGroups,arXiv:0902.0431 [math.DG]. 5 [2] C. H. BartonandA. Sudbery,Magic squaresandmatrix modelsofLie algebras, Adv.in Math.180, 596(2003),math/0203010 [math.RA]. [3] M. Gu¨naydin, G. Sierra, P. K. Townsend, ExceptionalSupergravity Theories and the Magic Square, Phys.Lett.B133B,72(1983). [4] J. Tits, Alge`bresalternatives, alge`bresde Jordanetalge`bresde Lie exceptionnelles.I. Construction, (French),Nederl.Akad.Wetensch.Proc˙Ser.A69,223(1966). [5] S. L. Cacciatori, F. D. Piazza and A. Scotti, E groups from octonionic magic square, 7 arXiv:1007.4758 [math-ph]. [6] F.Bernardoni,S.L.Cacciatori,B.L.CerchiaiandA.Scotti,MappingthegeometryoftheE group,J. 6 Math.Phys.49,012107(2008),arXiv:0710.0356 [math-ph]. [7] F.Bernardoni,S.L.Cacciatori,B.L.CerchiaiandA.Scotti, MappingthegeometryoftheF group, 4 Adv.Theor.Math.Phys.Vol.12,Number4,889(2008),arXiv:0705.3978 [math-ph]. [8] S. L. Cacciatori, B. L. Cerchiai, A. Marrani, Magic Coset Decompositions, preprint CERN-PH- TH/2012-020,arXiv:1201.6314 [hep-th]. [9] H.Freudenthal,Oktaven,AusnahmegruppenundOktavengeometrie,Geom.Dedicata19,7(1985). [10] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, Small Orbits, arXiv:1108.0424 [hep-th]. [11] L.Borsten,M.J.Duff,S.Ferrara,A.MarraniandW.Rubens,ExplicitOrbitClassificationofReducible JordanAlgebrasandFreudenthalTripleSystems,arXiv:1108.0908 [math.RA]. [12] L.Andrianopoli,R.D’Auria,S.FerraraandM.A.Lledo´,GaugingofFlatGroupsinFourDimensional Supergravity,JHEP0207,010(2002),hep-th/0203206. [13] A.Strominger,SpecialGeometry,Commun.Math.Phys.133,163(1990). [14] B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry Structure of Special Geometries, Nucl. Phys.B400,463(1993),hep-th/9210068. [15] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre´ and T. Magri, =2 Su- pergravityand =2 superYang-MillsTheoryonGeneralScalarManifolds: SymplecticCNovariance, N GaugingsandtheMomentumMap,J.Geom.Phys.23,111(1997),hep-th/9605032. [16] B.deWitandH.Nicolai, =8 Supergravity,Nucl.Phys.B208,323(1982). N [17] A.Ceresole,R.D’AuriaandS.Ferrara,TheSymplecticStructureof =2 SupergravityanditsCen- N tralExtension,Nucl.Proc.Suppl.46,67(1996),hep-th/9509160. [18] A.Ceresole,R.D’Auria,S.FerraraandA.VanProeyen,DualityTransformationsinSupersymmetric Yang-MillsTheoriescoupledtoSupergravity,Nucl.Phys.B444,92 (1995),hep-th/9502072. [19] E. Calabi and E. Vesentini, On Compact, Locally Symmetric Ka¨hler Manifolds, Ann. Math. 71, 472 (1960). [20] J.C.Baez,TheOctonions,Bull.Am.Math.Soc.39,145(2002),math/0105155 [math-ra]. [21] R.Gilmore: “LieGroups,LieAlgebras,andSomeofTheirApplications”,Dover,NewYork,2006. [22] R.Slansky,GroupTheoryforUnifiedModelBuilding,Phys.Rept.79,1(1981). [23] R.B.Brown,GroupsofTypeE ,J.ReineAngew.Math.236,79(1969). 7 6