ebook img

On the Scalar Manifold of Exceptional Supergravity PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Scalar Manifold of Exceptional Supergravity

CERN-PH-TH/2012-023 On the Scalar Manifold of Exceptional Supergravity Sergio L. Cacciatori1,4, Bianca L. Cerchiai2,4, and AlessioMarrani3 2 1 0 2 n 1DipartimentodiScienzeedAltaTecnologia, a Universita` degliStudidell’Insubria,ViaValleggio11,22100Como,Italy J [email protected] 1 3 2DipartimentodiMatematica, ] Universita` degliStudidiMilano,ViaSaldini50,20133Milano,Italy h [email protected] t - p 3PhysicsDepartment,TheoryUnit,CERN, e CH1211,Geneva23,Switzerland h [ [email protected] 1 4INFN,SezionediMilano v ViaCeloria,16,20133Milano,Italy 7 6 6 6 . 1 0 2 Abstract 1 v: WeconstructtwoparametrizationsofthenoncompactexceptionalLiegroupG=E7(−25),basedona i fibrationwhichhasthemaximalcompactsubgroupK = E6×U(1) asafiber.ItiswellknownthatGplays X animportantroleintheN =2d=4magicexceptionalsupZe3rgravity,whereitdescribestheU-dualityof r thetheoryandwherethesymmetricspaceM= G givesthevectormultiplets’scalarmanifold. a K First,bymakinguseoftheexponentialmap,wecomputearealizationof G,thatisbasedontheE K 6 invariantd-tensor,andhenceexhibitsthemaximalpossiblemanifest[(E ×U(1))/Z ]-covariance.This 6 3 providesabasisforthecorrespondingsupergravitytheory,whichistheanalogueoftheCalabi-Vesentini coordinates. ThenwestudytheIwasawadecomposition.ItsmainfeatureisthatitisSO(8)-covariantandtherefore it highlights the role of triality. Along the way we analyze the relevant chain of maximal embeddings whichleadstoSO(8). Itisworthnoticingthatbeingbasedonthepropertiesofa“mixed”Freudenthal-Titsmagicsquare,the wholeprocedurecanbegeneralizedtoabroaderclassofgroupsoftypeE . 7 TalkgivenattheXVIIEuropeanWorkshoponStringTheory,heldattheUniversityofPadua,September5-9,2011 1 The “mixed” magic square and the 56 of the Lie algebra e 7( 25) − ExceptionalLiegroupsactassymmetriesinmanyphysicalsystems. Inparticular,noncompactformsofthe groupE enterasU-dualityofd= 3andd = 4supergravitytheories. Herewefocusonthe = 2d = 4 7 N magicexceptionalsupergravity,wheretherelevantrealformisG=E . 7( 25) As the first step we needto constructthe Lie algebrae . To th−is aim, we are goingto followthe 7( 25) techniqueoutlinedinSec. 7of[1],whichisbasedonthenon−-symmetric“mixed”magicsquare[2,3,4]: Table1:The“mixed”magicsquare R C H O R SO(3) SU(3) USp(6) F 4( 52) C SU(3) SU(3) SU(3) SU(6) E − 6( 78) H Sp(6,R) SU⊕(3,3) SO (12) E − S ∗ 7( 25) O F E E E − S 4(4) 6(2) 7( 5) 8( 24) − − TherowsandthecolumnscontainthedivisionalgebrasoftherealnumbersR,thecomplexnumbersC, thequaternionsH,theoctonionsOandtheirsplitformsH andO . S S ThentheTitsformulagivestheLiealgebra correspondingtorowAandcolumnBas[4]: L (A,B)=Der(A) Der(J (B))∔(A J (B)). (1) L ⊕ 3 ′⊗ ′3 Here, the symbol denotes direct sum of algebras, whereas ∔ stands for direct sum of vector spaces. Furthermore, Der m⊕eans the linear derivations, J (B) denotes the rank-3 Jordan algebra on B, and the 3 priming amounts to considering only traceless elements. One of the main ingredients entering in the last termistheLieproduct,whichextendsthemultiplicationtoA J (B). ItsexplicitexpressionforA=H andB=Ocanbefounde.g.in[5]. ′⊗ ′3 S FortheLiealgebraofE theTitsformula(1)yields: 7( 25) − e = (H ,O)=Der(H ) Der(J (O))∔(H J (O))=sl(2,R) f ∔(H J (O)).(2) 7(−25) L S S ⊕ 3 ′S⊗ ′3 ⊕ 4 ′S ⊗ ′3 The second step is to identify the subalgebra K generating the maximal compact subgroup K :=(E U(1))/Z of E . This can be achieved by using the Tits formula (1) once more 6( 78) 3 7( 25) tocompute−them×anifestlyf -covaria−ntexpressionfore : 4 6( 78) − e = (C,O)= (R,O)∔(i J (O))=Der(J (O))∔(i J (O))=f ∔(i J (O)),(3) 6(−78) L L ⊗ ′3 3 ⊗ ′3 4 ⊗ ′3 wherewearepickingtheonlyimaginaryuniti H whichsatisfiesi2 = 1. Thus,weobtain: S ∈ − K=ad Der(J (O))∔(i J (O)), (4) i⊕ 3 ⊗ ′3 with ad H the adjoint action of i, generating the maximal compact subgroup U(1) of the group i S SL(2,R)a∈ppearingin(2). An explicitconstructionofthematricesφ , I = 1,...,78, realizingthe e subalgebrainits irre- I 6( 78) duciblerepresentationFund = 27hasbeenperformede.g. inSec. 2.1of[6]b−ymakinguseof(3)andof theexplictexpressionoff initsirrep. Fund=26previouslycomputedin[7]. 4( 52) Finally,byputtingtogeth−eralltheseingredients,wefindthatanexplicitsymplecticrealizationoftheLie algebrae initsirreduciblerepresentationFund=56isasfollows[8]. 7( 25) Thegenera−torsofthemaximalcompactsubgroupK (antihermitianmatrices): φI −→027 027 −→027 T T  −→0 0 −→0 0  27 27 e : Y = , I =1,...,78; (5) 6( 78) I −  027 −→027 −φTI −→027   T T   −→0 0 −→0 0   27 27    1 √i6I27 −→027 027 −→027  −→0T i 3 −→0T 0  27 − 2 27 u(1): Y = ; (6) 79  027 −→0q27 −√i6I27 −→027     −→0T27 0 −→0T27 i 32   q  Thegeneratorsofthecoset =G/K (hermitianmatrices): M 027 −→027 2iAα i√2−→eα 1 −→0T27 0 i√2−→eTα 0  Y = , α=1,...,27; (7) α+79 2 −2iAα −i√2−→eα 027 −→027     −i√2−→eTα 0 −→0T27 0    027 −→027 2Aα √2−→eα − 1 −→0T27 0 √2−→eTα 0  Y = , α=1,...,27. (8) α+106 2 −2Aα √2−→eα 027 −→027   √2−→eTα 0 −→0T27 0    HereIn isthen n identitymatrix,027 isthe27 27nullmatrix,−→0n isthezerovectorinRn, and e ,α=1,...,27,is×thecanonicalbasisofR27. × −→α ThematricesA aredefinedintermsofthed-tensorofthe27ofE . Thereisacubicform,which α 6( 78) isdefinedforanyj ,j ,j J (O)as[9,10,11]: − 1 2 3 3 ∈ 1 1 1 Det(j ,j ,j ):= Tr(j j j )+ Tr(j )Tr(j )Tr(j ) Tr(j )Tr(j j )+cyclicperm. ,(9) 1 2 3 1 2 3 1 2 3 1 2 3 3 ◦ ◦ 6 −6 ◦ (cid:16) (cid:17) where is the product in J (O). By choosing a basis j of J (O) normalized as j ,j := ◦ 3 { a}a=1,...,26 ′3 h a bi Tr(j j ) = 2δ , a completionto a basis forJ (O) can beobtainedbyaddingj = 2I . Thenthe a ◦ b ab 3 27 3 3 matricesAα’sare 27 27symmetricmatrices, whosecomponents,explicitlycomputediqn[5], satisfythe × followingrelation[9]: 3 1 (A )β = Det(j ,j ,j )=: d , (10) α γ 2 α γ β √2 αγβ where d = d is the totally symmetric rank-3 invariant d-tensor of the 27 of of E , with a αγβ (αγβ) 6( 78) normalization suitable to match Det(j ,j ,j ) given by (9). Whenever the choice of the b−asis j is α γ β α { } exploitedinordertodistinguishtheidentitymatrixfromthetracelessones,thed ofE hasamaximal αβγ 6 manifestlyF -invarianceonly. However,itiscrucialto pointoutthat, beingexpressedonlyin terms 4( 52) ofthe invarian−td-tensor, theresult(10) doesnotdependonthe particularchoiceof the basis j . Thus, α theexpressionsofY (7)andofY (8) exhibitthemaximalmanifestcompact[(E {U(1}))/Z ]- α+79 α+106 6 3 × covariance. AcoupleofremarksonthepropertiesofthematricesY ’sareinorder.Thefirstisthattheysatisify: A Y usp(28,28), A=1,...,133. (11) A ∈ Moreover, in order to guarantee that the period of the maximal torus in the E subgroup equals 4π, the 6 standardchoice for the periodof the spin representationsof the orthogonalsubgroups[7, 6], the matrices 2 1 YA’s are orthonormalizedas Y,Y′ 56 := Tr(YY′) with signature( 79,+54). As a consequence,the h i 12 − components(A )β :=A arenormalizedasA Aηβγ =5δη. α γ αβγ αβγ α This is consistent with the normalization of the d-tensor (of E ) adopted e.g. in [12], which is 6( 26) dictatedbytheexpressionf(z) := 1d zαzβzγ fortheKa¨hler-inv−ariant( X0 2-rescaled)holomorphic 3! αβγ prepotentialfunctioncharacterizingspecialKa¨hlergeometry(seee.g.[13,14,15],andRefs. therein). (cid:0) (cid:1) 2 Manifestly [(E U(1))/Z ]-covariant Construction of the Coset 6 3 × M In this Section we construct a manifestly [(E U(1))/Z ]-covariant parametrization of the symmetric 6 3 × space = E7(−25) . As we have seen in the previous Sec. 1, it is generated by the matrices Y ,M(7)and(E(86()−w78i)t×hUI(1=))/1Z,3...,54.Throughtheexponentialmapping,itcanbedefinedasfollows: 79+I 27 :=exp x Y +y Y , withx R,y R, forα=1,...,27. (12) α 106+α α 79+α α α M ! ∈ ∈ α=1 X Inordertomakethecomplexstructureof manifest,itisconvenienttointroducethefollowingcom- M plexlinearcombinationsofthematrices: 1 1 ζ := (Y +iY ), ζ¯ := (Y iY ) (13) α 79+α 106+α α 79+α 106+α √2 √2 − togetherwiththecorrespondingcomplexlinearcombinationsoftheparameters: 1 1 z := (y +ix ), z¯ := (y ix ), (14) α α α α α α √2 √2 − whichallowstorewrite(12)as 27 :=exp z¯ ζ +z ζ¯ . (15) α α α α M ! α=1 X 27 Byintroducingthe27dimensionalcomplexvectorz := z ~e ,describingthescalarfields,andthe28 α α × α=1 X 27 √2 z¯ A z α α − 28matrix := α=1 ,theexpressionfor (15)enjoysthesimpleform: A X M  zT 0      Sh(√ ) Ch( †) A†A AA A √ :=exp 0 A = p A†A . (16) M A† 0 !  Sh(pAA†)A† Ch(√A†A)   †   AA  ThisisaHermitianmatrix,ofthesamefpormasthefinitecosetrepresentativeworkedout[16]forthesplit (i.e. maximally non-compact)counterpart = E7(7) , which is the scalar manifold of maximal = 8,D = 4supergravity,associatedtoJM(NO=8). HoSwUe(8v)e/rZ,2while isreal,becauseof(11) is 3 S =8 N MN M anelementofUSp(28,28). 3 By using the machinery of special Ka¨hler geometry (see e.g. [13, 14, 15], and Refs. therein), the symplecticsectionsdefiningthesymplecticframeassociatedtothecosetparametrizationintroducedabove canbedirectlyreadfrom(16): uΛ(z,z) v (z,z) i iΛ =: , (17) M   viΛ(z,z) ui (z,z) Λ   where the symplectic index Λ = 0,1,...27 (with 0 pertaining to the = 2, D = 4 graviphoton), and N i=α,28. Thus,thesymplecticsectionsread(seee.g.[17,15]andRefs. therein;subscript“28”omitted): fΛ : = 1 (u+v)Λ = fΛ,fΛ := LΛ,LΛ =exp 1K XΛ,XΛ ; (18) i √2 i α Dα 2 Dα (cid:16) (cid:17) (cid:16) (cid:17) (cid:18) (cid:19)(cid:16) (cid:17) i 1 h : = (u v) = h ,h := M ,M =exp K F ,F , (19) iΛ −√2 − iΛ α|Λ Λ Dα Λ Λ 2 Dα Λ Λ (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) where istheKa¨hler-covariantdifferentialoperator, D := LΛ,M T =exp 1K XΛ,F T (20) Λ Λ V 2 (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) isthesymplecticvectorofKa¨hler-covariantlyholomorphicsections,and K := ln i XΛF XΛF (21) Λ Λ − − h (cid:16) (cid:17)i istheKa¨hlerpotentialdeterminingthecorrespondinggeometry. Amoreexplicitexpressionfor(16)would be needed in order to check that the prepotential F does not exist (i.e., 2F = XΛF = 0 [18]) in the Λ symplectic frame we have just introduced, which can be considered the analogue of the Calabi-Vesentini basis[19,18],whosemanifestcovarianceisthemaximalone. 3 The Iwasawa Decomposition and the role of triality Now we are goingto find anotherparametrizationfor the coset , providedby the Iwasawa decomposi- M tion. Inthiscasethemaximalmanifestcovarianceisbrokendowntoa subgroupSO(8), thusprovidinga manifestlytriality-symmetricdescription. The manifold has rank 3, which means that the maximal dimension of the intersection between a M CartansubalgebraofE andthegeneratorsof is3. Inparticular,wecanpick3suchgeneratorsto 7( 25) bethediagonalgenerators−oftheJordanalgebraJ (OM)itself,namelyh =Y ,h =Y andh =Y . 3 1 123 2 132 3 133 The followingstep is to determinea basis of 54 3 = 51 positive rootsλ+, i = 1,...,51 with W+ − i respecttoH . ThentheIwasawadecompositionofthecoset isdefinedas: 3 M 51 :=exp(x h +x h +x h )exp( y λ+). (22) M 1 1 2 2 3 3 i i i=1 X Asanticipated,oneofitsmainfeaturesisthatsincetheelementsh ,h , h h commutewitha28- 1 2 3 3 ∈ dimensionalsubalgebraso(8), theIwasawaparametrizationof exhibitsamaximalmanifestcovariance M given by SO(8). Therefore, the 51-dimensional linear space Λ generated by the positive roots is + + W invariantunderthe(adjoint)actionofSO(8),anditdecomposesintoirreps. ofSO(8)as: Λ =13+82+82+82, (23) + v c s whichisamanifestlytriality-symmetricdecomposition.Inparticular,atthelevelofalgebrasso(8)=tri(O) withtheautomorphismgroupAut(t(O))=Spin(8)ofthenormedtrialityovertheoctonionsO[20]. 4 Itisworthremarkingthattheappearanceofthesquareforthethree8irreps. in(23)isaconsequenceof thecomplex(specialKa¨hler)structureofthecoset . M Moreover,itshouldbeobservedthattheSO(8)enteringin(23)canbeidentifiedas: SO(8) (SO(10) U(1)) F . (24) 4( 52) ⊂ × ∩ − This can be und(cid:2)erstood by noticing that it ca(cid:3)n be obtained from both the following chains of maximal symmetricembeddings[21]: E7( 25) E6( 78) U(1)′ SO(10) U(1)′ U(1)′′ SO(8) U(1)′ U(1)′′ U(1)′′′(25) − ⊃ − × ⊃ × × ⊃ × × × and E7( 25) E6( 78) U(1)′ F4( 52) U(1)′ SO(9) U(1)′ SO(8) U(1)′. (26) − ⊃ − × ⊃ − × ⊃ × ⊃ × Inthelastlineof(25)thefirsttwoU(1)factorshavethephysicalmeaningof“extra”T-dualitiesgenerated bytheKaluza-Kleinreductions,respectivelyD =5 D =4,andD =6 D =5. DenotingwithsubscriptsU(1)-charges,theadjoi→ntirrep.133ofE →branchesaccordingto(25)as 7( 25) (seee.g.[22]): − 133 = 78 +1 +27 +27 0 0 2 ′+2 − = 1 +16 +16 +45 +1 0,0 0, 3 ′0,+3 0,0 0,0 − +1 +10 +16 (27) 2,+4 2, 2 2,+1 − − − − +1+2, 4+10+2,+2+16′+2, 1 − − = 1 +8 +8 +8 +8 0,0,0 c,0, 3,1 s,0, 3, 1 c,0,+3, 1 s,0,+3,+1 − − − − +1 +8 +8 +28 +1 0,0,0 v,0,0,+2 v,0,0, 2 0,0,0 0,0,0 − +1 +1 +1 +8 +8 +8 2,+4,0 2, 2,+2 2, 2, 2 v, 2, 2,0 c, 2,+1,+1 s, 2,+1, 1 − − − − − − − − − − − +1 +1 +1 +8 +8 +8 . +2, 4,0 +2,+2, 2 +2,+2,+2 v,+2,+2,0 c,+2, 1, 1 s,+2, 1,+1 − − − − − 4 Final Remarks Itisveryinterestingtoremarkthatbeingbasedonlyonthealgebraicpropertiesofthe“mixed”Freudenthal- Tits magic squarein Table 1, the constructionof the basis with the maximalpossible covariance(16) and the computationof the Iwasawa decomposition(22) describedhere can be bothgeneralized[8] at least to abroaderclassofminimallynon-compact,simplegroupsoftypeE [23]. Moreover,italsoturnsoutthat, 7 like for , in all these cases the maximal covariance (at least at the Lie algebra level) of the Iwasawa M decompositionisgivenbytheautomorphismalgebraofthecorrespondingnormedtriality[20]. Acknowledgements TheworkofB.L.C.hasbeensupportedinpartbytheEuropeanCommissionundertheFP7-PEOPLE-IRG- 2008GrantNo. PIRG04-GA-2008-239412StringTheoryandNoncommutativeGeometrySTRING. References [1] I.Yokota,ExceptionalLieGroups,arXiv:0902.0431 [math.DG]. 5 [2] C. H. BartonandA. Sudbery,Magic squaresandmatrix modelsofLie algebras, Adv.in Math.180, 596(2003),math/0203010 [math.RA]. [3] M. Gu¨naydin, G. Sierra, P. K. Townsend, ExceptionalSupergravity Theories and the Magic Square, Phys.Lett.B133B,72(1983). [4] J. Tits, Alge`bresalternatives, alge`bresde Jordanetalge`bresde Lie exceptionnelles.I. Construction, (French),Nederl.Akad.Wetensch.Proc˙Ser.A69,223(1966). [5] S. L. Cacciatori, F. D. Piazza and A. Scotti, E groups from octonionic magic square, 7 arXiv:1007.4758 [math-ph]. [6] F.Bernardoni,S.L.Cacciatori,B.L.CerchiaiandA.Scotti,MappingthegeometryoftheE group,J. 6 Math.Phys.49,012107(2008),arXiv:0710.0356 [math-ph]. [7] F.Bernardoni,S.L.Cacciatori,B.L.CerchiaiandA.Scotti, MappingthegeometryoftheF group, 4 Adv.Theor.Math.Phys.Vol.12,Number4,889(2008),arXiv:0705.3978 [math-ph]. [8] S. L. Cacciatori, B. L. Cerchiai, A. Marrani, Magic Coset Decompositions, preprint CERN-PH- TH/2012-020,arXiv:1201.6314 [hep-th]. [9] H.Freudenthal,Oktaven,AusnahmegruppenundOktavengeometrie,Geom.Dedicata19,7(1985). [10] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, Small Orbits, arXiv:1108.0424 [hep-th]. [11] L.Borsten,M.J.Duff,S.Ferrara,A.MarraniandW.Rubens,ExplicitOrbitClassificationofReducible JordanAlgebrasandFreudenthalTripleSystems,arXiv:1108.0908 [math.RA]. [12] L.Andrianopoli,R.D’Auria,S.FerraraandM.A.Lledo´,GaugingofFlatGroupsinFourDimensional Supergravity,JHEP0207,010(2002),hep-th/0203206. [13] A.Strominger,SpecialGeometry,Commun.Math.Phys.133,163(1990). [14] B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry Structure of Special Geometries, Nucl. Phys.B400,463(1993),hep-th/9210068. [15] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre´ and T. Magri, =2 Su- pergravityand =2 superYang-MillsTheoryonGeneralScalarManifolds: SymplecticCNovariance, N GaugingsandtheMomentumMap,J.Geom.Phys.23,111(1997),hep-th/9605032. [16] B.deWitandH.Nicolai, =8 Supergravity,Nucl.Phys.B208,323(1982). N [17] A.Ceresole,R.D’AuriaandS.Ferrara,TheSymplecticStructureof =2 SupergravityanditsCen- N tralExtension,Nucl.Proc.Suppl.46,67(1996),hep-th/9509160. [18] A.Ceresole,R.D’Auria,S.FerraraandA.VanProeyen,DualityTransformationsinSupersymmetric Yang-MillsTheoriescoupledtoSupergravity,Nucl.Phys.B444,92 (1995),hep-th/9502072. [19] E. Calabi and E. Vesentini, On Compact, Locally Symmetric Ka¨hler Manifolds, Ann. Math. 71, 472 (1960). [20] J.C.Baez,TheOctonions,Bull.Am.Math.Soc.39,145(2002),math/0105155 [math-ra]. [21] R.Gilmore: “LieGroups,LieAlgebras,andSomeofTheirApplications”,Dover,NewYork,2006. [22] R.Slansky,GroupTheoryforUnifiedModelBuilding,Phys.Rept.79,1(1981). [23] R.B.Brown,GroupsofTypeE ,J.ReineAngew.Math.236,79(1969). 7 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.