ebook img

On the R-Process Enrichment of Dwarf Spheroidal Galaxies PDF

0.43 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the R-Process Enrichment of Dwarf Spheroidal Galaxies

DRAFTVERSIONNOVEMBER4,2016 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ONTHER-PROCESSENRICHMENTOFDWARFSPHEROIDALGALAXIES JOSEPHBRAMANTE1,TIMLINDEN2 1DepartmentofPhysics,225NieuwlandScienceHall, UniversityofNotreDame,NotreDame,IN46556,USAand 2CenterforCosmologyandAstroParticlePhysics(CCAPP)andDepartmentofPhysics TheOhioStateUniversity,ColumbusOH,43210,USA DraftversionNovember4,2016 ABSTRACT 6 RecentobservationsofReticulumIIhaveuncoveredanoverabundanceofr-processelements,comparedto 1 similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of 0 ReticulumIIappearconsistentwithallknownUFDs, thehighr-processabundanceofReticulumIIsuggests 2 enrichmentthroughasingle,rareevent,suchasadoubleneutronstar(NS)merger. However,wenotethatthis v scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to o produceNS-NSorNS-blackholemergers,andthesekickswouldefficientlyremovecompactbinarysystems N from the weak gravitational potentials of UFDs. We examine alternative mechanisms for the production of r-processelementsinUFDs,includinganovelmechanismwhereinNSsinregionsofhighdarkmatterdensity 2 implode after accumulating a black-hole-forming mass of dark matter. We find that r-process proto-material ejectionbytidalforces,whenasingleneutronstarimplodesintoablackhole,canoccurataratematchingthe ] r-processabundanceofbothReticulumIIandtheMilkyWay. Remarkably,darkmattermodelswhichcollapse E asingleneutronstarinobservedUFDsalsosolvethemissingpulsarproblemintheMilkyWayGalacticcenter. H Weproposetestsspecifictodarkmatterr-processproductionwhichmayuncover,orruleout,thismodel. . h p The Dark Energy Survey has discovered a new dwarf neutrons. Within recent decades, core collapse supernovae - o spheroidal galaxy, named Reticulum II, which lies at a dis- havebeenconsideredasasourceofr-processmaterials(Dun- r tance of only ∼30 kpc from Earth (Bechtol et al. 2015; Ko- can et al. 1986; Meyer et al. 1992). However, r-process el- t s posov et al. 2015). The proximity of Reticulum II bene- ements in Milky Way (MW) stars show characteristic peak a fits indirect searches for dark matter (DM) annihilation. In abundancesatatomicmassesA=80,130,195(Burbidgeetal. [ fact, an analysis of data from the Fermi Large Area Tele- 1957),andtheentropyprovidedbycore-collapsesupernovae scope found a tentative (2.4 – 3.2σ local significance) ex- appearstoolowtoreproducethethirdpeak(Qian&Woosley 2 cessinGeVγ-raysemanatingfromthepositionoftheRetic- 1996; Thompson et al. 2001; Fischer et al. 2010). Al- v ulum II dwarf (Drlica-Wagner et al. 2015; Geringer-Sameth ternatively, decompressing neutron fluid ejected from, e.g., 4 8 etal.2015;Hooper&Linden2015). Spectroscopicmeasure- the merger of a neutron star (NS) with another NS or a 7 ments of Reticulum II stars identify Reticulum II as an ul- black hole (BH), reproduces the A=195 peak (Lattimer & 6 trafaint dwarf spheroidal galaxy (UFD), with total stellar lu- Schramm 1976; Lattimer et al. 1977; Eichler et al. 1989; 0 minosity of only 2360±200 L(cid:12) and a mass to light ratio of Davies et al. 1994; Freiburghaus et al. 1999), and could . 470±210 (Simon et al. 2015), making it an excellent target be the source of most r-process elements (Symbalisty & 1 for DM indirect detection studies (Simon et al. 2015; Bon- Schramm1982;Arnouldetal.2007;Surmanetal.2008;Shen 0 nivardetal.2015). et al. 2015; Matteucci et al. 2014; van de Voort et al. 2015; 6 RecentmeasurementsofstellarspectraindicatethatReticu- Cescutti et al. 2015). More recent proposals for r-process 1 lumIIisuniqueamongknownUFDs.Themajorityofstarsin production include the accretion induced collapse of white : v ReticulumIIareoverabundantinelementsheavierthanZinc, dwarfs (Woosley & Baron 1992) and rapidly rotating mag- i a signature of rapid neutron capture (aka r-process) enrich- netars(Metzgeretal.2008). X ment(Jietal.2015a;Roedereretal.2016a). Thisisintrigu- Anothermethodtodistinguishbetweenr-processmodelsis r ing, because nine similar UFDs, namely Segue 1, Hercules, to utilize the stochasticity of r-process enrichment in small, a LeoIV,SegueII,CanesVenaticiII,BootesI,BootesII,Ursa isolated, metal poor systems (e.g. UFDs). For example, lest MajorII,andComaBerenices,showonlytracer-processen- they overproduce r-process elements, frequent iron core col- richment (Ji et al. 2015b), which may be consistent with r- lapse supernovae must each produce a small r-process abun- process materials accreted through interactions of these sys- dance((cid:46)10−7M ),andalsointhiscaser-processabundance (cid:12) tems with the Galactic disk. Moreover, the s-process metal- shouldscalewithstellarmetallicity. Ontheotherhand,dou- licityofReticulumII,[Fe/H]=-2.65+0.07 (Simonetal.2015) ble NS mergers are expected to be rare and so they can pro- −0.07 is consistent with, and even lower than, other UFDs (Kirby duce copious r-process materials ((cid:38) 10−4 M ). Thus, the (cid:12) et al. 2008; Koch & Rich 2014; Frebel et al. 2014; Ji et al. observationofsignificantr-processenrichmentinReticulum 2015b). Two of the nine stars observed by Ji et al. (2015a) II (alongside its typical metallicity for an ultrafaint dwarf shownor-processenrichment,apossibleindicationofmulti- spheroidal galaxy), and the lack of r-process enrichment in plestarformationepochs. anyotherUFD,pointstowardsarareevent,likeadoubleNS The excess of neutron-rich elements in Reticulum II has merger,forther-processenrichmentofReticulumII(Jietal. implications for the production of heavy r-process elements, 2015a). However,aswewillshow,NSmergersinUFDsap- which occurs at astrophysical sites harboring copious free peartooraretoaccountfortheenrichmentofReticulumII. 2 Bramante&Linden - 10Myr 50Myr 100Myr 500Myr 1Gyr 10Gyr atametallicity[Fe/H]=-2.30findingtheresultstobeidenti- 10km/s <0.0001 <0.0001 <0.0001 0.0011 0.0016 0.0023 caltowithinthelevelofPoissonnoise1. Inwhatfollowswe 20km/s <0.0001 0.0004 0.0008 0.0085 0.0125 0.0183 quotethestatisticalresultsforsimulationsathighermetallic- 50km/s <0.0001 0.0064 0.0136 0.0569 0.0801 0.1345 ity,asthelargernumberoftestsystemsdecreasedthePoisson 100km/s 0.0002 0.0151 0.0378 0.1519 0.2202 0.4497 noisefortheserareevents. Weremainagnosticastothebest modelsofbinarystellarevolutionandmarginalizeourresults Table1 overall16modelspresentedin Dominiketal.(2012). Con- servatively(realistically)assumingthattheNS-NSorNS-BH The Number of Expected NS-NS and NS-BH mergers within the popula- tionofUFDsconsideredinJietal.(2015a),forvariousvaluesoftheUFD mergermustoccurwithin1Gyr(100Myr)fromsystemfor- escapevelocity,andthemaximumageoftheNS-NSorNS-BHmergernec- mationtoproducer-processmaterialsbeforetheformationof essarytoproducer-processenrichmentintheReticulumIIdwarf. Wenote the remaining UFD stellar population, we find that 2.1 (1.5) thattheconstraintsinSection1arguestronglyforamaximumkickvelocity NS-NS and NS-BH mergers would be expected among the ∼10kms−1 andanage∼100Myr,whichresultsintheproductionofvir- tuallynoNS-NSorNS-BHmergers. Theremainderofthecolumnsshown UFDpopulation,inlinewithexpectations. inthistabledonotillustratereasonableparameterspacechoices,butmerely However, the progenitor compact objects in a NS-NS and illustratetherobustnessofourresulttocorybanticvariations. NS-BHmergermustundergosignificantnatalkickstomove the system into a tightly bound, eccentric orbit (Willems & Kalogera 2004). At the time of reionization, the pro- In this article we examine the viability of many r-process genitors of observed UFDs are expected to have masses production models in light of the r-process abundances now ∼107 M (Salvadori & Ferrara 2009; Webster et al. 2015; (cid:12) observedinbothUFDsandtheMW.Wealsoproposeanew Bland-Hawthorn et al. 2015), and escape velocities given r-processproductionsite: theneutron-richfluidejectedfrom by(Bovill&Ricotti2011): DM-induced implosions of NSs. We find that DM-induced NS implosions could account for both the r-process abun- (cid:18) M (cid:19)1/3(cid:20)1+z(cid:21)1/2km danceobservedinReticulumIIandtheMW.InSection1we v = 10.9 (1) esc 107M 9.5 s study the rate of NS mergers in UFDs and find this scenario (cid:12) for r-process production to be disfavored at >3σ. Section 2 ExaminingthemodelsofDominiketal.(2012)andremov- examinesalternativeproposalsforr-processproduction.DM- ing binaries that received a center of mass kick (during ei- imploded NSs are introduced as an r-process production site thercompactobjectformationevent)largerthan10km/s(20 inSection3,andDMr-processenrichmentofUFDsandthe km/s), we find that the total UFD population would be ex- MW is compared to other proposals in Section 4. Section 5 pectedtoproduce<0.0001(0.0008)mergerswithin100Myr notesthatacomparisonbetweenther-processenrichmentof after binary formation, and 0.0016 (0.0125) mergers within UFDs and that of globular clusters can provide a diagnostic 1Gyrafterbinaryformation. InTable1wesummarizethese test specific to DM dominated r-process production. In Sec- results,includingseveraladditionalmodelsforboththemaxi- tion6, weconcludewithadditionalapplicationsofr-process mummergerageandescapevelocityfortheUFDpopulation. observationstostudiesofDM,primordialblackholes,andby We note that Reticulum II may have a unique star formation extensiontheprimordialpowerspectrum. history, DMhaloformationhistory, orescapevelocity, com- paredtootherUFDs. IncaseReticulumIIhasspecialprop- 1. NEUTRONSTARMERGERSINUFDS erties compared to other UFDs, we recalculated the number Duetothelow-starformationrateinUFDs,itisreasonable of expected NS mergers, based on the 2.6×103 M of star (cid:12) to ask whether any NS-NS or BH-NS mergers are expected formationobservedinReticulumII.Withthissmallerstellar in the population of observed UFDs. Observations indicate population,wefindthatr-processeventsinReticulumIIfrom thatthetotalstarformationhistoryofall10UFDsstudiedby aNSmergerbecomeslesslikely. Jietal.(2015a)amountstoonly1.0×105 M (Bechtoletal. (cid:12) 2. ALTERNATIVEASTROPHYSICALMODELS 2015; McConnachie 2012). While mass loss and tidal dis- ruption may distort these measurements, we note that these In the prior section we have considered the merger of bi- observationslieonthemass-metallicityrelationship,indicat- naries, occurring through the joint stellar evolution of two, ing that the mass lost from these systems has not drastically initiallyboundstars. However,alternativescenariosarepos- affected their stellar populations since the onset of their first sible. Forexample, inglobularclusters, themajorityofstel- supernovae(Kirbyetal.2008). Inordertocalculatethetotal lar encounters are believed to occur through n-body dynam- number of NS-NS and NS-BH binary progenitors in UFDs, ics,duetothehighstellardensityinglobularclustercenters. weemployaKroupa (Kroupa&Weidner2003)initialmass However,UFDs,areexpectedtobeunderdense(comparedto functionwithaminimumstellarmassof0.08M andahigh- globularclusters)bynearlysixordersofmagnitude, making (cid:12) mass index of α = 2.7, and conservatively assume a binary stellar encounters negligible. A more important considera- fractionofunity,withaflatsecondarymassdistribution(Kob- tion,iswhetherNS-NSandNS-BHmergersinUFDscouldbe ulnickyetal.2006). UsingthesevalueswefindthattheUFD enhancedduetoKozaioscillationsintriplesystems(Thomp- population could form ∼800 initial binary systems with an son 2011; Sharpee & Thompson 2013). Notably, the eccen- initialprimarymassexceeding5M . tricities induced in the binary orbit through the Kozai mech- (cid:12) To calculate the number of NS-NS mergers produced by anism can vastly decrease the merger time between widely this ensemble of systems, we utilize the results of Dominik separated binary companions. If we remove our cuts on the et al. (2012) , noting that the modeled results are produced at a higher metallicity of [Fe/H] = -1.0, and that this choice 1 We acknowledge the Synthetic Universe Project (www.syntheticuniverse.org) for making the intermediate data products is conservative given that NS-NS mergers are similarly effi- of Dominik et al. (2012) publicly available for usage in these calcula- cient at both metallicities (Dominik et al. 2013). We have tions, as well as Michal Dominik and Chris Belczynski for providing the confirmed this result using a simulation of 2.0×106 binaries low-metallicitydatasetfromDominiketal.(2013). 3 binarymergertimeintheprevioussection(assumingthatthe lived,andmanyformafterthe500Myrsimulationtimenec- Kozai Mechanism produces a binary merger within the re- essary to produce r-process enrichment in our model. Addi- quired100Myrtimeframeregardlessoftheinitialbinarycon- tionally, observations of globular clusters indicate that low- figuration)thenwewouldproduce1.7(2.0)NS-NSandNS- mass X-Ray binary formation is stronger in higher metallic- BH binaries with maximum kick velocities of 10 km/s (20 ity systems than at low-metallicities (Kim et al. 2013). Al- km/s). However,thefractionoftriplesinUFDsisunlikelyto together, it seems r-process enrichment of Reticulum II via beunity,anditmayalsobedifficulttokeepthesewidelysep- directcollapseofaNSisdisfavored. arated, low-mass, triple systems bound due to the mass loss A final possibility is that a NS merger occurred in Retic- andnatalkicksofeachsupernova. Afullinvestigationofthis ulum II, but that the NS binary was sourced by another star effectiswarranted,butliesbeyondthescopeofthispaper. forming region, such as the ancient stars of the MW bulge. A second possibility includes r-process enrichment from Assuming a total star formation of 1010 M within the first (cid:12) only a small subset of supernova events, such as those that Gyr after bulge formation (Wyse 2009), we calculate an ex- produce a rapidly spinning, high-magnetic field, magne- pectedpopulationof∼4×105 doubleNSmergers,themajor- tar(Metzgeretal.2008;Nishimuraetal.2015;Tsujimoto& ityof whichhappen farfromthe MWbulge duetothe natal Nishimura 2015). While none have been observed, they are kicks given to the NS population. Using the kick velocities, expectedtobeshortlived,andsomayhaveescapeddetection andbinarymergertimescalculatedinDominiketal.(2012), thus far. Since the rate of rapidly rotating magnetars can be wefindonlyaprobabilityofonly0.008%thatabinarymerger adjustedfreely,itisdifficulttoutilizestochasticityarguments could occur within 100 pc of Reticulum II, assuming an av- todeterminewhetherthismechanismcouldproduceasingle erageseparationbetweentheMWcenterandReticulumIIof r-processeventthroughoutthepopulationofUFDs. 20kpcduringthatepoch. However,thisnumbermaydramat- Some authors have argued for r-process enrichment con- ically increase if the Reticulum II dwarf resided close to the nected to the accretion induced collapse of a white dwarf MWbulgeduringearlyperiodsofintensestarformation. into a NS (Woosley & Baron 1992). While this method is connected to binary dynamics, its rate, dynamical equation 3. THER-PROCESSFROMDARKMATTER of state, and r-process yield are unknown (Fryer et al. 1999; The r-process abundance in Reticulum II and the MW, Thompson et al. 2001; Piro & Thompson 2014). However, couldresultfromdarkmatterinstigatingloneNSimplosions similar to core collapse supernovae, individual accretion in- thatejectneutron-richfluid. Extensiveradiosearchesbythe duced collapse events imply r-process abundance scales lin- GreenBanksTelescopeandAreciboarrayoftheinnerparsecs early with star formation rate, and thus metallicity, while oftheMilkyWaygalaxy,havenotrevealedtheexpectedpop- ReticulumIIandotherobservedUFDsaremetalpoor. ulationofgalacticcenter(GC)pulsars(Macquartetal.2010; Itshouldalsobeconsideredwhetherr-processenrichment Wharton et al. 2012; Dexter & O’Leary 2014; Chennaman- of Reticulum II might result from direct, accretion-induced galam & Lorimer 2014). In Bramante & Linden (2014), we collapse of a NS, an event that should be significantly rarer foundthatDMcouldimplodeNSsintheGCandthusaccount thantheAICofwhitedwarfs.AICofaneutronstarwouldre- forthemissingpulsars.Darkmatter,moredenseinthecentral sultaftereitherahigh-massorlow-massX-Raybinaryphase parsecoftheMilkyWay,canaccumulateatthecenterofNSs with mass transfer rates near the Eddington limit, which is and form a star-consuming BH within t ∼105−108 years, ∼10−8 M yr−1 for a NS. Assuming a maximum NS mass c (cid:12) dependingonthemass,localDMdensity(ρ ),andnucleon of2M andaninitialNSmassof1.4M ,thiscorresponds DM (cid:12) (cid:12) scatteringcross-section(σ )oftheDMparticle. to persistent Eddington limited accretion over the course of nX OutsidethecenteroftheMilkyWay,measurementsofthe 60 Myr. While some NS systems (e.g. the recently discov- characteristic age of pulsars, corroborated by the ages of bi- eredM82X-2(Bachettietal.2014)),mayproduceX-Raylu- nary partner white dwarfs, indicate that disk pulsars reach minositiesthatsignificantlyexceedtheEddingtonlimit,these agesofatleast∼Gyr(Bramante&Elahi2015). Thisputsan systems are thought to be transient, with the majority of ob- upperboundonσ foranumberofDMmodels(Goldman& served NS X-Ray binaries having maximum luminosities no nX Nussinov 1989; Starkman et al. 1990; Bertone & Fairbairn morethanafactoroftwoabovetheEddingtonLimit(Grimm 2008; Kouvaris 2008; de Lavallaz & Fairbairn 2010; Kou- etal.2003). Inthecaseofhigh-massX-Raybinaries,model varis&Tinyakov2011a;McDermottetal.2012;Kouvaris& runs performed at low metallicity (Z = 0.02Z ) predict only (cid:12) Tinyakov 2011b; Kouvaris 2012; Bramante et al. 2013; Bell 0.03 NS X-Ray binaries which produce consistent emission etal.2013;Bertonietal.2013;Bramanteetal.2014;Güver approaching the Eddington Luminosity for a starburst of et al. 2014; Zheng et al. 2015; Ángeles Pérez-García & Silk the size expected in all observed UFDs – 105 M (Linden (cid:12) 2015;Britoetal.2015;Kurita&Nakano2016). et al. 2010). Systems with significantly brighter emission, Although NSs in the Milky Way disk may be as old as suchasM82-X2havestablemasstransferperiodslimitedto 1010 yrs, NSs can still quickly implode in the Galactic cen- ∼105 yr(Fragosetal.2015). Inthecaseoflow-massX-Ray ter. TheDMcapturerateinNSsscaleslinearlywithρ and DM binaries,RocheLobeoverflowsystemsmaypersistonmuch σ . Therefore,becauseDMdensityatthecenteroftheMW nX longer timescales. Constraining ourselves to systems which isupto104timesdenserthaninthedisk,pulsarsinthecentral transfer 0.6 M within 500 Myr, we consider any persistent (cid:12) parsecscancollapseafter(cid:46)106 yrs,andarepotentiallysen- system with an X-Ray luminosity above 0.1L , or approx- edd sitiveto104 timeslargerσ (deLavallaz&Fairbairn2010; imately 1×1037 erg s−1. Studies by (Fragos et al. 2008) in- nX Bramante & Linden 2014). During NS collapse, the recon- dicate that approximately 1.7×10−4 persistent LMXBs, with figurationoftheNS’smagnetosphereradiates∼1042ergina luminosities exceeding 1037 erg s−1, would be produced in a millisecond;henceDM-inducedNSimplosionscouldalsobe 105 M system. While this model assumes higher metallic- (cid:12) thesourceoffastradiobursts(FRB)(Fuller&Ott2015). ityandcontinuousstarformation,thisisconservativeforour For concreteness, in the following calculation of the r- calculation, aslow-massX-Raybinariesareextremelylong- processyieldfrom aDMinducedNS implosion, weassume 4 Bramante&Linden a non-annihilating, negligibly self-interacting DM candidate 10Gyrforρ ∼104 GeVcm−3,see(Bramanteetal.2013). DM with a mass m = 10 PeV, that can either be bosonic or As the BH grows, the Roche limit expands, passing through X fermionic, and with a DM-nucleon scattering cross-section theentireNSbythetimeM ∼0.02M . BH (cid:12) σ (cid:38)10−45cm2. ThereareadditionalDMmodels,e.g. shift- To approximate the time for a natal black hole to grow to nX symmetricbosons(Bramante&Linden2014)andHiggspor- MBH ∼0.02 M(cid:12), at which point it squeezes and consumes tal fermions (Bramante & Elahi 2015), which would induce thebulkoftheNS,weemploytheBondiaccretionrateasin GCpulsarcollapseforDMmassesm =keV−PeV. Wecon- (Markovic1995;Kouvaris&Tinyakov2014). TheBondiac- X siderPeVmassDMbecauseitspredictedcross-sectioncom- cretionrateofneutronfluidontotheblackholeisdMBH/dt= plements imminent direct detection searches and it may be 4πλ G2M2 ρ /v3, where, in what follows, we take typical s BH n s responsible for type Ia supernovae ignition (Bramante 2015; valuesfortheneutronfluid’ssoundspeedv ∼0.3c,density s Graham et al. 2015). We assume NSs with radius RNS ∼ ρn ∼1015g/cm3, and accretion constant, λ=0.25, (Shapiro 10 km, mass MNS ∼1.5 M(cid:12), temperature TNS ∼104 K, and &Teukolsky1983). BecausetheBHgrowthrateaccelerates central density ρ ∼ 1015gcm−3. With these parameters, withaddedmass,thetimefortheBHtoconsumetheremain- NS anyσnX inexcessof10−45 cm2 saturatesthegeometriccross- deroftheNSissetbyitsinitialmass. FormX=10PeVmass sectionforDMcaptureinaNS.Therefore,∼PeVmassDM- DM, a BH forms once ∼10−14 M DM has collected at the (cid:12) induced NS collapse models are robust against variations in center of the NS, (Colpi et al. 1986; Bramante 2015). This σ . Fordetails,see(Bramante2015). BHgrowsuntiltheRochelimitencompassestheNSafter nX Hereafterwedemonstratethatduringthegrowthofasmall v3 (cid:18)10−14M (cid:19) BejHectiendsidaesaaNreSsu,l∼to1f0t−i5d−al1s0q−u1eMez(cid:12)innge.uTtroonp-rreiccihseflluyiddectoeurmldinbee timp∼ 4πλsG2sMBHρn (cid:39)50 MBH (cid:12) yrs. (4) themassejected,itwouldbenecessarytoperformadetailed This also implies that in a span of ∼ 1 ms, the remaining hydrodynamicsimulationoftidalforcesduringthe(likelytur- 1.4M ofneutronfluidcrossestheRochelimit. bulent) process of a NS’s rapid inward accumulation onto a (cid:12) Finally, we note that because the bulk of the NS is ac- growing black hole. We leave hydrodynamic simulations to cumulated within ∼ 1 ms, this disfavors the canonical r- futurework. Intheremainderofthissection,we(1)findthe processproductionmechanismproposedforcorecollapsesu- maximum mass of r-process elements ejected, (2) show that pernovae (Woosley et al. 1994), wherein an outpouring of thephysicalconditionspromptingneutronfluidejectionina neutrinos heat nuclear material expelled from the surface of NS-BH merger are also present when a NS implodes into a aproto-neutronstar(Duncanetal.1986). Inthestandardsce- blackhole,and(3)findthatsubstantialmassejectionbyneu- nario,whichassumessteady-stateneutrino-drivenmassejec- trinoemissionmustoccuroutsideasteady-stateregime. tionfromacollapse-heatedNS,theneutrinosandneutronstar Tosetanupperlimitonthemassthatescapesfromanim- crustmustbeinthermalequilibrium,whichisestablishedaf- plodingNS,wespecifythebindingenergyoftheimplosion, ter ∼1 s, too long compared to a ∼1ms timescale for the E ≈ 3GM2 (R−1 −R−1)/5 = 3×1057(M /1.5M ) GeV, i NS Sch. NS NS (cid:12) DM-inducedNSimplosion. where R is the star’s Schwarzschild radius. We compare Sch. thisbindingenergytotheenergyrequiredtoaccelerateanu- 4. DARKR-PROCESSPRODUCTIONINUFDSANDTHEMW cleontoescapevelocity(v ∼0.7c)atthesurfaceoftheNS, ej ThissectionexaminestheDMr-processenrichmentofthe E =γ(v )m ,wherem isthenucleonmass. Themaximum a ej n n Milky Way and UFDs. Results in the previous section indi- massofejectedmaterialis catethateachDM-inducedNSimplosionresultsin1.5M of (cid:12) (cid:18) (cid:19)(cid:18) (cid:19) NSmaterialcrossingtheRochelimitofablackhole. Recent E M 1.4 Mej≤mnEi (cid:46)0.2 1.5MNS γ(v ) M(cid:12). (2) simulations of NS-BH mergers find that ∼10−4−10−1 M(cid:12) a (cid:12) ej of ejecta is expelled at ∼0.1−0.3 c as NSs cross the Roche R-process production accompanies a NS-BH (or NS-NS) limit of 3−10 M(cid:12) mass black holes, with lower mass and mergerwhenejectedneutron-richfluidsdecompress,provid- higher spin BHs tending to yield higher mass ejecta, (see ing enough free neutrons to synthesize heavy elements (Lat- e.g. Shibata & Taniguchi 2011; Foucart et al. 2013; Deaton timer et al. 1977; Tanaka et al. 2014; Bauswein et al. 2014). et al. 2013; Bauswein et al. 2014; Kyutoku et al. 2015). ThemechanismforneutronfluidexpulsionfromaNSasitap- Hereafter, we show that MW and UFD r-process enrich- proachesablackhole,firstdescribedin(Wheeler1971)asthe ment from DM-induced implosions, favors an ejecta mass "tubeoftoothpaste"effect,wasdevelopedinFishbone(1973); M ∼10−5−10−3M . ej (cid:12) Mashhoon(1975);Lattimer&Schramm(1976). Asneutron Studiesoftheproductionandhydrodynamicredistribution fluidcrossestheRochelimitofablackhole(orothercompact ofr-processelementsintheMilkyWay(Argastetal.2004), body), the tidal squeeze from the black hole will eventually have recently been significantly improved to account for the exceedtheself-gravityoftheneutronfluid. Theresultingse- time-evolved migration of r-process elemental abundances, verecompressionpropelsstreamsofneutronfluidawayfrom including the affects of galactic subsystem mergers, mixing theblackhole. in the interstellar medium, and (outflows from) star forma- Hereweverifythatduringdark-matter-inducedNSimplo- tionduringthedynamicalevolutionoftheMilkyWay(vande sions,theentireNScrossestheRochelimitasitflowsintothe Voort et al. 2015; Shen et al. 2015; Wehmeyer et al. 2015). black hole formed at its center. Initially, the Roche limit for Particularly,ithasbeenshownthat,aslongasr-processpro- theneutronfluidsurroundinganewlyformedBHis ductioneventsoccuratsiteswhereneutronstarshaveformed within the inner kpc of the Milky Way, models will match (cid:18) M (cid:19)1/3(cid:18)1014gcm−3(cid:19)1/3 the observed r-process abundance and scatter in [Fe/H] ver- R (cid:39)20 BH m, (3) Roche 10−10M ρ sus [Eu/Fe] to presently available precision. The work of (cid:12) NS (vandeVoortetal.2015)demonstratedthatr-processchemi- where∼10−10M isthemaximumDMmassaNScollectsin cal evolution is consistent with observations so long as two (cid:12) 5 1013 star merger scenario. This conclusion is supported by simu- lations, showing that after r-process elements are produced, they are mixed through the outer ∼30 kpc of the MW on (cid:46) 3 yrs)1012 DM rm-partoccheesss MamWount GyArstipmreevscioaulessly(veaxnpldaeinVeodo,rttheetoabl.se2r0v1e5d;aSbhuenndeatncael.a2n0d15sc).at- -m ter of r-process elements observed in the MW require ∼ c1011 104 M ofr-processproductionover∼1010 yrs,withasub- V (cid:12) Consistent with missing pulsars, stantial fraction produced within ∼107 yrs of the initial star e G type Ia SN ignition, and FRBs formation epoch. The second requirement is fulfilled natu- (c 1010 rallybyGCNSimplosions, whichoftenoccurwithin∼107 × t yrsintheinnerkiloparsec,forDMparametersthatsolvethe M missing pulsar problem (the parameter space shown within D 109 Excluded by 5 Gyr old pulsars near earth the green band in Figure 1). In Figure 1 we show DM-NS- ρ implosion parameters for which a per-NS-implosion ejecta mass M would provide 104 M of r-process elements over 108 ej (cid:12) 10-5 10-4 0.001 0.01 0.1 the lifetime of the MW, also fulfilling the requirement that the first implosions occur within 107 yrs. The thick lines in M (M ) ej ⊙ Figure 1 show parameter space, where the fraction of NSs Figure1. They-axisistheintegratedtimeandlocalDMdensityrequired formed in the inner kpc, that collapse within 1010 yrs pro- toimplodeaNS,i.e.,aNSsurroundedbyDMdensityρDM implodesafter vide for the MW’s total r-process abundance. These thick timetc.Thex-axisindicatestheaverager-processmassejectedinaNSim- lines have been made by using the aforementioned Sofue plosion. Thegreenbandindicatesparameterspacefavoredforthemissing stellar distribution profile, along with an NFW dark matter pulsarproblem,GCimplosionsasFRBcandidates,andDMignitionoftype Iasupernovae. Thegreyregionisexludedbyoldpulsarsfoundnearearth. halo profile, ρNFW(r)=ρ /((r/r )(1+r/r )2), where we take DM 0 s s ThethickblacklineshowsparameterspacewhereNSimplosionsintheMW ρ =0.24 GeVcm−3 and r =20 kpc. To find the number of GCprovide104M(cid:12)ofr-processelements,consistentwithobservations,for ne0utron stars contained wisthin radius r, we use the Kroupa theNFWDMprofiledetailedinthetext. Thethickredandbluelinesshow afactorofthreevariationintotalMilkyWayr-processmassproductionfor &Weidner(2003)initialmassfunctionasinSection1anda anNFWDMprofile.Thedottedlinesshowthesameparameterspace,where minimum zero-age main sequence mass of 8 M , normaliz- (cid:12) 104M(cid:12)ofr-processelementsareproduced,butassumeaBurkertdarkmat- ingwiththeassumptionthat∼0.5%of(cid:38)8M(cid:12) starsformed terdensityprofile,withaconstantdarkmatterdensity,ρDM=50GeV/cm3, in the central 10 kpc will evolve to form NSs. Assuming a inside the central kiloparsec of the Milky Way. These lines truncate at constant 200 km/s MW DM velocity dispersion, we calcu- iρmDpMltocd∼ef5or×a1m0a1x1imGeuVmyMrsW,aDboMvedwenhsiictyhonfeuρtDroMn=st5a0rsGienVth/ecmM3W. willnot late the number of neutron stars formed close enough to the galactic center, that they will implode within the lifetime of theMilkyWay. criteria were met by an underlying neutron star-sourced r- To demonstrate that these results are robust against varia- processproductionmodel: (1)thetimeforr-processproduc- tionsintheassumedDMhalodensityprofile,wealsoemploy tion to occur after neutron star formation should fall within tmin ∼3×106−3×108 yrs, (2) the amount of r-process el- a Burkert dark matter halo profile (Burkert 1996), ρBDuMrk(r)= ements produced should be ∼104 solar masses, implying a ρB0/((1+r/rs,B)(1+r2/rs2,B)),wherewetakeρB0 =50GeV/cm3 ratebetween10−5and10−6r-processeventspersolarmassof and rs,B =1 kpc. The Burkert profile is flat or “cored" at its starsintheMilkyWay.Buildingontheseresults,weconsider center, and with the aforesaid parameters, DM will have a thescenarioofneutronstarimplosion-inducedr-processpro- constant 50 GeV/cm3 density inside the central kpc of the ductionintheMWtobeviable,solongasitmatchestheper Milky Way. Figure 1 shows that in preferred NS-implosion stellarmassrate(10−5−10−6M −1),totalr-processabundance parameterspace,thisdoesnotsubstantiallychangetheresult. (cid:12) (∼104M total r-process materials in the MW), and mini- In Figure 2 we display the expected rate of NS implo- (cid:12) sions in UFDs analyzed in (Ji et al. 2015a). The star forma- mum time for r-process enrichment to begin (t <108 yrs) min tion histories of UFDs are an area of active research; in ac- foundin(vandeVoortetal.2015). cordwiththeresultsof(Brownetal.2014;Bland-Hawthorn Inordertoobtainthenumberofneutronstarswhichformed et al. 2015), we show the number of r-process events after closeenoughtothecenterofthegalaxythattheycouldhave 500 Myr, assuming half the UFD stars formed in a burst at already imploded (compared to longer-lived NSs outside the z∼5. We take a Plummer stellar density in UFDs, ρ (r)= galacticcenter),wemodelthestellardensityoftheinner∼30 p kpc of the MW using velocity-curve-fitted density parame- (3MUFD/4πb3)(1+r2/b2)−5/2, where b∼42 pc. We assume ters provided in (Sofue 2013), namely ρ∗(r)=(cid:80)3i=1ρie−r/ai, tthheesdaomubel0e.e5x%poNnSenftoiarmlNatSioknicfkramctoiodnelasinin(FtahuecMheWr-,Gaingdueursein&g where (ρ =4×104, ρ =2×102, ρ =0.1 M pc−3) and 1 2 3 (cid:12) Kaspi 2006), we find that 2% of NSs formed inside a UFD (a =0.0038, a =0.12, a =3 kpc). One small difference 1 2 3 will experience a natal kick <5 km/s, and so remain bound between the neutron star implosion scenario and the neutron insidethecentralparsecs. Notethatasingleeventwhichpro- starmergerscenario,isthat,forparametersthatmatchtheto- duces ∼10−3−10−4 M r-process materials within 500 Myr tal observed r-process abundance, NS-implosions will occur (cid:12) in the ten surveyed ultra-faint dwarf spheroidals (along with mostlywithinthecentralkpc,wheretheDMdensityis(cid:38)100 ReticulumII)isconsistentwiththeobservedr-processabun- greaterandneutronstarimplosionscanoccur. However,neu- danceinthesesystems(Jietal.2016;Roedereretal.2016b). tronstarmergersarealsoexpectedtooccurmostlywithinthe We then find the radius within which NSs implode within centralfewkpc,sowedonotexpectthesubsequentchemical 500 Myr in the UFD. The UFD DM density is assumed andhydrodynamicalevolutionofr-processenrichmentinthe to follow an NFW profile as defined above, with ρ = NSimplosionscenariotodiffersubstantiallyfromtheneutron 0 6 Bramante&Linden observationsdiscovermoreUFDswithr-processenrichment, r 100 10-41 andmoreextensivesurveysofglobularclustersfindnosuch -Process Events in 500 My0.000.001.11110 DCMC-SiNnNdeuSc emd erNgSe ris,m vplesocs=i1oN0nSs0 , mkvmeesr/cgs= e(1r,u0 nvrkeemsca/=lis1st0i ck)m/s 100000....3000-36910.31Probability of one event errspfhK--rineapponoWvrrrrmczineooceaeocchitevtheehmhxaosseaeasssevnsmcnetiohaiontlivta,slntalehaUatellrtlohodiFakwwiopbsDinsrcunogesswknvdt.rsdhaoieunvaaeurcantiflttafidliNc6aoce.tatSnfiieluoeoCtrmrenrnbOnatrtashaeNtnleleyreraCrwgyrtvoLreieeevsfUsrlmudseylNSpsaoIoietOSpnrfevxeoNmUeptmrhultFbaeneoaiDnrlnRrgiaksaDeter.erir-tMoylAsipycnrsidusotstodo,lecurlilefiioptmlgisawrnosiordnn,IdIsipaanuyflrdnoglcsowydrted,etauttshmwhhrucafeees--t, R tion in quickly rotating magnetars could potentially explain 10-4 10-4 104 105 106 107 theobservedsignal,whiletheremainingmodelsforr-process Total Stellar Mass of UFDs (M ) productionappearintensionwiththedata. ⊙ We have found that DM-induced NS implosions could be Figure2. The number of r-process events expected after 500 Myr in the the source of r-process enrichment in UFDs and the MW. ensembleofUFDsanalyzedinJietal.(2015a),assuminghalfofthetotal This establishes a connection between the high DM density starsforminaburstatthebirthoftheUFDs.Thegreenlineandbandmatch inUFDsandther-processenrichmentobservedinReticulum theDM-NS-implosionlineandbandshowninFigure1.Theextremelyhigh densityofr-processelementsinReticulumIIcomparedtootherUFDsfavors II. In addition, the DM-induced r-process scenario predicts O(1)r-processeventsintegratedoverthispopulation. thatejectafromDM-inducedNScollapsewillpoweranFRB kilonova afterglow, akin to the signal expected from NS-NS 10−2 GeV/cm3 and scale factor rs =1.5 kpc, in accord with mergerkilonovae(Li&Paczynski1998;Metzgeretal.2010; a107 M(cid:12) DMhaloatredshiftz∼5(Klypinetal.2011). For Gorielyetal.2011;Kasenetal.2013). Ourfindingsalsoim- fixedDMdensity, DMcapturebyNSsinthe central50par- ply an r-process signature for primordial black hole capture secs of UFDs will be ∼200 times greater than in the MW, onNSs(Abramowiczetal.2009;Capelaetal.2013;Pani& becauseDMcaptureinNSsscalesinverselywithhaloveloc- Loeb2014;Defillonetal.2014;Grahametal.2015), andin itydispersion,whichisabout1km/sinthecentral50parsecs turn, small scale primordial perturbations (Carr et al. 1994). oftheUFDatz∼5. Figure2showsthatforUFDswiththe Of course, as with other proposed r-process sites (i.e. core aforestated stellar and DM density profile, the DM-induced collapsesupernovae,swiftlyrotatingmagnetars,andneutron NSimplosionmodelpredictsO(1)eventwithin500Myr, in star mergers), DM-induced NS implosions may also provide linewithobservationofhighr-processabundanceinReticu- afractionofthetotalr-processelementsintheMilkyWay. lumII,giventhestochasticityofr-processenrichmentinthe It is worth noting that Reticulum II is now unique among UFD population. We also calculated the expected rate for a UFDsintwoindependentways:(1)itistheonlyUFDprovid- BurkertDMprofile,withρ =10−2GeV/cm3andscalefac- ingapossibleγ-raysignal,and(2)itistheonlyUFDshow- 0,B torr =50pc.Aswithther-processenrichmentoftheMilky ing signs of r-process enrichment. In the case that r-process s,B Way,thischangedtheresultbylessthanafactoroftwo. productioniscausedthroughtheDMinducedcollapseofsin- gle NSs, these two observations are both consistent with en- 5. R-PROCESSENRICHMENTOFUFDSVS.GLOBULARCLUSTERS hanced DM density in the central region of the Reticulum II Onepotentialdiagnosticthatcandifferentiatebaryonicand dwarf. Further observations will be necessary to rule out, or DM mechanisms of r-process production is r-process en- confirm,thecontributionofDMtoboththeγ-raysignaland richment in globular cluster populations compared to that in ther-processenrichmentofReticulumII.Theresultsofthese UFDs. Bothenvironmentsexhibitsimplestarformationhis- studieshavethepotentialtoprovidenewinsightsintothena- tories, dominated by a single massive star formation event, tureofDM. and contain stars with extremely low and uniform metallici- Acknowledgements: ties. Thesystemsdifferintwoimportantaspects: (1)theDM We thank John Beacom, Keith Bechtol, Chris Belczyn- densityinthecenterofUFDsisextremelyhigh,(2)thestellar ski, Michal Dominik, Alex Drlica-Wagner, Jennifer John- densityofglobularclustersisordersofmagnitudehigherthan son,VickyKalogera,PaulLasky,AdamMartin,GrantMath- UFDs,significantlyenhancingthebinary(andternary)stellar ews, Annika Peter, Kris Sigurdson, Rebecca Surman, Todd processeswhichliebehindthemajorityofproposedbaryonic Thompson, and MacKenzie Warren for helpful discussions, r-processmechanisms. andtheABHMWorkshopfortheirhospitalitywhilethiswork Intriguingly, Roederer (2011) studied 11 globular clus- was completed. JB thanks the Aspen Center for Physics, ters and found no stars with an r-process enrichment which is supported by National Science Foundation grant [Eu/Fe]>1.2,aresultthatagreeswithearlierstudiesofNGC PHY-1066293. TLissupportedbytheNationalAeronautics 6397,NGC6752and47Tuc,whichfoundaverage[Eu/Fe]ra- andSpaceAdministrationthroughEinsteinPostdoctoralFel- tiosbelow0.47(Jamesetal.2004). Ontheotherhand,sixof lowshipAwardNo. PF3-140110. theninestarsobservedinReticulumIIcontain[Eu/Fe]ratios exceeding 1.68 (Ji et al. 2015a; Roederer et al. 2016a). The preference for significant r-process enrichment in Reticulum REFERENCES II (compared to any globular cluster) is difficult to explain Abramowicz,M.A.,Becker,J.K.,Biermann,P.L.,Garzilli,A.,Johansson, in terms of any binary (or ternary) stellar mechanism, since F.,&Qian,L.2009,Astrophys.J.,705,659 the rate of such encounters is expected to be orders of mag- Argast,D.,Samland,M.,Thielemann,F.K.,&Qian,Y.Z.2004,Astron. nitudehigherintheglobularclusterpopulation. Ifupcoming Astrophys.,416,997 7 Arnould,M.,Goriely,S.,&Takahashi,K.2007,Phys.Rept.,450,97 Graham,P.W.,Rajendran,S.,&Varela,J.2015,Phys.Rev.,D92,063007 Bachetti,M.,Harrison,F.A.,Walton,D.J.,Grefenstette,B.W., Grimm,H.-J.,Gilfanov,M.,&Sunyaev,R.2003,MNRAS,339,793 Chakrabarty,D.,Fürst,F.,Barret,D.,Beloborodov,A.,Boggs,S.E., Güver,T.,Erkoca,A.E.,HallReno,M.,&Sarcevic,I.2014,JCAP,1405, Christensen,F.E.,Craig,W.W.,Fabian,A.C.,Hailey,C.J., 013 Hornschemeier,A.,Kaspi,V.,Kulkarni,S.R.,Maccarone,T.,Miller, Hooper,D.,&Linden,T.2015,JCAP,1509,016 J.M.,Rana,V.,Stern,D.,Tendulkar,S.P.,Tomsick,J.,Webb,N.A.,& James,G.,François,P.,Bonifacio,P.,Carretta,E.,Gratton,R.G.,&Spite,F. Zhang,W.W.2014,Nature,514,202 2004,A&A,427,825 Bauswein,A.,ArdevolPulpillo,R.,Janka,H.T.,&Goriely,S.2014, Ji,A.P.,Frebel,A.,Chiti,A.,&Simon,J.D.2015a,ArXive-prints Astrophys.J.,795,L9 —.2016,Nature,531,610 Bechtol,K.,etal.2015,Astrophys.J.,807,50 Ji,A.P.,Frebel,A.,Simon,J.D.,&Geha,M.2015b,ArXive-prints Bell,N.F.,Melatos,A.,&Petraki,K.2013,Phys.Rev.,D87,123507 Kasen,D.,Badnell,N.R.,&Barnes,J.2013,Astrophys.J.,774,25 Bertone,G.,&Fairbairn,M.2008,Phys.Rev.,D77,043515 Kim,D.-W.,Fabbiano,G.,Ivanova,N.,Fragos,T.,Jordán,A.,Sivakoff, Bertoni,B.,Nelson,A.E.,&Reddy,S.2013,Phys.Rev.,D88,123505 G.R.,&Voss,R.2013,ApJ,764,98 Bland-Hawthorn,J.,Sutherland,R.,&Webster,D.2015,Astrophys.J.,807, Kirby,E.N.,Simon,J.D.,Geha,M.,Guhathakurta,P.,&Frebel,A.2008, 154 Astrophys.J.,685,L43 Bonnivard,V.,Combet,C.,Maurin,D.,Geringer-Sameth,A.,Koushiappas, Klypin,A.,Trujillo-Gomez,S.,&Primack,J.2011,Astrophys.J.,740,102 S.M.,Walker,M.G.,Mateo,M.,Olszewski,E.W.,&BaileyIII,J.I. Kobulnicky,H.A.,Fryer,C.L.,&Kiminki,D.C.2006,ArXiv 2015,Astrophys.J.,808,L36 Astrophysicse-prints Bovill,M.S.,&Ricotti,M.2011,Astrophys.J.,741,17 Koch,A.,&Rich,R.M.2014,ApJ,794,89 Bramante,J.2015,Phys.Rev.Lett.,115,141301 Koposov,S.E.,Belokurov,V.,Torrealba,G.,&Evans,N.W.2015, Bramante,J.,&Elahi,F.2015,Phys.Rev.,D91,115001 Astrophys.J.,805,130 Bramante,J.,Fukushima,K.,&Kumar,J.2013,Phys.Rev.,D87,055012 Kouvaris,C.2008,Phys.Rev.,D77,023006 Bramante,J.,Fukushima,K.,Kumar,J.,&Stopnitzky,E.2014,Phys.Rev., —.2012,Phys.Rev.Lett.,108,191301 D89,015010 Kouvaris,C.,&Tinyakov,P.2011a,Phys.Rev.,D83,083512 Bramante,J.,&Linden,T.2014,Phys.Rev.Lett.,113,191301 —.2011b,Phys.Rev.Lett.,107,091301 Brito,R.,Cardoso,V.,&Okawa,H.2015,Phys.Rev.Lett.,115,111301 —.2014,Phys.Rev.,D90,043512 Brown,T.M.,Tumlinson,J.,Geha,M.,Simon,J.D.,Vargas,L.C., Kroupa,P.,&Weidner,C.2003,Astrophys.J.,598,1076 VandenBerg,D.A.,Kirby,E.N.,Kalirai,J.S.,Avila,R.J.,Gennaro,M., Kurita,Y.,&Nakano,H.2016,Phys.Rev.,D93,023508 Ferguson,H.C.,Muñoz,R.R.,Guhathakurta,P.,&Renzini,A.2014, Kyutoku,K.,Ioka,K.,Okawa,H.,Shibata,M.,&Taniguchi,K.2015,Phys. ApJ,796,91 Rev.,D92,044028 Burbidge,E.M.,Burbidge,G.R.,Fowler,W.A.,&Hoyle,F.1957,Reviews Lattimer,J.M.,Mackie,F.,Ravenhall,D.G.,&Schramm,D.N.1977,ApJ, ofModernPhysics,29,547 213,225 Burkert,A.1996,IAUSymp.,171,175,[Astrophys.J.447,L25(1995)] Lattimer,J.M.,&Schramm,D.N.1976,ApJ,210,549 Capela,F.,Pshirkov,M.,&Tinyakov,P.2013,Phys.Rev.,D87,123524 Li,L.-X.,&Paczynski,B.1998,Astrophys.J.,507,L59 Carr,B.J.,Gilbert,J.H.,&Lidsey,J.E.1994,Phys.Rev.,D50,4853 Linden,T.,Kalogera,V.,Sepinsky,J.F.,Prestwich,A.,Zezas,A.,& Cescutti,G.,Romano,D.,Matteucci,F.,Chiappini,C.,&Hirschi,R.2015, Gallagher,J.2010,Astrophys.J.,725,1984 A&A,577,A139 Macquart,J.-P.,Kanekar,N.,Frail,D.,&Ransom,S.2010,Astrophys.J., Chennamangalam,J.,&Lorimer,D.R.2014,Mon.Not.Roy.Astron.Soc., 715,939 440,86 Markovic,D.1995,Mon.Not.Roy.Astron.Soc.,277,25 Colpi,M.,Shapiro,S.L.,&Wasserman,I.1986,Phys.Rev.Lett.,57,2485 Mashhoon,B.1975,ApJ,197,705 Davies,M.B.,Benz,W.,Piran,T.,&Thielemann,F.K.1994,ApJ,431,742 Matteucci,F.,Romano,D.,Arcones,A.,Korobkin,O.,&Rosswog,S.2014, deLavallaz,A.,&Fairbairn,M.2010,Phys.Rev.,D81,123521 MNRAS,438,2177 Deaton,M.B.,Duez,M.D.,Foucart,F.,O’Connor,E.,Ott,C.D.,Kidder, McConnachie,A.W.2012,Astron.J.,144,4 L.E.,Muhlberger,C.D.,Scheel,M.A.,&Szilagyi,B.2013,Astrophys. McDermott,S.D.,Yu,H.-B.,&Zurek,K.M.2012,Phys.Rev.,D85, J.,776,47 023519 Defillon,G.,Granet,E.,Tinyakov,P.,&Tytgat,M.H.G.2014,Phys.Rev., Metzger,B.D.,Martinez-Pinedo,G.,Darbha,S.,Quataert,E.,Arcones,A., D90,103522 Kasen,D.,Thomas,R.,Nugent,P.,Panov,I.V.,&Zinner,N.T.2010, Dexter,J.,&O’Leary,R.M.2014,Astrophys.J.,783,L7 Mon.Not.Roy.Astron.Soc.,406,2650 Dominik,M.,Belczynski,K.,Fryer,C.,Holz,D.,Berti,E.,Bulik,T., Metzger,B.D.,Thompson,T.A.,&Quataert,E.2008,ApJ,676,1130 Mandel,I.,&O’Shaughnessy,R.2012,Astrophys.J.,759,52 Meyer,B.S.,Mathews,G.J.,Howard,W.M.,Woosley,S.E.,&Hoffman, Dominik,M.,Belczynski,K.,Fryer,C.,Holz,D.E.,Berti,E.,Bulik,T., R.D.1992,ApJ,399,656 Mandel,I.,&O’Shaughnessy,R.2013,Astrophys.J.,779,72 Nishimura,N.,Takiwaki,T.,&Thielemann,F.K.2015,Astrophys.J.,810, Drlica-Wagner,A.,etal.2015,Astrophys.J.,809,L4 109 Duncan,R.C.,Shapiro,S.L.,&Wasserman,I.1986,ApJ,309,141 Pani,P.,&Loeb,A.2014,JCAP,1406,026 Eichler,D.,Livio,M.,Piran,T.,&Schramm,D.N.1989,Nature,340,126 Piro,A.L.,&Thompson,T.A.2014,Astrophys.J.,794,28 Faucher-Giguere,C.-A.,&Kaspi,V.M.2006,Astrophys.J.,643,332 Qian,Y.Z.,&Woosley,S.E.1996,Astrophys.J.,471,331 Fischer,T.,Whitehouse,S.C.,Mezzacappa,A.,Thielemann,F.K.,& Roederer,I.U.2011,Astrophys.J.,732,L17 Liebendorfer,M.2010,Astron.Astrophys.,517,A80 Roederer,I.U.,Mateo,M.,Bailey,III,J.I.,Song,Y.,Bell,E.F.,Crane, Fishbone,L.G.1973,ApJ,185,43 J.D.,Loebman,S.,Nidever,D.L.,Olszewski,E.W.,Shectman,S.A., Foucart,F.,Deaton,M.B.,Duez,M.D.,Kidder,L.E.,MacDonald,I.,Ott, Thompson,I.B.,Valluri,M.,&Walker,M.G.2016a,ArXive-prints C.D.,Pfeiffer,H.P.,Scheel,M.A.,Szilagyi,B.,&Teukolsky,S.A. —.2016b,AJ,151,82 2013,Phys.Rev.,D87,084006 Salvadori,S.,&Ferrara,A.2009,Mon.Not.Roy.Astron.Soc.,395,6 Fragos,T.,Kalogera,V.,Belczynski,K.,Fabbiano,G.,Kim,D.-W., Shapiro,S.L.,&Teukolsky,S.A.1983,Blackholes,whitedwarfs,and Brassington,N.J.,Angelini,L.,Davies,R.L.,Gallagher,J.S.,King, neutronstars:Thephysicsofcompactobjects A.R.,Pellegrini,S.,Trinchieri,G.,Zepf,S.E.,Kundu,A.,&Zezas,A. Sharpee,B.J.,&Thompson,T.A.2013,Astrophys.J.,766,64 2008,ApJ,683,346 Shen,S.,Cooke,R.J.,Ramirez-Ruiz,E.,Madau,P.,Mayer,L.,&Guedes, Fragos,T.,Linden,T.,Kalogera,V.,&Sklias,P.2015,Astrophys.J.,802,L5 J.2015,ApJ,807,115 Frebel,A.,Simon,J.D.,&Kirby,E.N.2014,ApJ,786,74 Shibata,M.,&Taniguchi,K.2011,LivingRev.Rel.,14,6 Freiburghaus,C.,Rosswog,S.,&Thielemann,F.-K.1999,ApJ,525,L121 Simon,J.D.,etal.2015,Astrophys.J.,808,95 Fryer,C.L.,Benz,W.,Herant,M.,&Colgate,S.A.1999,Astrophys.J., Sofue,Y.2013,Publ.Astron.Soc.Jap.,65,118 516,892 Starkman,G.D.,Gould,A.,Esmailzadeh,R.,&Dimopoulos,S.1990,Phys. Fuller,J.,&Ott,C.2015,Mon.Not.Roy.Astron.Soc.,450,L71 Rev.,D41,3594 Geringer-Sameth,A.,Walker,M.G.,Koushiappas,S.M.,Koposov,S.E., Surman,R.,McLaughlin,G.C.,Ruffert,M.,Janka,H.T.,&Hix,W.R. Belokurov,V.,Torrealba,G.,&Evans,N.W.2015,Phys.Rev.Lett.,115, 2008,Astrophys.J.,679,L117 081101 Symbalisty,E.,&Schramm,D.N.1982,Astrophys.Lett.,22,143 Goldman,I.,&Nussinov,S.1989,Phys.Rev.,D40,3221 Tanaka,M.,Hotokezaka,K.,Kyutoku,K.,Wanajo,S.,Kiuchi,K., Goriely,S.,Bauswein,A.,&Janka,H.T.2011,Astrophys.J.,738,L32 Sekiguchi,Y.,&Shibata,M.2014,Astrophys.J.,780,31 8 Bramante&Linden Thompson,T.A.2011,Astrophys.J.,741,82 Willems,B.,&Kalogera,V.2004,Astrophys.J.,603,L101 Thompson,T.A.,Burrows,A.,&Meyer,B.S.2001,Astrophys.J.,562,887 Woosley,S.E.,&Baron,E.1992,ApJ,391,228 Tsujimoto,T.,&Nishimura,N.2015,ApJ,811,L10 Woosley,S.E.,Wilson,J.R.,Mathews,G.J.,Hoffman,R.D.,&Meyer, vandeVoort,F.,Quataert,E.,Hopkins,P.F.,Kereš,D.,&Faucher-Giguère, B.S.1994,Astrophys.J.,433,229 C.-A.2015,MNRAS,447,140 Wyse,R.F.G.2009,inIAUSymposium,Vol.258,IAUSymposium,ed. Webster,D.,Bland-Hawthorn,J.,&Sutherland,R.2015,ApJ,799,L21 E.E.Mamajek,D.R.Soderblom,&R.F.G.Wyse,11–22 Wehmeyer,B.,Pignatari,M.,&Thielemann,F.K.2015,Mon.Not.Roy. Zheng,H.,Sun,K.-J.,&Chen,L.-W.2015,Astrophys.J.,800,141 Astron.Soc.,452,1970 ÁngelesPérez-García,M.,&Silk,J.2015,Phys.Lett.,B744,13 Wharton,R.S.,Chatterjee,S.,Cordes,J.M.,Deneva,J.S.,&Lazio,T.J.W. 2012,Astrophys.J.,753,108 Wheeler,J.1971,inStudyWeekonNucleiofGalaxies,ed.D.J.K. O’Connell,539

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.