Astronomy&Astrophysicsmanuscriptno.17635 c ESO2012 (cid:13) January10,2012 On the physical structure of IRC+10216 ⋆ Ground-based and Herschel observations of CO and C H 2 E.DeBeck1,R.Lombaert1,M.Agu´ndez2,3,F.Daniel2,L.Decin1,4,J.Cernicharo2,H.S.P.Mu¨ller5,M.Min6,P. Royer1,B.Vandenbussche1,A.deKoter4,6,L.B.F.M.Waters7,4,M.A.T.Groenewegen8,M.J.Barlow9,M. Gue´lin10,13,C.Kahane11,J.C.Pearson12,P.Encrenaz13,R.Szczerba14,andM.R.Schmidt14 1 InstituteforAstronomy,DepartmentofPhysicsandAstronomy,KULeuven,Celestijnenlaan200D,3001Heverlee,Belgium e-mail:[email protected] 2 2 CAB.INTA-CSIC.CrtaTorrejo´nkm4.28850Torrejo´ndeArdoz.Madrid.Spain 1 3 LUTH,ObservatoiredeParis-Meudon,5PlaceJulesJanssen,92190Meudon,France 0 4 AstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,SciencePark904,1098XHAmsterdam,TheNetherlands 2 5 I.PhysikalischesInstitut,Universita¨tzuKo¨ln,Zu¨lpicherStr.77,50937Ko¨ln,Germany 6 AstronomicalInstituteUtrecht,UniversityofUtrecht,POBox8000,NL-3508TAUtrecht,TheNetherlands n 7 SRONNetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands a 8 RoyalObservatoryofBelgium,Ringlaan3,1180Brussels,Belgium J 9 DepartmentofPhysicsandAstronomy,UniversityCollegeLondon,GowerStreet,LondonWC1E6BT,UK 9 10 InstitutdeRadioastronomieMillime´trique(IRAM),300ruedelaPiscine,38406Saint-Martin-dHe`res,France 11 LAOG,ObservatoiredeGrenoble,UMR5571-CNRS,Universite´JosephFourier,Grenoble,France ] 12 JetPropulsionLaboratory,Caltech,Pasadena,CA91109,USA R 13 LERMA,CNRSUMR8112,ObservatoiredeParisandE´coleNormaleSupe´rieure,24RueLhomond,75231ParisCedex05,France S 14 N.CopernicusAstronomicalCenter,Rabianska8,87-100Torun,Poland . h Received—;accepted— p - o Abstract r t Context. Thecarbon-richasymptoticgiantbranchstarIRC+10216undergoesstrongmassloss,andquasi-periodicenhancements s a ofthedensityofthecircumstellarmatterhavepreviouslybeenreported.Thestar’scircumstellarenvironmentisawell-studied,and [ complexastrochemicallaboratory,withmanymolecularspeciesprovedtobepresent.COisubiquitousinthecircumstellarenvelope, whileemissionfromtheethynyl(C2H)radicalisdetectedinaspatiallyconfinedshellaroundIRC+10216.Asreportedinthisarticle, 1 werecentlydetectedunexpectedlystrongemissionfromthe N = 4 3, 6 5, 7 6, 8 7,and9 8transitionsofC Hwiththe v IRAM30mtelescopeandwithHerschel/HIFI,challengingtheavaila−bleche−micala−ndphy−sicalmode−ls. 2 0 Aims. WeaimtoconstrainthephysicalpropertiesofthecircumstellarenvelopeofIRC+10216,includingtheeffectofepisodicmass 5 lossontheobservedemissionlines.Inparticular,weaimtodeterminetheexcitationregionandconditionsofC H,inordertoexplain 2 8 therecentdetections,andtoreconcilethesewithinterferometricmapsoftheN =1 0transitionofC H. 1 Methods. Usingradiative-transfermodelling,weprovideaphysicaldescriptionof−thecircumstellare2nvelopeofIRC+10216,con- . strainedbythespectral-energydistributionandasampleof20high-resolutionand29low-resolutionCOlines—todate,thelargest 1 modelledrangeofCOlinestowardsanevolvedstar.Wefurtherpresentthemostdetailedradiative-transferanalysisofC Hthathas 0 2 beendonesofar. 2 1 Results.Assuming a distance of 150pc to IRC+10216, the spectral-energy distribution is modelled with a stellar luminosity of 11300L andadust-mass-lossrateof4.0 10 8M yr 1.Basedontheanalysisofthe20high-frequency-resolution COobserva- : − − v tions,an⊙averagegas-mass-lossrateforthel×ast1000y⊙earsof1.5 10 5M yr 1isderived.Thisresultsinagas-to-dust-massratioof − − i 375,typicalforthistypeofstar.Thekinetictemperaturethrough×outthec⊙ircumstellarenvelopeischaracterisedbythreepowerlaws: X T (r) r 0.58forradiir 9stellarradii,T (r) r 0.40forradii9 r 65stellarradii,andT (r) r 1.20forradiir 65stellar r rakdinii.T∝his−modelsuccessf≤ullydescribesallk4in9ob∝serv−edCOlines.W≤eal≤soshowtheeffectofdekinnsity∝enh−ancementsint≥hewindof a IRC+10216ontheC H-abundanceprofile,andthecloseagreementwefindofthemodelpredictionswithinterferometricmapsof 2 theC HN =1 0transitionandwiththerotationallinesobservedwiththeIRAM30mtelescopeandHerschel/HIFI.Wereporton theim2portanceo−fradiativepumpingtothevibrationallyexcitedlevelsofC Handthesignificanteffectthispumpingmechanismhas 2 ontheexcitationofalllevelsoftheC H-molecule. 2 Keywords.Stars:individual:IRC+10216—stars:massloss—stars:carbon—astrochemistry—stars:AGBandpost-AGB— radiativetransfer 1. Introduction Thecarbon-richMira-typestarIRC+10216(CWLeo)islocated ⋆ Herschel is an ESA space observatory with science instruments at the tip of the asymptoticgiantbranch(AGB), whereit loses providedbyEuropean-ledPrincipalInvestigatorconsortiaandwithim- massat a highrate ( 1 4 10−5M yr−1; Crosas&Menten, portantparticipationfromNASA. 1997; Groenewegen∼et−al.,×1998; ⊙Cernicharoetal., 2000; 1 E.DeBecketal.:COandCCHaroundIRC+10216 DeBecketal., 2010). Located at a distance of 120 250pc scan coversthe frequencyranges 480 1250GHz and 1410 − − − (Loupetal.,1993;Crosas&Menten,1997;Groenewegenetal., 1910GHz, with a spectral resolution of 1.1MHz. All spectra 1998; Cernicharoetal., 2000), it is the most nearby C-type were measured in dual beam switch (DBS; deGraauwetal., AGB star. Additionaly, since its very dense circumstellar 2010)modewitha3 chopthrow.Thistechniqueallowsoneto ′ envelope (CSE) harbours a rich molecular chemistry, it has correctforanyoff-sourcesignalsinthespectrum,andtoobtain been deemed the prime carbon-rich AGB astrochemical astablebaseline. laboratory. More than 70 molecular species have already Since HIFI is a double sideband (DSB) heterodyne instru- been detected (e.g. Cernicharoetal., 2000; Heetal., 2008; ment, the measured spectra contain lines pertaining to both Tenenbaumetal., 2010), of which many are carbon chains, the upper and the lower sideband. The observation and data- e.g. cyanopolyynesHC N (n=1, 3, 5, 7, 9, 11) and C N (n=1, reductionstrategiesdisentanglethese sidebandswith veryhigh n n 3, 5). Furthermore, several anions have been identified, e.g. accuracy, producing a final single-sideband (SSB) spectrum C H (n= 4,6,8;Cernicharoetal.,2007;Remijanetal.,2007; without ripples, ghost features, and any other instrumental ef- n − Kawaguchietal., 2007), and C N (Thaddeusetal., 2008), fects,coveringthespectralrangesmentionedabove. 3 − C5N− (Cernicharoetal., 2008), and CN− (Agu´ndezetal., ThetwoorthogonalreceiversofHIFI(horizontalH,andver- 2010). Detections towards IRC+10216 of acetylenic chain ticalV)wereusedsimultaneouslytoacquiredataforthewhole radicals (CnH), for n=2 up to n=8, have been reported by e.g. spectralscan,exceptforband2a2.Sincewedonotaimtostudy Gue´linetal. (1978, C4H), Cernicharoetal. (1986a,b, 1987b, polarisationoftheemission,weaveragedthespectrafromboth C5H), Cernicharoetal. (1987a) and Gue´linetal. (1987, C6H), polarisations, reducing the noise in the final product. This ap- Gue´linetal. (1997, C7H), and Cernicharo&Gue´lin (1996, proachisjustifiedsincenosignificantdifferencesbetweentheH C8H). andVspectraareseenforthelinesunderstudy. The smallest CnH radical, ethynyl (CCH, or C2H), was Adetaileddescriptionoftheobservations,andofthedatare- first detected by Tuckeretal. (1974) in its N = 1 0 tran- ductionofthislargesurveyisgivenbyCernicharoetal.(2010b) − sition in the interstellar medium (ISM) and in the envelope and Cernicharoetal. (2011b, in prep.). All C H data in this 2 aroundIRC+10216.It was shownto be one ofthe mostabun- paper are presented in the antenna temperature (T ) scale3. A∗ dant ISM molecules. The formation of C2H in the envelopeof Roelfsemaetal.(2012,submitted)describethecalibrationofthe IRC+10216 is attributed mainly to photodissociation of C2H2 instrumentandmentionuncertaintiesintheintensityoftheorder (acetylene),oneofthemostprominentmoleculesincarbon-rich of10%. AGBstars.Fonfr´ıaetal.(2008)modelledC2H2 emissioninthe ForthecurrentstudyweconcentrateonobservationsofCO mid-infrared,whichsamplesthedust-formationregioninthein- and C H. The ten CO transitions covered in the survey range 2 ner CSE. The lack of a permanent dipole moment in the lin- from J = 5 4upto J = 11 10andfrom J = 14 13upto earlysymmetricC2H2-moleculeimpliestheabsenceofpurero- J =16 15.−TheC2Hrotation−altransitionsN =6 5,−7 6,and tational transitions which typically trace the outer parts of the 8 7ar−ecoveredbythesurveysinbands1a(480− 56−0GHz), envelope.C2H,ontheotherhand,hasprominentrotationallines 1b−(560 640GHz),and2a(640 720GHz),respe−ctively.The thatprobethechemicalandphysicalconditionslinkedtoC2H2 N = 9 −8transitionisdetectedin−band2b(720 800GHz)of inthesecoldouterlayersoftheCSE.Ithasbeenestablishedthat thesurv−ey,butwithverylowS/N;higher-Ntransi−tionswerenot C2H emission arises from a shell of radicals situated at ∼15′′ detected.AsummaryofthepresentedHIFIdataofC2Hisgiven fromthecentralstar(Gue´linetal.,1993).Observationswiththe inTable1,thespectraareshowninFig.1. IRAM30mtelescopeandHerschel/HIFIshowstrongemission inseveralhigh-NrotationaltransitionsofC H,somethingwhich 2 isunexpectedandchallengesourunderstandingofthismolecule 2.2.Herschel/SPIRE inIRC+10216. In the framework of the Herschel guaranteed time key We presentanddiscussthe high-sensitivity,high-resolution programme “Mass loss of Evolved StarS” (MESS; data obtained with the instruments on board Herschel Groenewegenetal., 2011) the SPIRE Fourier Transform (Pilbrattetal., 2010): HIFI (Heterodyne Instrument for the Spectrometer (FTS; Griffinetal., 2010) was used to obtain Far Infrared; deGraauwetal., 2010), SPIRE (Spectral and IRC+10216’s spectrum on 19 November 2009 (OD 189). Photometric Imaging Receiver; Griffinetal., 2010), and PACS The SPIRE FTS measures the Fourier transform of the source (Photodetector Array Camera & Spectrometer;Poglitschetal., spectrum across two wavelength bands simultaneously. The 2010)andwiththeIRAM30mTelescope1inSect.2.Thephys- short wavelength band (SSW) covers the range 194 313µm, icalmodelforIRC+10216’scircumstellarenvelopeispresented − while the long wavelength band (SLW) covers the range and discussed in Section 3. The C H molecule, and our treat- 2 303 671µm. The total spectrum covers the 446 1575GHz mentofitisdescribedinSection4.Asummaryofourfindings − − frequency range, with a final spectral resolution of 2.1GHz. isprovidedinSection5. Thequalityoftheacquireddatapermitsthedetectionoflinesas weakas1 2Jy.Forthetechnicalbackgroundandadescription − 2. Observations of the data-reduction process we refer to the discussions by Cernicharoetal. (2010a) and Decinetal. (2010b). These 2.1.Herschel/HIFI:SpectralScan authors report uncertainties on the SPIRE FTS absolute fluxes The HIFI data of IRC+10216 presented in this paper are part oftheorderof15 20%forSSWdata,20 30%forSLWdata − − ofaspectrallinesurveycarriedoutwithHIFI’swidebandspec- below 500µm, and up to 50% for SLW data beyond 500µm. trometer(WBS; deGraauwetal.,2010)inMay2010,on3con- secutive operational days (ODs) of the Herschel mission. The 2 Because of an incompleteness, only the horizontal receiver was usedduringobservationsinband2a.Supplementaryobservationswill 1 BasedonobservationscarriedoutwiththeIRAM30mTelescope. beexecutedlaterinthemission. IRAM is supported by INSU/CNRS (France), MPG (Germany) and 3 Theintensityinmain-beamtemperatureT isobtainedviaT = MB MB IGN(Spain). T /η ,whereη isthemain-beamefficiency,listedinTable1. A∗ MB MB 2 E.DeBecketal.:COandCCHaroundIRC+10216 CCH(N = 1−0) IRAM 30m CCH(N = 2−1) IRAM 30m 2.0 J=3/2−1/2 J=1/2−1/2 5 J=5/2−3/2 J=3/2−1/2 J=3/2−3/2 1.5 4 CH, v=1 AlCl 4 7 *T (K)A 1.0 C6H AlCl *T (K)A 23 0.5 1 0.0 0 87.25 87.30 87.35 87.40 87.45 87.50 174.65 174.70 174.75 174.80 174.85 ν (GHz) ν (GHz) CCH(N = 3−2) IRAM 30m CCH(N = 4−3) IRAM 30m 4 J=7/2−5/2 J=5/2−3/2 J=5/2−5/2 J=9/2−7/2 J=7/2−5/2 J=7/2−7/2 6 3 *T (K)A 4 SiN *T (K)A 2 2 1 0 0 261.9 262.0 262.1 262.2 349.3 349.4 349.5 349.6 349.7 ν (GHz) ν (GHz) CCH(N = 6−5) HIFI 1a CCH(N = 7−6) HIFI 1b 0.6 J=13/2−11/2 J=11/2−9/2 J=15/2−13/2 J=13/2−11/2 0.3 0.5 0.4 0.2 K) K) *T (A 00..23 SiC2 *T (A 0.1 0.1 0.0 0.0 523.95 524.00 524.05 611.25 611.30 611.35 611.40 ν (GHz) ν (GHz) CCH(N = 8−7) HIFI 2a CCH(N = 9−8) HIFI 2b 0.10 J=17/2−15/2 J=15/2−13/2 J=19/2−17/2 J=17/2−15/2 0.10 0.08 0.06 K) 0.05 K) 0.04 *T (A *T (A 0.02 0.00 0.00 SiC2 −0.02 30SiS SiC2 −0.04 −0.05 698.5 698.6 698.7 785.6 785.7 785.8 785.9 786.0 ν (GHz) ν (GHz) Figure1.C HN =1 0,2 1,3 2,4 3,6 5,7 6,8 7,and9 8rotationaltransitionsinIRC+10216’senvelopeasobserved 2 − − − − − − − − withtheIRAM30mtelescopeandHerschel/HIFI.Thefinestructurecomponentsarelabelledwiththerespective J-transitionsin thetopofeachpanel,whilethehyperfinecomponentsareindicatedwithverticaldottedlines.Forthesakeofclarity,weomittedthe componentsthataretooweaktobedetected.SeeSect.4fordetailsonthespectroscopicstructureofC H.Additionallyobserved 2 featuresrelatedtoothermoleculesarealsoidentified. We refer to Table 2 for a summary of the presented data, and 2.3.Herschel/PACS show an instructive comparison between the HIFI and SPIRE data of the C H lines N = 6 5 up to N = 9 8 in Fig. 2. It 2 − − Decinetal. (2010b) presented PACS data of IRC+10216, isclearfromtheseplotsthatthelowerresolutionoftheSPIRE also obtained in the framework of the MESS programme spectrumcausesmanylineblendsinthespectraofAGBstars. (Groenewegenetal., 2011). The full data set consists of SED scans in the wavelength range 52 220µm, obtained at differ- − ent spatial pointings on November 12, 2009 (OD182). We re- reduced this data set, taking into account not only the central spaxelsofthedetector,butallspaxelscontainingacontribution 3 E.DeBecketal.:COandCCHaroundIRC+10216 80 2 C C S N 60 Si N Si H x (Jy) 40 HCN CS, SiS 13HC CCH, SiS HCN CS SiS, 13CO u Fl 20 N C H 0 480 500 520 540 80 O S 17C 34C ux (Jy) 4600 HO2 S, SiO, 29SiS NH3 CS SiS 13HCN SiO CCH SiS HCN , HCN, Fl Si Cl 20 H N O C C H 0 560 580 600 620 0.3 CCH HIFI 1b U SiS,ν=2 30SiO SiC SiS,ν=1 0.2 2 * (K)TA 0.1 SiC2 AlCl HCN U U U 0.0 609 610 611 612 613 614 80 C N N O C 60 H Si H ux (Jy) 40 SiS, SiS, 13CO SiS CS , CCH, HCN SiS HCN Fl C2 20 N Si N C C H H 0 640 660 680 700 80 2 N H S C C2 C O C Si 60 S, Si S S S, Si S CO 13, H O S, Si S, C CN, Flux (Jy) 2400 Si C Si 30HO, Si2 Si 13 SiS Si C 1713CO, C H 0 720 740 760 780 ν (GHz) Figure2. SPIRE data in the range 475 795GHz, containingthe C H-linesdetected with HIFI. The shaded strips in the panels 2 − indicatethespectralrangesoftheHIFIdatashowninthepanelsofFig.1.Thelabelsmarktheprincipalcontributorstothemain spectralfeatures.Acomparisonofemissionintherange609 614GHz,asobtainedwithSPIRE andwith HIFI,isshowninthe − insetpanel. 4 E.DeBecketal.:COandCCHaroundIRC+10216 Table1.SummaryoftheIRAM30mandHIFIdetectionsofC H.Columnsare,respectively,theinstrumentorbandwithwhichwe 2 detectedtheC Hemission,themain-beamefficiencyη ,thehalf-powerbeamwidthHPBW,theintegrationtime,thenoiselevel 2 MB inthespectra,thefrequencyresolution∆ν,thevelocityresolution∆3,thedetectedC Hrotationaltransitions,thefrequencyrange 2 inwhichweobservedthelines,andthefrequency-integratedintensityI = T dν. ν∗,A A∗ R Instrument η HPBW Int.Time Noise ∆ν ∆3 CCH Freq.Range I MB ν∗,A orBand ( ) (min) (mK) (MHz) (kms 1) transition (MHz) (KMHz) ′′ − IRAM30m A100/B100 0.82 28.2 614 2.5 1.0 3.4 N=1 0 J=3/2−1/2 87278.2 87339.6 15.90 J=1/2−1/2 87392.8−87453.6 7.58 C150/D150 0.68 14.1 215 10 1.0 1.7 N=2−1 − J=5/2−3/2 174621.1 174682.5 58.73 J=3/2−1/2 174708.2−174744.9 38.09 J=3/2−3/2 174796.2−174863.7 5.90 E3 0.57 9.4 161 10 1.0 1.1 N=3−2 − J=7/2−5/2 261974.3 262023.4 110.74 J=5/2−3/2 262048.8−262084.4 60.63 J=5/2−5/2 262191.3−262270.0 6.33 E3 0.35 7.0 79 5.3 2.0 1.7 N=4−3 − J=9/2−7/2 349311.5 349368.3 66.98 J=7/2−5/2 349368.3−349421.6 60.15 J=7/2−7/2 349575.1−349671.8 2.35 − − Herschel/HIFI 1a 0.75 40.5 28 9.9 1.5 0.86 N=6 5 J=13/2 −11/2 523941.9 524000.4 18.60 J=11/2− 9/2 524000.4−524061.9 18.74 J=11/2 −11/2 − 1b 0.75 34.7 13 7.4 0.50 0.25 N=7−6 − − J=15/2 −13/2 611237.1 611301.6 10.09 J=13/2−11/2 611301.6−611364.1 9.44 J=13/2−13/2 − 2a( ) 0.75 30.4 12 13.7 4.5 1.8 N=8−7 − − † J=17/2 −15/2 698487.5 698619.0 4.21 J=15/2−13/2 698619.0−698738.0 4.47 J=15/2−15/2 − 2b 0.75 27.0 15 10 6.0 2.2 N=9−8 − − J=19/2 −17/2 785750.0 785875.0( ) 0.20( ) ‡ ‡ J=17/2−15/2 785875.0−785900.0( ) 0.20( ) ‡ ‡ J=17/2−17/2 − − − − Notes. ( )Onlythehorizontalpolarisationwasobtained.( )Duetothelowsignal-to-noiseratioofthisdataset,thesenumbersaretobeinterpreted † ‡ withcaution. totheflux,i.e.20outof25spaxelsintotal.Theherepresented sitions are shown in Fig. 1, and details on the observationsare dataset,therefore,reflectsthetotalfluxemittedbytheobserved listedinTable1. regions,withinthe approximationthatthere isnoloss between the spaxels. The estimated uncertainty on the line fluxes is of Table 2.SummarisedinformationontheSPIRE spectrumcon- the order of 30%. Due to instrumental effects, only the range tainingtheN =7 6transitionofC H.∆νisthefrequencyreso- 5126C−O1tr9a0nµsimtioonfstJhe=P1A4CS1s3peucptrtuomJi=su4s2abl4e1.,Tchoivserrainnggeenheorlgdys lution,∆3istheve−locityresolution,2andσisthermsnoise.Fν,A∗ levelsfrom 350cm 1 u−pto 3450cm 1.−Asisthecaseforthe isthefrequency-integratedfluxinthegivenfrequencyrange. − − ∼ ∼ SPIREdata,lineblendsarepresentinthePACSspectrumdueto thelowspectralresolutionof0.08 0.7GHz. Frequencyrange 446 1575GHz Integrationtime 2664s − ∆ν − 2.1GHz ∆3 201kms 1 − F 16915JyMHz σ 850mJy ν,A∗ 2.4.IRAM30m:linesurveys We combine the Herschel data with data obtained with the IRAM30mtelescopeatPicoVeleta.TheC H N = 1 0tran- 2 3. Theenvelopemodel:dust&CO − sition was observed by Kahaneetal. (1988); N = 2 1 was − observedbyCernicharoetal.(2000).N = 3 2andN = 4 3 Weassumedadistanced = 150pctoIRC+10216,ingoodcor- − − wereobservedbetweenJanuaryandApril2010,usingtheEMIR respondence with literature values (Groenewegenetal., 1998; receiversasdescribedindetailby(Kahaneetal.,2011,inprep.). Men’shchikovetal., 2001; Scho¨ieretal., 2007, and references The data-reduction process of these different data sets is de- therein).Thesecondassumptioninourmodelsisthattheeffec- scribed in detail in the listed papers. The observed C H tran- tive temperatureT = 2330K, followingthe modelof a large 2 eff 5 E.DeBecketal.:COandCCHaroundIRC+10216 setofmid-IRlinesofC H andHCN,presentedbyFonfr´ıaetal. Table 3. Dust composition in the CSE of IRC+10216, used 2 2 (2008). We determined the luminosity L , the dust-mass-loss to produce the fit to the SED in Fig. 3. The columns list the ⋆ rate M˙ , and the dust composition from a fit to the spec- dustspecies,theassumedshapes,therespectivemassfractions, dust tral energy distribution (SED; Sect. 3.1). The kinetic tempera- and the references to the optical constants of the differentdust tureprofileandthegas-mass-lossrate M˙ weredeterminedfrom species. a CO-line emission model (Sect. 3.2). The obtained envelope model will serve as the basis for the C H-modelling presented 2 Dustspecies Shape Massfraction References in Sect. 4. We point out that all modelling is performedin the (%) radialdimensiononly,i.e.in1D,assumingsphericalsymmetry Amorphouscarbon DHS 53 Preibischetal.(1993) throughouttheCSE. Siliconcarbide CDE 25 Pitmanetal.(2008) Magnesiumsulfide CDE 22 Begemannetal.(1994) 3.1.Dust 6 The dust modelling was performed using MCMax (Minetal., ϕ=0.00 2009),aMonteCarlodustradiativetransfercode.ThebestSED 5 ϕϕ==00..2540 (ISO) 104 fittotheISOSWSandLWSdata,showninFig.3,isbasedona 102 swteitlhlatrhleumreisnuolstsityofLM⋆=e1n1’s3h0c0hLik⊙o.vTehtiasli.s(i2n0g0o1o)4d,ccoornrseisdpeornindgenthcee Jy) 4 (Jy)Fν 1100−20 gdiivffeesreancseteilnlaardroapdtieudsdRi⋆staonfce2.0Tmhiellci-oamrcbsiencaotniodns,oifnLv⋆erayndgoToeffd 4 (10Fν 23 1100−−64 1 10 102 103 agreement with the values reported by e.g. Ridgway&Keady λ (µm) (1988,19mas)andMonnieretal.(2000,22mas). 1 IRC+10216 is a Mira-type pulsator, with a pe- riod of 649days (LeBertre, 1992). Following Eq. 1 0 of Men’shchikovetal., we find that L varies between 10 100 1000 L 15800L at maximum light (at⋆phase ϕ=0), and λ (µm) ⋆,ϕ=0 L ≈ 6250L⊙ at minimum light (ϕ=0.5). Fig. 3 shows the SfiEg⋆,uDϕr=-e0v,.5ai≈triiasbviliistiyb⊙lceotrhraetspthoendspinrgeatdootnhethLe⋆p-hvoatroiambeiltirtiyc.pForionmtscthane 1F0ig−u8rMe3.ySr−E1D, amndodtehlesdfourstIRcoCm+p1o0s2it1io6n, uasnidngprMo˙pduesrtti=es 4li.s0te×d beaccountedforbythemodelscoveringthefullL -range. in Tabl⊙e 3 and spatial distribution and properties shown in ⋆ Fig. 4. The SED model is constrained by the ISO SWS and TheadopteddustcompositionisgiveninTable3.Themain LWS data (full black); photometric points (black diamonds) constituents are amorphouscarbon (aC), silicon carbide (SiC), are taken from Ramstedtetal. (2008) and Ladjaletal. (2010). andmagnesiumsulfide(MgS),withmassfractionsof53%,25%, Dash-dotted grey: model at maximum light, with 15800L , and 22%, respectively. The aC grains are assumed to follow a dashed grey: best fit to the ISO data, at phase ϕ=0.24, u⊙s- distributionofhollowspheres(DHS; Minetal.,2003),withsize ing11300L ,dash-triple-dottedgrey:modelatminimumlight, 0.01µmandafillingfactorof0.8.ThepopulationoftheSiCand with 6250L⊙. The inset is identical, but plotted in log log MgSdustgrainsisrepresentedbyacontinuousdistributionofel- scale. ⊙ − lipsoids(CDE; Bohren&Huffman,1983),wheretheellipsoids allhavethevolumeofaspherewithradiusa =0.1µm.CDEand d DHSarebelievedtogivea morerealistic approximationofthe 3.2.CO characteristicsofcircumstellardustgrainsthana populationof spherical grains (Mie-particles). Assuming DHS for the domi- To constrain the gas kinetic temperature T (r) and the gas kin nant aC grains was found to provide the best general shape of densityρ (r)throughouttheenvelope,wemodelledtheemis- gas theSED.Alldustspeciesareassumedtobeinthermalcontact. sion of 20 rotational transitions of 12CO (Sect. 3.2), measured The absorption and emission between 7µm and 10µm with ground-based telescopes and Herschel/HIFI. The gas ra- and around 14µm that is not fitted in our SED model diative transfer is treated with the non-local thermal equilib- can be explained by molecular bands of e.g. HCN and rium(NLTE)codeGASTRoNOoM(Decinetal.,2006,2010c).To C2H2(Gonza´lez-Alfonso&Cernicharo,1999;Cernicharoetal., ensure consistency between the gas and dust radiative transfer 1999). models,wecombineMCMaxandGASTRoNOoM,bypassingonthe Based on an average of the specific densities of the dust dustproperties(e.g.densityandopacities)fromthemodelpre- components ρs = 2.41gcm−3, we find a dust mass-loss rate sentedinSect.3.1andFig.4tothegasmodelling.Thegeneral of 4.0 10−8M yr−1, with the dust density ρdust(r), dusttem- methodbehindthiswillbedescribedindetailbyLombaertetal. peratur×eTdust(r)⊙and Qext/ad, with Qext the totalextinctioneffi- (2012,inprep.). ciency,showninFig.4.Theinnerradiusofthedustyenvelope, Thelargedatasetofhigh-spectral-resolutionrotationaltran- i.e. the dust condensation radius of the first dust species to be sitions of CO consists of 10 lines observed from the ground formed, is determined at Rinner=2.7R⋆ by taking into account and 10 lines observed with HIFI, which are listed in Table 4. pressure-dependentcondensationtemperaturesfor the different Sincethecalibrationofground-baseddataisattimesuncertain dustspecies(Kamaetal.,2009).Thesedustquantitiesareused (Skinneretal., 1999), large data sets of lines that are observed asinputforthegasradiativetransfer,modelledinSect.3.2. simultaneously and with the same telescope and/or instrument are of great value. Also, the observational uncertainties of the 4 The extensive modelling of Men’shchikovetal. was based on a HIFIdataaresignificantlylowerthanthoseofthedataobtained light-curveanalysisandSEDmodelling,andholdsaquoteduncertainty with ground-basedtelescopes (20 40%). Since the HIFI data − ontheluminosityof20%. ofCOmakeuphalfoftheavailablehigh-resolutionlinesinour 6 E.DeBecketal.:COandCCHaroundIRC+10216 To reproduce the CO lines within the observational un- R R inner outer,dust certainties, we used L =11300L , and a temperature profile5 2.8 R 5000 R ⋆ * * that is a combination of three p⊙ower laws: T (r) r 0.58 kin − −3m) 10−1 8 ((aa)) Tfor (rr)≤ r9R1.⋆2,atTlkainrg(re)rr∝adiri,−b0.a4sefodro1n0thRe⋆w≤orkrby≤Fo6n5f∝Rr´ı⋆a,etanald. g c 10−20 (2k0in08)∝and−Decinetal. (2010a). The minimum temperature in (st 10−2 2 theenvelopeissetto5K.TheradialprofilesofTkin(r)and3(r) ρdu 10−2 4 a6re s1h0ow4nininthFeigin.n5e.rUwsiinndg,awefraficntidonthaaltaabugnadsa-nmcaessC-lOo/sHs2raotef − K) 1000 ((bb)) CM˙o×mofbi1n.i5ng×t1h0e−r5eMsu⊙ltsyrf−ro1mreSpreocdt.u3ce.1s wthiethCtOhoslienefrsovmertyhewCelOl. ( ust 100 model,we find a gas-to-dust-massratio of 375,in the rangeof Td typical values for AGB stars (102 103; e.g. Ramstedtetal., − 10 2008). The predicted CO line profiles are shown and compared 1 101 102 103 104 to the observations in Fig. 6. All lines are reproduced very r (R) * well in terms of integrated intensity, considering the re- ) 108 spective observational uncertainties. The fraction of the pre- −1m 106 ((cc)) dicted and observed velocity-integrated main-beam intensities c (d 104 IMB,model/IMB,data variesintherange74−145%fortheground- a based data set, and in the range 89 109% for the HIFI data /ext 102 set. The shapes of all observed lines−are also well reproduced, Q 100 withtheexceptionoftheIRAMlines(possiblyduetoexcitation 0.1 1 10 100 1000 and/orresolutioneffects). λ (µm) Fig.7showsthecomparisonbetweentheobservedCOtran- sitions J = 14 13 up to J = 42 41 in the PACS spectrum − − and the modelled line profiles, convolved to the PACS resolu- Figure4. Spatialdistributionand propertiesof the dustfor our best SED fit to the ISO data at ϕ=0.24 in Fig. 3: (a) dust den- tion. Considering the uncertainty on the absolute data calibra- sity ρ (r),(b)dusttemperatureT (r),and(c) Q /a .The tionandthepresenceoflineblendswithe.g.HCN,C2H2,SiO, dust dust ext d SiS,orH Oinseveraloftheshownspectralranges(Decinetal., dashedlinesindicatetheinnerandouterradiiofthedustyenve- 2 2010b),theoverallfitoftheCOlinesisverygood,withexcep- lope. tionofthelinesJ =14 13, 15 14,and16 15.Thissignificant − − − differencebetweenthemodelpredictionsandthedatacould,to date,notbeexplained.BoththeHIFIdataandthehigher-JPACS 1000 (K)n 100 −0.58 −0.40 lineSskairnenreerperotdaul.c(e1d9v9e9r)ynwoteeldlbthyethpeosmsiobdleelp.resenceofagradi- Tki 10 −1.20 entintheturbulentvelocity3turb,withdecreasingvaluesforin- creasingradialdistancefromthestar.Wefindnoclearevidence −1s) 1250 10 100 1000 10000 isnhoowunr dinataFisge.t6thuastetsh3is de=cr1e.a5skemins31tu,rbanisdprerepsreondtu.cTehsethmeolidneel m turb − k 10 shapesandintensitiestoahighdegree.InFig.8wecomparethe (exp 5 predictionsofasetofCO-linesusingdifferentvaluesfor3turbin v 0 ordertoassesstheinfluenceofthisparameter. 10 100 1000 10000 Assuming a lower value of 0.5kms−1 or 1.0kms−1 yields r (R) an incomplete reproduction of the emission profile between * 44kms 1 and 41kms 1 for all lines observed with HIFI. − − −Assuming a high−er value of 2kms 1 leads to the overpredic- Figure5. Overview of the gas kinetic temperature and expan- − tion of the emission in this 3-rangefor all observedlines, with sionvelocityusedintheradiativetransfermodelcalculatedwith GASTRoNOoM. In the top panel, we indicated the exponents α the strongest effect for the lowest-J lines. The influence of the from the T (r) rα-power laws used to describe the kinetic differentvaluesofthe turbulentvelocityonthe emissionin the kin ∝ 3-rangeof 41to 12kms 1isnegligible. temperature,andtheradialrangestheyapplyto.SeeSect.3.2. − − − 4. C H 2 sample, these will serve as the starting point for the gas mod- 4.1.Radicalspectroscopy elling. C H( C C H)isalinearmoleculewithanopenshellcon- 2 The adopted CO laboratory data are based on the work of figurat•ion,i.e.itisaradical,withanelectronic2Σ+ground-state Goorvitch&Chackerian (1994) and Winnewisseretal. (1997), configuration (Mu¨lleretal., 2000). Spin-orbit coupling causes and are summarised in the Cologne Database for Molecular fine structure (FS), while electron-nucleus interaction results Spectroscopy (CDMS; Mu¨lleretal., 2005). Rotational levels in hyperfine structure (HFS). Therefore, to fully describe C H 2 J = 0 up to J = 60are taken intoaccountforboththe ground in its vibrationalground-state,we need the following coupling vibrational state and the first excited vibrational state. CO-H 2 collisionalrateswereadoptedfromLarssonetal.(2002). 5 ThecentralstarisassumedtobeablackbodyatatemperatureT . eff 7 E.DeBecketal.:COandCCHaroundIRC+10216 12 NRAO 0.74 1124 SEST 1.00 20 IRAM 1.01 25 IRAM 0.76 60 IRAM 0.96 10 1−0 1−0 1−0 20 1−0 2−1 10 K) 8 8 15 15 40 (TMB 46 46 10 10 20 2 2 5 5 0 0 0 0 0 80 40 CSO 50 JCM T IRAM 40 CSO CSO 0.92 1.24 100 1.11 1.45 1.29 30 3−2 40 3−2 80 3−2 30 4−3 60 6−5 (K)B 20 30 60 20 40 TM 20 40 20 10 10 10 20 0 0 0 0 0 15 HIFI HIFI HIFI 20 HIFI 20 HIFI 5−4 0.89 15 6−5 0.90 15 7−6 0.98 8−7 0.96 9−8 1.00 15 15 (K)B 10 10 10 10 10 M T 5 5 5 5 5 0 0 0 0 0 25 25 20 1H0IF−I9 1. 00 20 1H1IF−I1 0 1. 09 20 1H4IF−I1 3 1. 04 20 1H5IF−I1 4 1. 12 20 1H6IF−I1 5 1. 07 K) 15 15 15 15 15 (MB 10 10 10 10 10 T 5 5 5 5 5 0 0 0 0 0 −60 −40 −20 0 −60 −40 −20 0 −60 −40 −20 0 −60 −40 −20 0 −60 −40 −20 0 v (km s−1) v (km s−1) v (km s−1) v (km s−1) v (km s−1) Figure6.Comparisonoftheobserved12COemissionlines(blackhistogram),andthelineprofilespredictedbytheGASTRoNOoM- model(red dashedline)with parametersas listed in Table 5. Theline transitions J (J 1) andthe telescopeswith which they − − wereobservedareindicatedintheupperleftcornerofeverypanel.ThefactorI /I isgivenintheupperrightcornerof MB,model MB,data everypanel. scheme: C H has one bending mode ν , and two stretching modes, 2 2 ν andν .Therotationalground-stateofthebendingmode(ν ) 1 3 2 J = N+S (1) is situated 530K above the ground state. The C C stretch ∼ F = J +I, (2) (ν3)at 2650Kisstrong.TheC Hstretch(ν1)at 4700Kis weak,a∼ndisresonantwiththefirstexcited2Πelectro∼nicstateat where N istherotationalangularmomentum,notincludingthe 5750KofC2H.Foreachofthesevibrationalstates—ground- ∼ electron or quadrupolar angular momentum (S and I, respec- state,ν2,ν3,andν1—weconsider20rotationallevels,i.e.rang- tively), J isthetotalrotationalangularmomentum,andFisthe ingfromN =0uptoN =19. nuclearspinangularmomentum. The equilibrium dipole moments of the ground and The strong ∆J = ∆N FS components have been detected first excited electronic states have been calculated as µ = upto N = 9 8.Relativetothestrongcomponents,theweaker 0.769 and 3.004Debye, respectively (Woon, 1995). The − ∆J =0componentsdecreaserapidlyinintensitywithincreasing dipole moments of the fundamental vibrational states in the N, andtheyhavebeendetectedupto N = 4 3.TheHFS has ground electronic state are also assumed to be 0.769Debye. − alsobeen(partially)resolvedfortransitionsuptoN =4 3. This is usually a good assumption as shown in the − Spectroscopic properties of the ground vibrational state of case of HCN by Deleon&Muenter (1984). The band C H have most recently been determined by Padovanietal. dipole moments for rovibrational transitions were calcu- 2 (2009)andarethebasisfortheentryintheCDMS. lated from infrared intensities published by Tarroni&Carter Our treatment of the radiative transfer (Sect. 4.3) does not (2004): µ(ν2=1 0)=0.110Debye, µ(ν3=1 0)=0.178Debye, → → dealwiththeFS andHFSofC2H,andislimitedtothepredic- and µ(ν1=1→0)=0.050Debye. The influence of the vibra- tionofrotationallinesN N with∆N = 1,accordingtoa1Σ tionally excited states on transitions in the vibrational ground ′ approximation. Therefore→, all levels treated are described with statewillbediscussedinSect.4.3. only one quantum number N. The final line profiles are calcu- A more completetreatmentof C H will likely haveto take 2 lated by splitting the total predicted intensity of the line over into account, e.g., overtones of the ν -state. These have non- 2 thedifferent(hyper)finecomponents,dependingonthe relative negligible intrinsic strengths (Tarroni&Carter, 2004) because strengthofthesecomponents(CDMS),andpreservingthetotal of anharmonicity and vibronic coupling with the first excited intensity.Notethat,strictlyspeaking,thissplittingisonlyvalid electronic state. Spectroscopic data for several of these are al- underLTEconditions,butthat,duetoourapproachofC Hasa ready available in the CDMS. A multitude of high-lyingstates 2 1Σ-molecule,wewillapplythisschemethroughoutthispaper. mayalsohavetobeconsideredastheyhaveratherlargeintrin- 8 E.DeBecketal.:COandCCHaroundIRC+10216 800 600 400 200 0 −200 1000 800 700 650 550 −400 14−13 15−14 16−15 17−16 18−17 102000300040005000600000 475 375 325 300 250 800 600 −50 −50 −50 −50 −50 400 1607 1612 1617 1721.0 1726.5 1732.0 1835.0 1841.5 1848.0 1949 1956 1963 2063 2071 2079 200 0 −200 450 500 350 350 350 −400 19−18 20−19 21−20 22−21 23−22 102000300040005000600000 200 225 150 150 150 800 600 −50 −50 −50 −50 −50 400 2176 2185 2194 2290.0 2299.5 2309.0 2404 2414 2424 2517 2528 2539 2631 2642 2654 200 0 −200 350 350 750 750 650 −400 24−23 25−24 26−25 27−26 28−27 102000300040005000600000 150 150 350 350 300 ) 800 y 600 (J −50 −50 −50 −50 −50 400 x 2744 2756 2769 2857 2870 2883 2980 2984 2988 3093 3098 3103 3206.0 3211.5 3217.0 200 u 0 Fl −200 650 500 450 300 300 −400 29−28 30−29 31−30 32−31 33−32 102000300040005000600000 300 225 200 125 125 800 600 −50 −50 −50 −50 −50 400 3319 3325 3331 3432.0 3438.5 3445.0 3545 3552 3559 3657.0 3664.5 3672.0 3769.0 3777.5 3786.0 200 0 −200 250 250 200 150 200 −400 34−33 35−34 36−35 37−36 38−37 102000300040005000600000 100 100 75 50 75 800 600 −50 −50 −50 −50 −50 400 3882.0 3890.5 3899.0 3994 4003 4012 4106.0 4115.5 4125.0 4218 4228 4238 4329 4340 4351 200 0 −200 250 100 100 100 −400 39−38 40−39 41−40 42−41 102000300040005000600000 100 25 25 25 −50 −50 −50 −50 4441 4452 4464 4552 4564 4576 4663 4676 4688 4774 4787 4800 ν (GHz) Figure7.ComparisonofCO-emissionlinesmeasuredwithPACS(blackhistogram)andthepredictedlineprofiles(reddottedline). ThetransitionsJ (J 1)arelabelledinthetopleftcornerofeachsubpanel. − − sic intensities because of the vibronic interaction between the 4.2.Observationaldiagnostics groundandthefirstexcitedelectronicstates. The C H-emission doublets due to the molecule’s fine struc- 2 ture(Sect.4.1)areclearlypresentinallhigh-resolutionspectra showninFig1.ForN =1 0,2 1,and3 2,thehyperfinestruc- − − − 9 E.DeBecketal.:COandCCHaroundIRC+10216 20 SEST 10 CSO 10 CSO CSO 4 1−0 8 3−2 8 4−3 15 6−5 3 6 10 K) 6 (MB 2 4 4 5 T 1 2 2 0 0 0 0 −2 −5 −1 4 HI FI 5 HI FI 5 HI FI 5 HI FI 5−4 4 8−7 4 11−10 4 16−15 3 3 3 3 K) (B 2 2 2 2 M T 1 1 1 1 0 0 0 0 −1 −55 −50 −45 −40 −35 −55 −50 −45 −40 −35 −55 −50 −45 −40 −35 −55 −50 −45 −40 −35 v (km s−1) v (km s−1) v (km s−1) v (km s−1) Figure8.ZoomonthebluewingofaselectionoftheCOlineprofiles,withthetransitionsJ (J 1)labelledinthetopleftcorner of each panel.We show the comparisonbetween the observedlines and predictedlines wit−h ass−umed valuesof 3 =0.5kms 1 turb − (fullgrey),1.0kms 1(dottedgrey),theadoptedvalueof1.5kms 1(dashedgrey),and2.0kms 1(dash-dottedgrey). − − − ture is clearlydetected in our observations.Thedouble-peaked lineprofilesaretypicalforspatiallyresolvedopticallythinemis- 15 sion (Olofsson,in Habing&Olofsson, 2003), andindicate that µν)2 N = 3.84 (0.09) x 10+15 cm− 2 the emitting material has reached the full expansion velocity6, πS3 14 Trot = 23.4 (1.3) K ip.oe.si3ti∞on=of14th.5ekemmsit−t1in.gThshiselilssi(n∼a1c6c′′o;rdGanuce´elinweitthalt.h,e19o9b9se)ravnedd /8I,corrv 13 thevTeolodceitryivperoifinfleordmeraitvioendfoonrththiseernevgeilmopeei(nSewcth.i3ch.2)t.he lines 3610 12 k a1r9e83e)x,cuitseidn,gwe construct a rotational diagram (Schloerbetal., og(3 11 1−0 2−1 3−2 4−3 6−5 7−6 8−7 l 0 50 100 150 N exp Eu = 3k×1036 I3,corr, (3) Eu/k (K) Z(T ) × −kT ! 8π3 νSµ2 rot rot whereNisthecolumndensity,Zthetemperaturedependentpar- Figure9. Rotational diagram of the measured C2H transitions, titionfunction,E theenergyoftheupperlevelofthetransition based on Eq. 3. Transitions — in the 1Σ approximation— are u incm 1,ktheBoltzmannconstantinunitsofcm 1K 1,T the labelled in grey. The numbersgiven in parenthesesare the un- − − − rot rotationaltemperatureinK,µthedipolemomentinDebye,and certaintiesonthederivedcolumndensityandrotationaltemper- ν the frequency of the transitions in Hz. I3,corr is the velocity- ature. integratedantennatemperature, 1 3LSR+3 The unique rotational temperature points to excitation of the I3,corr = fbffηMB Z3LSR−3∞∞TA∗d3 (4) liinnaescoinnfionneedsianrgelaethreagticmane,biencahcacroarcdtaenricseedtowthitehaobnuengdaasntceemppeeark- correctedforthebeamfillingfactor(Kramer,1997) ature(Gue´linetal.,1999). 2 1 exp √ln2 θ /θ , θ <θ fbff =1,− (cid:18)−h × source beami (cid:19) θssoouurrccee ≥θbbeeaamm (5) 44..33..1R.aCdoiallitsivioentaralnrastfeesrmodelling andforthebeamefficiencyη (seeTable1).Wehaveassumed MB Forrotationaltransitionswithinthevibrationalgroundstateand auniformemissionsourcewithasizeof32 indiameterforall ′′ within the ν = 1 bending state and the ν = 1 and ν = 1 C Htransitions,basedontheinterferometricobservationsofthe 2 1 3 2 stretching states we adopted the recently published collisional N =1 0emissionbyGue´linetal.(1999). Fro−m Fig. 9 we see that the C2H emission is characterised rsaiotensaolfraHteCsNfo−rHC2Hby,aDnudmthoeucshimelileatraml.o(2le0c1u0l)a.rTmhaeslsaacnkdofsiczoelloif- by a unique rotational temperature T = 23.3( 1.3)K, and a 2 source-averagedcolumndensity N =ro3t.84( 0.09±) 1015cm 2. HCNandC2Hinspirethisassumption.Thecollisionalratesare ± × − givenfor25differenttemperaturesbetween5and500K,hence 6 We assume that the half width at zero level of the CO emission coveringtherangeoftemperaturesrelevantfortheC2Haround lines,i.e.14.5kms−1,isindicativeforthehighestvelocitiesreachedby IRC+10216.Since ν3 and ν1 are at ∼2650K and ∼4700K, re- thegasparticlesintheCSE. spectively, collisional pumping to these vibrationally excited 10