ebook img

On the periodicity problem of residual r-Fubini sequences PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the periodicity problem of residual r-Fubini sequences

TRANSACTIONSOFTHE AMERICANMATHEMATICALSOCIETY Volume00,Number0,Pages000–000 S0002-9947(XX)0000-0 ON THE PERIODICITY PROBLEM OF RESIDUAL r-FUBINI SEQUENCES AMIRABBASASGARIANDMAJIDJAHANGIRI 7 Abstract. For any positive integer r, the r-Fubini number with parameter n, de- 1 0 notedbyFn,r,isequal tothenumberofwaysthat theelements ofasetwithn+r elements can be weak ordered such that the r least elements are in distinct orders. 2 Inthisarticlewefocus onthesequence of residuesofther-Fubininumbers modulo n apositiveintegersandshowthatthissequenceisperiodicandthen,exhibithowto a calculate its periodlength. As an extra result, an explicit formulafor the r-Stirling J numbersisobtained whichisfrequentlyusedincalculations. 5 2 ] T 1. Introduction N The Fubini numbers (also known as the Ordered Bell numbers) form an integer se- . h quence in which the nth term counts the number of weak orderings of a set with n t elements. Weak orderingmeans that the elements canbe ordered, allowingties. A. Cay- a m ley studied the Fubini numbers as the number of a certain kind of trees with n + 1 terminal nodes [2]. The Fubini numbers can also be defined as the summation of the [ Stirling numbers of the second kind. The Stirling number of the second kind which is 1 denotedby n ,countsthenumberofpartitionsofnelementsintok non-emptysubsets. v k The sequence of residues of the Fubini numbers modulo a positive integer s is pointed 6 (cid:8) (cid:9) outbyBjornPoonen.Heshowedthatthis sequenceisperiodicandcalculatedtheperiod 7 2 length for each positive integer s [5]. 7 The r-Stirling numbers of the second kind are defined as an extension to the Stirling 0 numbers of the second kind, and similarly,an r-Fubini number is defined as the number . 1 ofwayswhichtheelementsofasetwithn+relementscanbeweakorderedsuchthatthe 0 first r elements are in distinct places. One can study the same problem of periodicity of 7 residual sequence in case of the r-Fubini numbers. I. Mezo investigated this problem for 1 s=10[4].Inthisarticle,ω(A ),theperiodofther-Fubininumbersmoduloanypositive : r,s v integer s ∈ N is computed. Based on the Fundamental Theorem of Arithmetic, ω(A ) r,p Xi is calculated for powers of odd primes pm. The cases s = 2m are studied separately. Therefore if s = 2mpm1pm1...pmk is the prime factorization, then the ω(A ) is equal r 1 1 k r,s a to the least common multiple (LCM) of ω(Ar,pmi)’s and ω(Ar,2m), for i=1,2,...,k. i ThepreliminariesarepresentedinSection2andinSections3and4thelengthofthe periods are computed in the case of odd prime powers and the 2 powers, respectively. The last section contains the final theorem which presents the conclusion of this article. 2. Basic Concepts The Stirling number of the second kind with the parameters n and k counts the number of ways that the set A = {1,2,...,n} with n elements can be partitioned into k non-empty subsets. If we want that the first r elements of A are in distinct subsets, the numberofwaysto dosois the r-Stirling number ofthe secondkindwith parameters 2010 Mathematics Subject Classification. Primary11B50, 11B75,05A10;Secondary11B73,11Y55. Keywords andphrases. residuesmoduloprimepowerfactors,r-Fubininumbers,periodicsequences, r-Stirlingnumbersofthesecondkind. (cid:13)cXXXXAmericanMathematicalSociety 1 2 AMIRABBASASGARIANDMAJIDJAHANGIRI n and k, which is denoted by n (so it is clear that n ≥ k ≥ r). Fubini numbers are k r defined as follows [4] (cid:8) (cid:9) n n F = k! . n k k=0 (cid:26) (cid:27) X In a similar way we can define the r-Fubini numbers as the number of ways which the elements of A can be weak ordered such that the elements {1,2,...,r} are in distinct ranks. These numbers are denoted by F and are evaluated by n,r n n+r F = (k+r)! . n,r k+r k=0 (cid:26) (cid:27)r X Therearesimplerelationsandformulaeabout n whicharelistedbelow.Onecanfind k r a proof of them in [4], [1] and [3, §4]. (cid:8) (cid:9) n n n−1 (1) = −(r−1) ,1≤r ≤n m m m (cid:26) (cid:27)r (cid:26) (cid:27)r−1 (cid:26) (cid:27)r−1 n n (2) = m m (cid:26) (cid:27)1 (cid:26) (cid:27) n+r (3) =rn r (cid:26) (cid:27)r n+r (4) =(r+1)n−rn r+1 (cid:26) (cid:27)r m n 1 m (5) = (−1)m−j jn. m m! j (cid:26) (cid:27) j=1 (cid:18) (cid:19) X Inadditiontoaboverecurrencerelationsofther-Stirlingnumbersofthesecondkind, a direct way to compute these numbers is given in the next theorem. Theorem 2.1. For n,m ∈ N and r ≤ m ≤ n, the r-Stirling number of the second kind with the parameters n and m is m n 1 m (j−1)! = (−1)m−j jn−(r−1) . m m! j (j−r)! (cid:26) (cid:27)r j=r (cid:18) (cid:19) (cid:18) (cid:19) X Proof. We prove it by the induction on r. For r =2, the relations (1) and (5) result n n n−1 = − m m m (cid:26) (cid:27)2 (cid:26) (cid:27) (cid:26) (cid:27) m m 1 m m = (−1)m−j jn− (−1)m−j jn−1 m! j j  j=1 (cid:18) (cid:19) j=1 (cid:18) (cid:19) X X m  1 m = (−1)m−j jn−1(j−1) m! j j=2 (cid:18) (cid:19) X Assume that m n 1 m (j−1)! (6) = (−1)m−j jn−(r−1) . m m! j (j−r)! (cid:26) (cid:27)r j=r (cid:18) (cid:19) (cid:18) (cid:19) X For n , use (1) to conclude that m r+1 (cid:8) (cid:9) PERIODICITY OF RESIDUAL r-FUBINI SEQUENCES 3 n n n−1 = −r m m m (cid:26) (cid:27)r+1 (cid:26) (cid:27)r (cid:26) (cid:27)r m 1 m (j−1)! = (−1)m−j jn−(r−1) m! j (j−r)! j=r (cid:18) (cid:19) (cid:18) (cid:19) X m 1 m (j−1)! −r (−1)m−j jn−1−(r−1) m! j (j−r)! (cid:18) (cid:19)j=r (cid:18) (cid:19) (cid:18) (cid:19) X m 1 m (j−1)! = (−1)m−j jn−r(j−r) m! j (j−r)! j=r (cid:18) (cid:19) (cid:18) (cid:19) X m 1 m (j−1)! = (−1)m−j jn−r . m! j (j−(r+1))! j=r+1 (cid:18) (cid:19) (cid:18) (cid:19) X (cid:3) Byϕ(n)weindicatethe numberofintegernumberslessthannandco-primetoit.It isknownasEuler’stotientfunction.Thevalueofϕ(n)canbecomputedviathefollowing relation [3] 1 ϕ(n)=n (1− ) p Yp|n 3. The r-Fubini residues modulo prime powers Letpbeaprimenumbergreaterthan2andmbeapositiveinteger.If{F }denotes n,r the r-Fubini numbers for a fixed positive integer r, we indicate by A = {F (mod r,q n,r q)}, for n ∈ N, the sequence of residues of the r-Fubini numbers modulo the positive integer q. In this section we try to compute the period length of the sequence A when r,q q =pm. We denote this length by ω(A ). r,q Proposition 3.1. Let p be an odd prime and let q = pm, m ∈ N. If q ≤ r, then ω(A )=1 r,q Proof. Theproofisverysimple.Sincep≤r,wecandeducethatp|(k+r)!,fork ≥0,and by the relationF = n (k+r)! n+r ,we have p|F .Thereforeω(A )=1. (cid:3) n,r k=0 k+r r n,r r,p P (cid:8) (cid:9) As pointed out in above proposition, the cases in which the prime power factor of s is less than or equal to r have the period length 1, so it is sufficient to investigate the period length in the cases of q >r. Lemma 3.2. Let p be an odd prime and r,m∈N with p≥r+1. Then pm−r ≥m. Proof. For m = 1 the result is obvious. Suppose the inequality holds for any m ≥ 2. Since p(p+m)>2(p+m)>2p+m, we have (7) p2+pm−p≥p+m. Since p − 1 ≥ r, the induction hypothesis can be reformulated to pm ≥ p − 1 + m. Multiplication by p results pm+1 ≥p2+pm−p. By (7) we havepm+1 ≥p+(m+1)−1, Q.E.D. (cid:3) Theorem 3.3. Let p bean odd prime and q =pm. After the (m−1)thterm thesequence A has a period with length ω(A )=ϕ(q). r,q r,q 4 AMIRABBASASGARIANDMAJIDJAHANGIRI Proof. If n≥q−r−1 we can write n+ϕ(q) n n+ϕ(q)+r n+r F −F = (k+r)! − (k+r)! n+ϕ(q),r n,r k+r k+r k=0 (cid:26) (cid:27)r k=0 (cid:26) (cid:27)r X X q−r−1 n+ϕ(q)+r n+r ≡ (k+r)! − (mod q) k+r k+r k=0 (cid:18)(cid:26) (cid:27)r (cid:26) (cid:27)r(cid:19) X q−r−1k+r k+r (j−1)! ≡ (−1)k+r−j jn+1 (jϕ(q)−1) (mod q). j (j−r)! k=0 j=r (cid:18) (cid:19) (cid:18) (cid:19) X X If j = cp, c ∈ N, then jn+1 = (cp)q−r+h, for some h ≥ 0, so from Lemma 3.2 it follows that jn+1 ≡ 0 (mod q). If (j,q) = 1, by Euler’s Theorem jϕ(q) −1 ≡ 0(mod q), so the right hand side of the above congruence relation vanished and we have (8) F ≡F (mod q), for n≥q−r−1. n+ϕ(q),r n,r If m−1≤n<q−r−1 then q−r−1 n+ϕ(q)+r n+r F −F ≡ (k+r)! − n+ϕ(q),r n,r k+r k+r k=0 (cid:18)(cid:26) (cid:27)r (cid:26) (cid:27)r(cid:19) X q−r−1 n+ϕ(q)+r − (k+r)! k+r k=n+Xϕ(q)+1 (cid:26) (cid:27)r q−r−1 n+r + (k+r)! (mod q) k+r k=n+1 (cid:26) (cid:27)r X q−r−1k+r k+r (j−1)! ≡ (−1)k+r−j jn+1 (jϕ(q)−1) j (j−r)! k=0 j=r (cid:18) (cid:19) (cid:18) (cid:19) X X q−r−1 n+ϕ(q)+r − (k+r)! k+r k=n+Xϕ(q)+1 (cid:26) (cid:27)r q−r−1 n+r + (k+r)! (mod q). k+r k=n+1 (cid:26) (cid:27)r X Since n ≥ m−1, in the indices where j = cp, c ∈ N, we have jn+1 = (cp)m+h, for some h ≥ 0, and it deduced that jn+1 ≡ 0 (mod q). When (j,q) = 1, again by Euler’s Theoremjϕ(q)−1≡0(modq).Inthesums q−r−1(k+r)! n+r and q−r−1 (k+ k=n+1 k+r r k=n+ϕ(q)+1 r)! n+ϕ(q)+r the upper parameter of the r-Stirling number is less than the lower one k+r r P (cid:8) (cid:9) P and therefore these two sums are equal to zero. So (cid:8) (cid:9) q−r−1k+r k+r (j−1)! F −F ≡ (−1)k+r−j jn+1 n+ϕ(q),r n,r j (j−r)! k=0 j=r (cid:18) (cid:19) (cid:18) (cid:19) X X ×(jϕ(q)−1)≡0(mod q), and therefore (9) F ≡F (mod q), for m−1≤n<q−r−1. n+ϕ(q),r n,r Combining results (8) and (9) gives F ≡F (mod q), for n≥m−1. (cid:3) n+ϕ(q),r n,r PERIODICITY OF RESIDUAL r-FUBINI SEQUENCES 5 4. The r-Fubini residues modulo powers of 2 Similar to many computations in number theory, the case of p = 2 has its own difficulties which needs special manipulations. In the case of powers of 2, initially we calculate the residues of 2-Fubini numbers and then use the results in the case of the r- Fubininumbers.Weclassifythesequenceofremaindersof2-Fubininumbersmodulo2m, m ≥ 7, in Theorem 4.4 and then, work on remainders of the r-Fubini numbers modulo 2m, m ≥ 7 in Theorem 4.7. The special cases will be proved in Theorems 4.1, 4.5 and 4.6. The trivial cases in which 2m ≤r with period length 1 are omitted. Theorem 4.1. If 3 ≤ m ≤ 6, then after the (m−1)th term the sequence A has a 2,2m period with length ω(A )=2. 2,2m Proof. ByusingtheformulaF = n (k+2)! n+2 weprovethatF −F ≡0 n,2 k=0 k+2 2 n+2,2 n,2 (mod 26) then it is concluded that F −F ≡0 (mod 2m), 3≤m≤5. Pn+2,2 n,2(cid:8) (cid:9) n+2 n n+4 n+2 F −F = (k+2)! − (k+2)! n+2,2 n,2 k+2 k+2 k=0 (cid:26) (cid:27)2 k=0 (cid:26) (cid:27)2 X X 5 n+4 n+2 ≡ (k+2)! − (mod 26) k+2 k+2 k=0 (cid:18)(cid:26) (cid:27)2 (cid:26) (cid:27)2(cid:19) X 5 k+2 k+2 ≡ (−1)k+2−j jn+1(j2−1)(j−1) (mod 26). j k=0j=2 (cid:18) (cid:19) XX m = 6 implies that n ≥ 5, so if j is even, then jn+1 = (2c)6+h, for some h ≥ 0 and therefore64|jn+1.For odd j’s,(j,64)=1 so by Euler’s Theoremwe havej32 ≡1 (mod 64) and therefore jn+1+32 ≡jn+1 (mod 64). This implies 5 ⌊(k+1)/2⌋ k+2 F −F ≡ (−1)k+2−(2l+1) (2l+1)n+1 n+2,2 n,2 2l+1 k=0 l=1 (cid:18) (cid:19) X X × (2l+1)2−1) ×2l (mod 64) 5 ⌊(cid:0)(k+1)/2⌋ k+2(cid:1) l(l+1) ≡16 (−1)k+1 (2l+1)n+1 l .  2l+1 2  k=0 l=1 (cid:18) (cid:19) (cid:18) (cid:19) X X   Enumerating the last summation for 2 ≤ n ≤ 33 shows that it is divisible by 64 and because of periodicity of remainders of jn+1 modulo 64, the result follows. (cid:3) Now we present the following lemma analogues to Lemma 3.2 in previous section. Lemma 4.2. If m∈N and m>1, then 2m−2≥m. Proof. For m=2 the result is obvious. If we assume that (10) 2m−2≥m then multiplication by 2 gives 2m+1−4 ≥ 2m. Since 2m+1 ≥ 2m+4 > m+3, we have 2m+1 ≥m+3 and so 2m+1−2≥m+1. (cid:3) Thefollowinglemmaprovidesasimplebutessentialrelationusedinthenexttheorem. Its proof is provided in Appendix A. Lemma 4.3. For m≥7 and 5≤i≤2m−6 we have 2m−6−i|2i−5 2m−6−1 . i Theorem 4.4. If m≥7, after the (m−1)th term, the sequence A (cid:0) has a(cid:1)period with 2,2m length ω(A )=2m−6. 2,2m 6 AMIRABBASASGARIANDMAJIDJAHANGIRI Proof. Inthecaseofn≥2m−3,fromLemma4.2wecandeducethatn≥2m−3≥m−1. So we have n+2m−6 n+2m−6+2 n n+2 Fn+2m−6,2−Fn,2 ≡ (k+2)! k+2 − (k+2)! k+2 k=0 (cid:26) (cid:27)2 k=0 (cid:26) (cid:27)2 X X 2m−3 n+2m−6+2 n+2 ≡ (k+2)! − (mod 2m) k+2 k+2 k=0 (cid:18)(cid:26) (cid:27)2 (cid:26) (cid:27)2(cid:19) X 2m−3k+2 ≡ (−1)k+2−j k+2 jn+1(j2m−6 −1)(j−1) (mod 2m). j k=0 j=2 (cid:18) (cid:19) X X When j is even, then jn+1 =(2c)2m−2+h, for some h ≥0. So by Lemma 4.2, 2m | jn+1. For odd j’s we have 2m−3⌊(k+1)/2⌋ k+2 Fn+2m−6,2−Fn,2 ≡ (−1)k+2−(2l+1) 2l+1 (2l+1)n+1 k=0 l=1 (cid:18) (cid:19) X X ×((2l+1)2m−6 −1)×2l (mod 2m) 2m−3 ⌊(k+1)/2⌋ k+2 ≡2m−4 (−1)k+1 (2l+1)n+1 2l+1 k=0 l=1 (cid:18) (cid:19) X X (2l+1)2m−6 −1 × l (mod 2m) 2m−5 ! 2m−3 ⌊(k+1)/2⌋ k+2 ≡2m−4 (−1)k+1 (2l+1)n+1 2l+1 k=0 l=1 (cid:18) (cid:19) X X 2m−6 (2m−6−1)! × li2i−1 l (mod 2m). i!(2m−6−i)! i=1 (cid:18) (cid:19) X Last expression contains m− 4 factors of 2, so it is sufficient to prove the last sum- mation is divisible by 16. We denote this summation by S. Simplify the summation 2m−6li2i−1 (2m−6−1)! and use the Lemma 4.3 gives i=1 i!(2m−6−i)! P 2m−6 (2m−6−1)! 4 (2m−6−1)! li2i−1 ≡ li2i−1 (mod 16) i!(2m−6−i)! i!(2m−6−i)! i=1 (cid:18) (cid:19) i=1 (cid:18) (cid:19) X X l3×2(2m−6−1)(2m−6−2) ≡l+l2(2m−6−1)+ 3 l4(2m−6−1)(2m−6−2)(2m−6−3) + (mod 16). 3 Assume m ≥ 10 (the case 7 ≤ m ≤ 9 is proceeded at last). So 16 | 2m−6. Let 3a = 2(2m−6−1)(2m−6−2) and3b=(2m−6−1)(2m−6−2)(2m−6−3).Then 3a≡4(mod 16) and 3b ≡ −6(mod 16). Therefore a ≡ −4(mod 16) and b ≡ −2(mod 16). So the proof continues as follows 2m−3 ⌊(k+1)/2⌋ S 1≡6 (−1)k+1 k+2 (2l+1)n+1(l−l2−4l3−2l4)l  2l+1  k=0 l=1 (cid:18) (cid:19) X X 2m−3 ⌊(k+1)/2⌋  S ≡8 (−1)k+1 k+2 (2l+1)n+1 l(l+1) (−2l2−2l+1)l. 2l+1 2 k=0 l=1 (cid:18) (cid:19) (cid:18) (cid:19) X X PERIODICITY OF RESIDUAL r-FUBINI SEQUENCES 7 Let P(l) and A(k,r,n) be the remainder of 1(2l+1)n+1(l(l+1))(−2l2−2l+1)l and 2 ∞ k+2 P(l) divided by 8, respectively. By Pascal identity, we have k+2 = l=−∞ 2l+r 2l+r k+1 + k+1 and therefore P2l+r (cid:0)2l+r(cid:1)−1 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) ∞ (cid:1) ∞ ∞ k+2 k+1 k+1 P(l)= P(l)+ P(l), 2l+r 2l+r 2l+r−1 l=−∞(cid:18) (cid:19) l=−∞(cid:18) (cid:19) l=−∞(cid:18) (cid:19) X X X so (11) A(k,r,n)=A(k−1,r,n)+A(k−1,r−1,n). We can write ∞ k+2 A(k,r+32,n)≡ P(l). (mod 8) 2l+r+32 l=−∞(cid:18) (cid:19) X The sequence (P(l))∞ has period 16, so P(l+16)=P(l). Set l′ =l+16, then l=−∞ ∞ k+2 (12) A(k,r+32,n)≡ P(l′)≡A(k,r,n) (mod 8). 2l′+r l′=−∞(cid:18) (cid:19) X Since (2l+1,16)=1, the Euler’s Theorem implies (2l+1)8 ≡1 (mod 16) and therefore (2l+1)n+1+8 ≡(2l+1)n+1 (mod 16). A(6,r,n)vanishes for 1≤r ≤32and 9≤n≤24, by enumeration, then by (11) and (12), we deduce that (13) A(k,r,n)=0, for k ≥6. Therefore ∞ k+2 l(l+1) A(k,1,n)≡ (2l+1)n+1 (−2l2−2l+1)l (mod 8) 2l+1 2 l=−∞(cid:18) (cid:19) (cid:18) (cid:19) X ⌊(k+1)/2⌋ k+2 l(l+1) ≡ (2l+1)n+1 (−2l2−2l+1)l 2l+1 2 l=1 (cid:18) (cid:19) (cid:18) (cid:19) X ≡0 (mod 8), for k ≥6. If 1≤k ≤5, 9≤n≤24 and 1≤r ≤32 we have 5 (−1)k+1A(k,r,n)≡0 k=1 (mod 8). The period length of A(k,r,n) with respect to r and n implies that 5 (−1)k+1A(k,1,n)≡0 (mod 8), for n≥9. Combining tPhis with (13) we have k=1 P 2m−3 S ≡ (−1)k+1A(k,1,n)≡0 (mod 8), for n≥0. k=1 X So the result follows in the case of n≥2m−3. If m−1≤n<2m−3 we can write n+2m−6 n+2m−6+2 n n+2 Fn+2m−6,2−Fn,2 = (k+2)! k+2 − (k+2)! k+2 k=0 (cid:26) (cid:27)2 k=0 (cid:26) (cid:27)2 X X 2m−3 n+2m−6+2 n+2 = (k+2)! − k+2 k+2 k=0 (cid:18)(cid:26) (cid:27)2 (cid:26) (cid:27)2(cid:19) X 2m−3 n+2m−6+2 2m−3 n+2 − (k+2)! + (k+2)! k+2 k+2 k=n+X2m−6+1 (cid:26) (cid:27)2 k=Xn+1 (cid:26) (cid:27)2 2m−3k+2 ≡ (−1)k+2−j k+2 jn+1(j2m−6 −1)(j−1) (mod 2m) j k=0 j=1 (cid:18) (cid:19) X X 8 AMIRABBASASGARIANDMAJIDJAHANGIRI When j is even, then jn+1 = (2c)m+h, for some h ≥ 0, so 2m | jn+1. Since m ≥ 10, for odd j’s we have 2m−3k+2 (−1)k+2−j k+2 jn+1(j2m−6 −1)(j−1) j k=0 j=1 (cid:18) (cid:19) X X 2m−3 ⌊(k+1)/2⌋ k+2 ≡2m−4 (−1)k+1 (2l+1)n+1 2l+1 k=0 l=1 (cid:18) (cid:19) X X ×(l−l2−4l3−2l4)l (mod 2m). The last summation is exactly the S and the proof will be similar as above. Combine with the previous case we have the following congruence relation (14) Fn+2m−6,2 ≡Fn,2 (mod 2m), for m≥10. In the case where 7≤m≤9, the remainder of the sum 2m−3(−1)k+1 k=0 × ⌊(k+1)/2⌋ k+2 (2l+1)n+1 4 li2i−1 (2m−6−1)! l modulo16iscomputedform− l=1 2l+1 i=1 i!(2m−6−i)! P 1 ≤Pn ≤ m+(cid:0) 14.(cid:1)Divisibility(cid:16)oPf all these values by (cid:17)16 implies that the recent sum is divisible by 16 therefore (15) Fn+2m−6,2 ≡Fn,2 (mod 2m), for 7≤m≤9. Summing up the congruence relations (14) and (15) gives ω(A )=2m−6, for m≥7. 2,2m (cid:3) Theorem 4.5. For m=1 and m=2, the sequence A is periodic from the first term r,2m and the period length is ω(A )=1. r,2m Proof. The proof of this theorem is divided into three cases. For r =2 we have n+1 n n+3 n+2 F −F = (k+2)! − (k+2)! n+1,2 n,2 k+2 k+2 k=0 (cid:26) (cid:27)2 k=0 (cid:26) (cid:27)2 X X n+3 n+2 n+3 n+2 ≡2 − +6 − (mod 4) 2 2 3 3 (cid:18)(cid:26) (cid:27)2 (cid:26) (cid:27)2(cid:19) (cid:18)(cid:26) (cid:27)2 (cid:26) (cid:27)2(cid:19) =2 2n+1−2n +6 3n+1−2n+1−(3n−2n) =2n(cid:0)+1+6(2×(cid:1)3n−(cid:0)2n)=4(2n−1+3n+1−3(cid:1)×2n−1) =4(3n+1−2n)≡0(mod 4). So we can deduce that ω(A )=1 and obviously ω(A )=1. 2,4 2,2 For r =3 we can write n+1 n n+4 n+3 F −F = (k+3)! − (k+3)! n+1,3 n,3 k+3 k+3 k=0 (cid:26) (cid:27)3 k=0 (cid:26) (cid:27)3 X X n+4 n+3 ≡6 − (mod 4) 3 3 (cid:18)(cid:26) (cid:27)3 (cid:26) (cid:27)3(cid:19) =6 3n+1−3n =6×2×3n =4×3n+1 ≡0(mod 4). Therefore we have ω(A3,4)=(cid:0) 1 and ω(A(cid:1)3,2)=1. Finally if r ≥4, let r =4+h, for some h≥0, then n+1 n n+1+r n+r F −F = (k+r)! − (k+r)! . n+1,r n,r k+r k+r k=0 (cid:26) (cid:27)r k=0 (cid:26) (cid:27)r X X Since 4 | (k +r)!, for all k ≥ 0, we can write F −F ≡ 0 (mod 4). Therefore n+1,r n,r ω(A )=1 and ω(A )=1. (cid:3) r,4 r,2 PERIODICITY OF RESIDUAL r-FUBINI SEQUENCES 9 Theorem 4.6. If 3≤m≤6, after the (m−1)th term, the sequence Ar,2m has a period with length ω(A )=2. r,2m Proof. The proof of this theorem is similar to the proof of Theorem 4.1. Proving for m = 6 deduces the result for m = 3,4,5. Let m = 6, so n ≥ 5; because n ≥ m−1. For 3≤r ≤7 we have n+2 n n+2+r n+r F −F = (k+r)! − (k+r)! n+2,r n,r k+r k+r k=0 (cid:26) (cid:27)r k=0 (cid:26) (cid:27)r X X 7−rk+r k+r (j−1)! ≡ (−1)k+r−j jn+1(j2−1) (mod 64) j (j−r)! k=0j=r (cid:18) (cid:19) (cid:18) (cid:19) XX 7−rk+r k+r (j−2)! ≡ (−1)k+r−j jn+1(j2−1)(j−1) (mod 64) j (j−r)! k=0j=r (cid:18) (cid:19) (cid:18) (cid:19) XX When j is even, then jn+1 = (2c)6+h, for some h ≥ 0, and so 64 | jn+1. For odd j’s we have (j,64) = 1 and the Euler’s Theorem gives j32 ≡ 1 (mod 64). Therefore jn+1+32 ≡jn+1 (mod 64) and we can write 7−rk+r k+r (j−2)! (−1)k+r−j jn+1(j2−1)(j−1) j (j−r)! k=0j=r (cid:18) (cid:19) XX 7−r⌊(k+r−1)/2⌋ k+r ≡ (−1)k+r−(2l+1) (2l+1)n+1((2l+1)2−1) 2l+1 kX=0 l=X⌊r/2⌋ (cid:18) (cid:19) (2l−1)! ×2l (mod 64) (2l+1−r)! (cid:18) (cid:19) 7−r ⌊(k+r−1)/2⌋ k+r l(l+1) ≡16 (−1)k+r−1 (2l+1)n+1 2l+1 2 Xk=0 l=X⌊r/2⌋ (cid:18) (cid:19) (cid:18) (cid:19) (2l−1)! ×l (mod 64) (2l+1−r)! (cid:18) (cid:19) By computation we see that the recent summation is divisible by 4, for 2 ≤ n ≤ 33. So the proof for 3≤r ≤7 is completed. If r ≥8, since 64|8!, then 64|(k+r)!, and n+2 n n+2+r n+r F −F = (k+r)! − (k+r)! n+2,r n,r k+r k+r k=0 (cid:26) (cid:27)r k=0 (cid:26) (cid:27)r X X ≡0 (mod 64), so ω(Ar,26)=2, for r ≥8, and the proof is completed. (cid:3) Theorem 4.7. If m≥7, after the (m−1)th term, the sequence A has a period with r,2m length ω(A )=2m−6. r,2m 10 AMIRABBASASGARIANDMAJIDJAHANGIRI Proof. The proof of this theorem is similar to the proof of Theorem 4.4. In the case of n≥2m−r−1 and r ≥8 we have n+2m−6 n+2m−6+r n n+r Fn+2m−6,r−Fn,r = (k+r)! k+r − (k+r)! k+r k=0 (cid:26) (cid:27)r k=0 (cid:26) (cid:27)r X X 2m−r−1 n+2m−6+r n+r ≡ (k+r)! − (mod 2m) k+r k+r k=0 (cid:18)(cid:26) (cid:27)r (cid:26) (cid:27)r(cid:19) X 2m−r−1k+r ≡ (−1)k+r−j k+r jn+1(j2m−6 −1) (j−1)! (mod 2m) j (j−r)! k=0 j=r (cid:18) (cid:19) (cid:18) (cid:19) X X In the case of 2m >r >2m−m, since m≥7 this implies that r >2m−m≥2m−1 and so 2m |(2m−1)!|(k+r)!, for each k≥0. Therefore both summations in the above first equation are zero modulo 2m and in this caseω(A )=2m−6. When r ≤2m−m,if j is eventhenjn+1 =(2c)2m−r+h, for some r,2m h≥0.So2m |jn+1.Foroddj’s,(j,2m−5)=1andbyEuler’sTheorem2m−5 |j2m−6−1. Since r ≥ 8 we can write (j−1)! = (j−8)! 7 (j − i). Therefore 32 | (j−1)! and (j−r)! (j−r)! i=1 (j−r)! 2m |(j2m−6 −1) (j−1)! . (cid:16) (cid:17)Q (j−r)! In the case of(cid:16)m−1(cid:17)≤n<2m−r−1 and r ≥8 we have n+2m−6 n+2m−6+r n n+r Fn+2m−6,r−Fn,r = (k+r)! k+r − (k+r)! k+r k=0 (cid:26) (cid:27)r k=0 (cid:26) (cid:27)r X X 2m−r−1 n+2m−6+r n+r ≡ (k+r)! − k+r k+r k=0 (cid:18)(cid:26) (cid:27)r (cid:26) (cid:27)r(cid:19) X 2m−r−1 n+2m−6+r − (k+r)! k+r k=n+X2m−6+1 (cid:26) (cid:27) 2m−r−1 n+r + (k+r)! (mod 2m) k+r k=n+1 (cid:26) (cid:27) X 2m−r−1 n+2m−6+r n+r = (k+r)! − +0, k+r k+r k=0 (cid:18)(cid:26) (cid:27)r (cid:26) (cid:27)r(cid:19) X and the proof proceeds as the previous case. In the case of 3 ≤ r ≤ 7 one can deduce similar to the proof of Theorem 4.4 that 2m−r−1k+r Fn+2m−6,r−Fn,r ≡ (−1)k+r−j k+j r jn+1(j2m−6 −1) k=0 j=r (cid:18) (cid:19) X X (j−1)! × (mod 2m). (j−r)! (cid:18) (cid:19)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.