ebook img

On the over-concentration problem of strong lensing clusters PDF

0.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the over-concentration problem of strong lensing clusters

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed11January2010 (MNLATEXstylefilev2.2) On the over-concentration problem of strong lensing clusters M. Sereno⋆1,2, Ph. Jetzer1 and M. Lubini1 1Institutfu¨rTheoretischePhysik,Universita¨tZu¨rich,Winterthurerstrasse190,8057Zu¨rich,Switzerland 2DipartimentodiFisica,PolitecnicodiTorino,CorsoDucadegliAbruzzi24,10129Torino,Italia 0 Accepted2009December22.Received2009December14;inoriginalform2009September25 1 0 2 ABSTRACT n Λ cold dark matter paradigmpredicts that galaxy clusters follow an universalmass density a profile and fit a well defined mass-concentration relation, with lensing clusters being pref- J erentially triaxial haloes elongated along the line of sight. Oddly, recent strong and weak 1 lensinganalysesofclusterswith alargeEinsteinradiussuggestedthosehaloesto behighly 1 over-concentrated.Here, we investigatewhat intrinsic shape and orientationan halo should have to account for both theoretical predictions and observations. We considered a sample ] O of 10 strong lensing clusters. We first measured their elongation assuming a given mass- concentration relation. Then, for each cluster we found the intrinsic shape and orientation C whicharecompatiblewiththeinferredelongationandthemeasuredprojectedellipticity.We . h distinguished two groups. The first one (nearly one half) seems to be composed of outliers p of the mass-concentrationrelation, which they would fit only if they were characterised by - afilamentarystructureextremelyelongatedalongthelineofsight,thatisnotplausiblecon- o sideringstandardscenariosofstructureformations.Thesecondsamplesupportsexpectations r t ofN-bodysimulationswhichprefermildlytriaxiallensingclusterswithastrongorientation s a bias. [ Keywords: galaxies:clusters:general– cosmology:observations– gravitationallensing– 1 methods:statistical v 6 9 6 1 INTRODUCTION galaxyclustersarethenacrucialprobeofthemeandensityofthe 1 . universe at relatively late epochs. State-of-the art models of cos- 1 Clusters of galaxies, the most recent bound structures to form micstructureformationsuggestthatgalaxyclusterconcentrations 0 in a hierarchical cold dark matter model with a cosmological decreasegraduallywithvirialmass.However,clusterobservations 0 constant (ΛCDM), offer important clues to the assembly pro- haveyettofirmlyconfirmthiscorrelation. 1 cessofstructureintheuniverse.N-bodysimulationsaresuccess- : ful in fitting large-scale structure measurements and are able to On the observational side, the situation at present is v i make detailed theoretical predictions on dark matter halo proper- still unclear due to the plurality of methods employed X ties(Navarroetal.1997;Bullocketal.2001;Diemandetal.2004; (Comerford&Natarajan 2007). The observed concentration- r Duffyetal. 2008) but some disagreement with observations still mass relation for galaxy clusters has a slope consistent with a persists.OnepossibleconflictbetweenΛCDMandmeasurements theoretical prediction fromsimulations, though thenormalization isthedetection of extremelylargeEinsteinradii inmassivelens- factor seems to be higher (Comerford&Natarajan 2007). A ingcluster(Broadhurst&Barkana2008;Sadeh&Rephaeli2008; critical point is that concentrations measured in massive lensing Oguri&Blandford 2009; Zitrinetal. 2009). The Einstein radius clusters appear to be systematically larger than X-ray concen- mirrorsthemasscontainedintheinnerregionsanditsmeasurement trations (Comerford&Natarajan 2007). A similar, though less isquitemodelindependent. EvenifanuniversalNavarro-Freank- pronounced, effect is also found in simulations (Hennawietal. Whitedensityprofile(Navarroetal.1996,1997,NFW)reproduces 2007),whichshowthatmassivelensingclustersareusuallyelon- manycharacteristicsofmassivelenses,suchhaloesshouldbeover- gated along the line of sight. Oguri&Blandford (2009) showed concentratedtofitthedata. thatthelargertheEinsteinradius,thelargertheover-concentration The concentration parameter measures the halo central den- problem,withclusterslookingmoremassiveandconcentrateddue sity, which depends on the assembly history and thereby on the totheorientationbias. time of formation. The halo concentration is then expected to be Theover-concentrationbiasseemstobemuchlargerinobser- relatedto itsvirialmass, withtheconcentration decreasing grad- vations than in simulations. Broadhurstetal. (2008) inferred sig- ually with mass (Bullocketal. 2001). Concentrations of massive nificantly high concentrations for four nearly relaxed high-mass clusters.Suchatrendhasbeenrecentlyexacerbatedwiththeanal- ysisofthelargestknownEinsteinradiusinMACSJ0717.5+3745 ⋆ E-mail:[email protected](MS) (Zitrinetal.2009).Ogurietal.(2009) found that thedatafroma (cid:13)c 0000RAS 2 M. Sereno et al. sampleoftenclusterswithstrongandweaklensingfeatureswere versionmethodwhichundersomegivena-priorihypothesesallows highly inconsistent with the predicted concentration parameters, to infer intrinsic mass, concentration and elongation of a lensing evenincludinga50%enhancementtoaccountforthelensingbias cluster;themethodisthenappliedtoasampleoftenstronglensing (Oguri&Blandford2009).Ontheotherhand,Okabeetal.(2009) clusters.InSec.5wecomparetheobserveddistributionsofelonga- found that the correlation in the c M relation, as measured in tionalongthelineofsightandellipticityintheplaneoftheskyto − a sample of 19 clusters with significant weak lensing signal that differenttheoretical predictions. Section6exploitsthepreviously werewellfittedbyaNFWprofile,wasmarginallycompatiblewith inferredgeometricalparameterstopredicttheintrinsicaxialratios predictionsforbothslopeandnormalization. andtheorientationoftheclustersinthesample.Finally,Sec.7is Different definitions of parameters for spherically averaged devotedtoasummaryandtosomefinalconsiderations. profiles can play a role when comparing observations to predic- Throughout the paper, we assume a flat ΛCDM cosmology tions (Broadhurst&Barkana 2008). Triaxiality issues were ad- withdensityparametersΩ =0.3,Ω =0.7andanHubblecon- M Λ dressed by Corlessetal. (2009), who derived weak lensing con- stantH =100hkms−1Mpc−1,h=0.7.Wequoteuncertainties 0 straintsonthreestronglensingclusterswithoutassumingaspheri- atthe68.3%confidencelevel. calhalomodel.Thelargeerrorsthataccompanytriaxialparameter estimates can make observations compatible, even if marginally, with theoretical predictions. Investigations in the weak lensing 2 THEORETICALPREDICTIONS regime demonstrated that neglecting halo triaxiality can lead to over- and under-estimates of up to50% and afactor of 2 inhalo High resolution N-body simulations have shown that the density mass and concentration, respectively (Corless&King 2007). An profiles of dark matter halos are successfully described as NFW analysisofAC114usingonlystronglensingdataandaccounting densityprofiles(Navarroetal.1996,1997),whose3Ddistribution for triaxiality also supported that projection effects play a major follows role in the estimate of the concentration (Serenoetal. 2009). Fi- ρ = ρs , (1) nally,analysesofstackedweaklensingclustersoflessermassdoes NFW (r/rs)(1+r/rs)2 not exhibit the high concentration problem (Johnstonetal. 2007; where ρ is the characteristic density and r is the characteristic s s Mandelbaumetal. 2008), in agreement with theoretical findings length scale. N-body simulations showed as well that haloes are (Oguri&Blandford2009). aspherical and that such profiles can be accurately described by Severaleffectscanplayarole:over-concentratedclustershave concentrictriaxialellipsoidswithalignedaxes(Jing&Suto2002). a larger lensing cross section (Hennawietal. 2007); strong lens- A NFW equivalent profile whose density is constant on a family ingclusterspreferentiallysamplethehigh-massendofthecluster of similar, concentric, coaxial ellipsoids is obtained by replacing massfunction(Comerford&Natarajan2007);whileextremecases the spherical radius r with an ellipsoidal radial variable ζ in the oftriaxialityarerare,suchhaloscanbemuchmoreefficientlenses intrinsic orthogonal framework centred on the cluster barycentre thantheirmoresphericalcounterparts(Oguri&Blandford2009); andwhosecoordinates,x ,arealignedwithitsprincipalaxes, i,int the strongest lenses in the universe are expected to be a highly biased population preferentially orientated along the lineof sight 3 ζ2 e2x2 , (2) (Hennawietal.2007;Oguri&Blandford2009);estimatesoflens- ≡ i i,int ing concentrations can be also inflateddue tosubstructures close Xi=1 tothelineofsight(Puchwein&Hilbert2009).Ontheotherhand, where e are the intrinsicaxial ratios. Without loss of generality, i contamination of weak lensing catalogues can lead to underesti- wecanfixe > e > e = 1.Inthefollowing,wewillalsouse 1 2 3 matetheconcentration(Limousinetal.2007). theinverseratios,0<q =1/e 61. i i In order to check the ΛCDM paradigm is then crucial to According to recent N-body simulations (Netoetal. 2007; account for all possible biases when comparing theoretical re- Maccio` etal.2008;Gaoetal.2008;Duffyetal.2008),thedepen- lations with lensing observations. Such approach was taken in dence of dark matter halo concentration c on halo mass M and Broadhurst&Barkana (2008), whoderived theprobability distri- redshiftzcanbeadequatelydescribedbyapowerlaw bution of Einsteinradii fromconcentration distributions found in c=A(M/M )B(1+z)C. (3) N-body simulations. Also after considering that lensing clusters pivot areintrinsicallyover-concentratedandthattheinherenttriaxiality Since several assumptions were used by competing groups, re- ofCDMhaloesalongwiththepresenceofsubstructure enhances sults can be somewhat different, in particular as far as the over- theprojectedmassinsomeorientations,theyfoundthattheoretical all normalization is concerned. Several values for the linear am- predictions are excluded at a 4σ significance. Sadeh&Rephaeli plitude of mass fluctuations σ were considered. The higher σ , 8 8 (2008)reachedasimilarconclusion.TheyimpliedtheEinsteinra- theearlier the formation epoch for haloes of a given mass. Here, diusdistributionfromtheprobabilitydistributionofclusterforma- we follow Duffyetal. (2008), who used the cosmological pa- tiontimesandfromaformationredshift-concentrationscalingde- rameters from WMAP5 (σ = 0.796) and found A,B,C = 8 { } rivedfromN-bodysimulations. However duetovariousinherent 5.71 0.12, 0.084 0.006, 0.47 0.04 forapivotalmass { ± − ± − ± } uncertainties,thestatisticalrangeofthepredicteddistributionmay Mpivot =2 1012M⊙/hintheredshiftrange0 2fortheirfull × − besignificantlywiderthancommonlyacknowledged. sampleofclusters. Here,wecomparemeasurementswiththeoreticalpredictions ByseparatelystudyingthedistributionofNFWprofileparam- fromsemi-analyticalinvestigationsandN-bodysimulationsavoid- etersbothforthegeneralhalopopulationandforthelensingpop- ing some possible biases connected to spherical averaging. The ulation(i.e.haloesweightedbytheirstronglensingcross-section) paper isasfollows. In Section2, wereview thepredictions from Hennawietal.(2007)showedthatthedistributionof3Dconcentra- either N-body simulations or semi-analytical investigations. Sec- tionsofthelenspopulationisthesameasthatofthegeneralhalo tion 3 discusses how projected quantities are related to intrinsic populationexceptforashiftupwardsbyafactorof 17%.Inthe ∼ parametersforanellipsoidalcluster.InSec.4,wedevelopourin- following,wewillthenalsoconsideranenhancedc M relation − (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 3 forlensingclusters,withA 6.68.Notethatsuchincreasedvalue δ = 200 c200 . (11) ofAcouldbealsoseenasd∼uetoalargervalueofσ8. c 3 ln(1+c200)−c200/(1+c200) N-bodysimulationsprefermildlytriaxialhalos.Jing&Suto The virial mass, M , is the mass within the ellipsoid of semi- 200 (2002)investigatedtheprobabilitydistributionofintrinsicaxialra- majoraxisr ,M =(800π/3)q q r3 ρ .Suchdefinedc 200 200 1 2 200 cr 200 tiosandproposedanuniversalapproximatingformulaforthedis- and M have small deviations with respect to the parameters 200 tributionofminortomajoraxisratios, computed fittingspherically averaged density profiles, asdone in (q q /r )2 N-bodysimulations.Theonlycaveatisthatthesphericalmassob- P(q1)∝exp − 1−2σµ2 q1 (4) tainedinsimulationsissignificantlylessthantheellipsoidalM200 (cid:20) s (cid:21) forextremeaxialratios(Corless&King2007).However,sincethe whereq =0.54,σ =0.113and dependence of the concentration on the mass is quite weak, see µ s Eq.(3),thiswillhavenegligibleeffectsonouranalysis. rq1 =(Mvir/M∗)0.07ΩM(z)0.7, (5) Threerotationanglesrelatetheintrinsictotheobserver’scoor- dinatesystem,i.e.thethreeEuler’sangles,θ,ϕandψ.Afteralign- withM∗thecharacteristicnonlinearmassatredshiftz.Thecondi- ment of the observer’s coordinate system with the direction con- tionalprobabilityforq ,theratiooftheintermediatetothemajor 2 nectingtheobservertotheclustercentre,thelineofsighthaspolar axis-length,goesas angles θ,ϕ π/2 intheintrinsicsystem.Withathirdrotation, { − } 3 2q /q 1 r ψ,wecanproperlyalignthecoordinateaxesintheplaneofthesky. P(q1/q2|q1)= 2(1 rmin) 1− 1 12−rm−in min (6) Ifnotstatedotherwisewewilllineupsuchaxeswiththeaxesof − (cid:20) − (cid:21) theprojectedellipses. forq1/q2 > rmin max[q1,0.5],whereasisnullotherwise.The Whenviewedfromanarbitrarydirection,quantitiesconstant ≡ lensing population has nearly the same triaxialily distribution as onsimilarellipsoidsproject themselves onsimilarellipses(Stark the total cluster population (Hennawietal. 2007). This could be 1977).Ingeneral,theprojectedmapF ontheplaneofthesky 2D explained astheresultof twocounter-balancing effects.Whereas and the intrinsic spheroidal volume density F are related by 3D bothtriaxialityandconcentrationincreasethelensingcrosssection, (Stark1977;Sereno2007), theshapeof adarkhaloiscorrelatedwithitsconcentration, with ∞ moreconcentratedclustersbeingmorespherical. F (ξ;l ,p )= 2 F (ζ;l ,p ) ζ dζ, (12) 2D P i 3D s i Forcomparisonwewillalsoconsideraflatdistributionforthe √f ζ2 ξ2 Zξ − axialratios,suchthat where ξ is the elliptical radius in the plapne of the sky, ls is the P(q1)=1 (7) typical length scale of the 3D density, lP is its projection on the planeofthesky,p aretheotherparametersdescribingtheintrinsic forthefullrange0<q 61and i 1 densityprofile(slope, ...)andf isafunction oftheclustershape P(q q )=(1 q )−1 (8) andorientation, 2 1 1 | − forq2 >q1 andzerootherwise.Theresultingprobabilityforq2 is f =e21sin2θsin2ϕ+e22sin2θcos2ϕ+cos2θ; (13) then P(q ) = ln(1 q )−1. Such aflat distribution allowsalso 2 2 thesubscriptPdenotesmeasurableprojectedquantities. forverytriaxialclust−ers(q < q 1),whicharepreferentially 1 ∼ 2 ≪ Letusseeinsomedetailshowtheparametersdescribingthe excludedbyN-bodysimulations. projectedmapdependontheintrinsicshapeandorientationofthe Finally, semi-analitycal (Oguri&Blandford 2009) and nu- 3Ddistribution.Theaxialratioofthemajortotheminoraxisofthe merical (Hennawietal. 2007) investigations showed a large ten- observedprojectedisophotes,e (>1),canbewrittenas(Binggeli P dencyforlensingclusterstobealignedwiththelineofsight.De- 1980), notingtheanglebetweenthemajoraxisandthelineofsightasθ, suchconditioncanbeexpressedas(Corlessetal.2009) j+l+ (j l)2+4k2 e = − , (14) P (cosθ 1)2 sj+l p(j l)2+4k2 P(cosθ) exp − , (9) − − ∝ − 2σ2 (cid:20) θ (cid:21) wherej,kandlapredefinedas withσθ =0.115.Forcomparison,wewillalsoconsiderapopula- j = e2e2sin2θ+e2cos2θcos2ϕ+e2cos2θsin2ϕ, (15) tionofclustersrandomlyoriented,i.e. 1 2 1 2 k = (e2 e2)sinϕcosϕcosθ, (16) 1− 2 P(cosθ)=1 (10) l = e2sin2ϕ+e2cos2ϕ. (17) 1 2 for06cosθ61. Inthefollowingwewillalsousetheellipticityǫ=1 1/e . P − Theobservedscalelengthl istheprojectionontheplaneof P theskyoftheclusterintrinsiclength(Stark1977), 3 PROJECTIONOFTRIAXIALHALOES e 1/2 l l P f1/4. (18) Dealingwithellipsoidalhalos,weneedgeneralizeddefinitionsfor p ≡ s e1e2 (cid:16) (cid:17) theintrinsicNFWparameters.WefollowCorless&King(2007), Equation(18)canberewrittenas whodefinedatriaxialvirialradiusr suchthatthemeandensity 200 l l containedwithinanellipsoidofsemi-majoraxisr is∆ = 200 s P , (19) times the critical density at the halo redshift; the20c0orresponding √f ≡ e∆ concentrationisc r /r .Then,thecharacteristicoverden- where the parameter e quantifies the elongation of the triaxial 200 200 s ∆ ≡ sityisexpressedintermsofc asforasphericalprofile, ellipsoidalongthelineofsight(Sereno2007), 200 (cid:13)c 0000RAS,MNRAS000,000–000 4 M. Sereno et al. e∆ = ee1Pe2 1/2f3/4. (20) M200 = 43π ×200ρcr×(c200rsP)3ef3Pg/eo2. (25) (cid:16) (cid:17) ThequantitylP/e∆representsthehalf-size(alongthelineofsight) InordertoestimateM200andc200fromtheprojectedNFWparam- oftheellipsoidasseenfromabove,i.e.perpendicularlytotheline etersdirectlyinferredfromthelensinganalysis,weneedtoknow of sight. If e∆ < 1, then thecluster ismoreelongated along the the elongation of the cluster. The problem is intrinsically degen- lineofsightthanwideintheplaneofthesky.Thesmallerthee∆ erate and can not be solved based on lensing information alone, parameter,thelargertheelongation.Inthefollowing,wewilluse evenintheidealcaseofobservationswithoutnoise.Ifaclusteris asanelongationparameteralsoageometricalfactor elongatedalongthelineofsight,theconcentrationparameterand thevirialmassestimatedfromlensingareoverestimated(Gavazzi (e e )1/2 e1/2 f 1 2 = P . (21) 2005;Ogurietal.2005).Ontheotherhand,therearemoreineffi- geo ≡ f3/4 e∆ cientlensingorientationsforatriaxialhalothanthereareefficient Summarising,thesurfacedensitycanbeexpressedintermsof ones(Corlessetal.2009). projectedquantitiesas F = lP f (ξ;e ,ψ;l ;p ,...), (22) 4.1 Datasample 2D e 2D P P i ∆ Wecompiledasampleofstronglensingclustersdrawingfrompre- wheref hasthesamefunctionalformasforasphericallysym- 2D existing lensing analyses. As selection criteria, we retained only metrichalo. IInorder towriteEq.(22)initsactual form,weex- clustersthatarewelldefinedbyasingledarkmatterhaloandwhose ploitedthat theintegral inζ inEq. (12) isproportional tothein- lensingdatawerefittedwithanellipticalNFWmodel.Table1lists trinsic scale length l . The dependence on the elongation e is s ∆ thefinalclustersample,togetherwithcorrespondingNFWparam- decoupledfromthedependenceontheapparentellipticityandin- etersandreferencestowherethelensinganalyseswereperformed. clination.Theotherparameterscharacterisingthe3Dprofileonly For clusters that do not have published arc/multiple images red- account for theradial dependence of theprojected density. Then, shift, we assumed a source redshift z = 2.5. Many input data s whenwedeprojectasurfacedensity,thenormalizationofthevol- were originally presented with asymmetric uncertainties. To ob- ume density can be known only apart from a geometrical factor. tain unbiased estimates, we applied correction formulae for the Notethatinournotation,theellipticalradiusiswrittenasafunc- mean andstandard deviation asgiven by equations (15) and (16) tionofthecoordinatesintheplaneoftheskyas inD’Agostini (2004). Notethat therearedifferent definitionsfor ξ2 =(x2+e2x2)(l /l )2, (23) the elliptical radius, which affect the numerical value of the pro- 1 P 2 s P jectedscale-length.Wetookcaretotranslatepublisheddatatothe so that in order to obtain the elliptical projection from the corre- notationinthepresentpaper.Furthermore,somestudiesexploited spondingspherical halowehavei)tomultiplytheoverallprofile elliptical NFW potential instead of elliptical mass density. When by1/√f ,ii)tosubstitutethepolarsphericalradiuswithξ.The necessary,i.e.forthesub-samplefromComerfordetal.(2006),we intrinsicscale-lengthhasthentobeexpressedintermsofthepro- convertedthepotentialellipticitytoisodensityellipticityaccording jectedone,seeEq.(19). totherelationinGolse&Kneib(2002).Asafinalprecaution,we forcederrorsonκ andr tobeatleastof10%andtheerroronǫ s sP tobeatleast0.015.Suchuncertaintiesmirrordiscrepanciesamong differentstudiesofthesamedataset,seetheanalysesofA1703in 4 LENSINGINVERSION Richardetal.(2009)andOgurietal.(2009)orMS2137.3-2353in For gravitational lensing studies, the projected map of interest is Comerfordetal.(2006)andGavazzi(2005). thesurfacemassdensity.WewilldescribetheprojectedNFWden- Usingthefullprobabilitydistributioninsteadoftheestimate sityintermsofthestrengthofthelensκ ,seeEq.(24),andofthe of mean and error for the ellipticity and the central convergence s projectedlengthscaler ,i.e.thetwoparametersdirectlyinferred would be an improvement. However, we limited our method to sP byfittingprojectedlensingmaps.Theprojectedsurfacemassden- quiteregularclusters(uni-modalandwellfittedbyaNFWprofile). sityΣofthesedensityprofilesisexpressedintermsoftheconver- Fromthedetailedanalysescollectedintheliteratureforeachclus- genceκ,i.e.inunitsofthecriticalsurfacemassdensityforlensing, ter,wefoundnoevidenceforcomplexparameterdistributions,with Σ = (c2D )/(4πGD D ), where D , D and D are the probability functions that are single-peaked and generally well- cr s d ds s d ds source,thelensandthelens-sourceangulardiameterdistances,re- behaved. spectively.AccordingtoournotationinSec.3,foraNFWprofile, theintrinsicl and theprojected l lengths havetobe readasr s P s 4.2 Inferredparameters andr ,respectively. sP The central convergence of a NFW profile estimated from In order to extract the physical information, i.e. to the determine lensing can be written in terms of c200 and the projected length theparametersc200,M200 ande∆,wehavethentouseadditional scalemodulusafactorfgeo(Serenoetal.2009), constraints. Sincewewant totesttheoretical predictions, wewill employthepriorfromthec M relationasgiveninEq.(3). Σcr×κs = √fgeePoρsrsP, (24) Slouwcshuasntaodddeittieornmailntehitrhdeceolon2ns0t0graa−tiinotn,t2oo0fg0eththeecrluwsittehrEanqds.i(t2s4m,a2s5s),aanld- where as usual ρ = δ ρ (z) with ρ being the critical den- concentration. The prior isvery strong so the estimated c and s c cr cr 200 sityoftheuniverseattheclusterredshift.Theconcentrationenters M willfitnicelythetheoreticalprediction.Ontheotherhand, 200 Eq.(24)throughδ ,seeEq.(11).TheestimateofthemassM e isfreetotakewhatevervalueallowstheclustertofitthelens- c 200 ∆ dependsalsoonthescale-lengthr whichisknownmodulusafac- ingconstraintsandthec M relationatthesametime.Un- s 200 200 − tor√f/e ,seeEq.(19).Then physicalvaluesfore (either 1or 1),thatwoulddescribe ∆ ∆ ≪ ≫ (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 5 Name zd zs κs rsP(kpc/h) ǫ refa Abell1703 0.28 0.888 0.19±0.04 540±90 0.37±0.035 1 MS2137.3-2353 0.313 1.501 0.67±0.07 112±11 0.226±0.015 2 AC114 0.315 3.347 0.22±0.02 680±70 0.502±0.018 3 ClG2244-02 0.33 2.237 0.18±0.02 300±30 0.242±0.015 4 SDSSJ1531+3414 0.335 1.096 1.2±0.8 210±110 0.47±0.23 1 SDSSJ1446+3032 0.464 - 3.2±2.0 110±50 0.62±0.34 1 MS0451.6-0305 0.55 0.917 0.28±0.03 350±30 0.425±0.015 4 3C220.1 0.62 1.49 0.18±0.02 320±30 0.497±0.015 4 SDSSJ2111-0115 0.637 - 7.1±1.5 57±11 0.46±0.27 1 MS1137.5+6625 0.783 - 0.26±0.03 330±30 0.300±0.015 4 Table 1. The strong lensing cluster data sample. References: 1 stands for Ogurietal. (2009); 2 for Gavazzi (2005); 3 for Serenoetal. (2009); 4 for Comerfordetal.(2006).Forclusters withmultiple imagesystems,wepicked outonesourceredshift(Col. 2).Thecentral convergence κs fortheNFW modelreferstosuchredshift;rsPistheprojectedscalelength. Name Standardc200−M200 Enhancedc200−M200 c200 M200(1014M⊙/h) e∆ c200 M200(1014M⊙/h) e∆ A1703 2.98±0.16 12±4 0.66±0.19 3.46±0.18 13±5 0.91±0.26 MS2137 3.41±0.13 2.0±0.4 0.068±0.011 3.95±0.15 2.3±0.5 0.093±0.014 AC114 2.94±0.13 12±3 1.06±0.17 3.40±0.16 14±3 1.44±0.024 ClG2244-02 3.26±0.13 3.3±0.7 0.69±0.11 3.77±0.15 3.7±0.8 0.95±0.15 SDSS1531 3.1±0.4 7±7 0.04±0.04 3.6±0.4 8±8 0.06±0.05 SDSS1446 3.2±0.4 3±3 0.015±0.014 3.7±0.5 3±3 0.020±0.019 MS0451 2.82±0.13 7.6±1.6 0.29±0.05 3.27±0.15 8.6±1.9 0.40±0.06 3C220.1 3.03±0.13 2.6±0.6 0.79±0.13 3.51±0.15 2.9±0.6 1.09±0.17 SDSS2111 3.0±0.2 2.6±1.6 0.004±0.002 3.5±0.2 2.8±1.8 0.006±0.003 MS1137 2.77±0.13 4.3±0.9 0.71±0.12 3.21±0.15 4.9±1.0 0.97±0.16 Table2.Concentration, massandelongationforeachclusterinferredthroughlensinginversionassumingasaprioreitherastandardoranenhancedmass concentrationrelation.Massesareinunitsof1014M⊙/h. morefilamentarystructuresthanvirializedclusters,willpointmore plane of the sky. Lensing parameters of SDSS1531, SDSS1446 tooutlierswithrespecttopredictionsthantoextremelyelongated andSDSS2111hadquitelargeobservational uncertaintieswhich structures. The most likely explanation for extreme e values is propagateintheestimateoftheintrinsicclusterparameters.How- ∆ thenthatthecorrespondingclustersdonotfollowtherelationim- ever,theestimatedvaluesofe aresosmallthattheordinaryvalue ∆ posedapriori.Thiscanbeviewasasortofproofababsurdo. of 1 can be excluded for such clusters at a high confidence ∼ ResultsarelistedinTable2.Weconsidered boththec level.Evendoublingthenormalizationfactorofthec M relation 200 − − M as determined in Duffyetal. (2008) and the case of over- (i.e. assuming A 11.4), elongation parameters for two cluster 200 ∼ concetratedclusters(A =6.68).Toaccountformeasurementser- (SDSS2112andSDSS1446)wouldremainsmallerthanonetenth rors,wedrawlensingparameters(κsandrsP)fromrandomnormal (e∆ ∼0.019and0.070,respectively). distributionswithmeananddispersiongivenbythereportedcentral Notethatfinalresultsonelongationwouldhavebeenconsis- locationandscale,seeTable1.Similarly,theoreticaluncertainties tentifwehadchosendifferentmethodsforderivingthestronglens- onthemass-concentrationrelationwereaccountedforbydrawing ingparameters.TheelongationofA1703calculatedusingthedata theparametersA,BandC,whichdescribeEq.(3),fromGaussian reportedinRichardetal.(2009)or Limousinetal.(2008), which distributionswithmeananddispersionvaluesfoundinDuffyetal. both fitted the lensing potential, turns out to be 0.35 0.11 or ± (2008).Then,foreachsetofparameters(κ ,r ,A,BandC)we 0.77 0.17 respectively, the value of e based on Ogurietal. s sP ∆ ± solvedthesystemofequationsEqs.(3,24,25),discardingonlyso- (2009),thatdirectlyfittedtheconvergence,beingintermediatebe- lutionswitheitherc200 > 40orM200 > 1018M⊙/h.Thevalues tween the two, see Table 2. The elongation of MS 2137 using listedinTable2arethebiweightestimatorsforlocationandscale datainComerfordetal.(2006),thatfittedthelensingpotential,is ofthefinalinferreddistributions(Beersetal.1990). 0.051 0.008,compatiblewiththeresultbasedondirectconver- ± Ifweusetheenhancedc M relation,theconcentration gencefittinginGavazzi(2005),seeTable2.Then,independently 200 200 − ofeachclusterincreasesby 16%,themassby 13%ande of the lensing technique used, results are quite consistent within ∆ ∼ ∼ by 27%, i.e.theelongation shrinks. Evenif clusterscome out theerrors,bothformildly(A1703)orveryelongated(MS2137) ∼ less elongated if we assume that the lensing population is intrin- clusters. sicallyover-concentrated,weseethatsomeoutliersarestillthere. Itisquitereassuringthatwheneveraclusterhasbeenanalyzed Fouroutof10clustershavee < 0.1,i.e.thesizealongtheline eitherfittingthepotentialortheconvergence,theestimatedelonga- ∆ ofsightshouldbelargerthantentimesthemaximumlengthinthe tiondoesnotchangeinasignificantway.Togetherwiththecentral (cid:13)c 0000RAS,MNRAS000,000–000 6 M. Sereno et al. n 4 q1,2 θ All e∆>0.1 nctio ffllaattqq,,bfliaatsΘedΘ flat flat 4.8×10−2 1.5×10−2 Fu 3 NN--bbooddyyqq,,bfliaatsΘedΘ flat biased 2.6×10−2 1.0×10−2 sity N-body flat 7.9×10−1 5.9×10−1 Den 2 N-body biased 8.6×10−3 1.2×10−1 y bilit Table5.Kolmogorov-Smirnovsignificancelevelthatthemeasuredelliptic- a 1 ob itiesoftheobservedsamplesofclusters(eitherallofthemorthesixwith Pr e∆>0.1)aredrawnfromagivenpopulation. 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 apart from the group at e < 0.1. Cumulative distributions are eD ∆ plottedinFig.2andprobabilitiesatverylowthresholdvaluesare listedinTable3.Chancesforveryelongatedclustersareverytiny. Figure1.Probabilitydensityfunctionsfortheelongationsofdifferentclus- Evenforbiaseddistributionsjustoneoutoffewthousandsclusters terpopulations,seelegend.Thebarsdenotethemeasuredvaluesforourfull sampleassumingastandardc200−M200relation. isexpected to have e∆ < 0.1. Even in the most favourable case ofapopulation of clustersbiased inθ andflatinaxial ratios,the chancetohavefouroutoftenclusterswithe < 0.1wouldbea ∆ verytiny1.7 10−16.Sowecanconcludethatsuchclustersare q1,2 θ P(e∆<0.1) P(e∆<0.2) P(e∆<0.3) verylikelyou×tliersofthemass-concentrationrelations. flat flat <∼10−3% 8×10−3% 2.7×10−3% Further quantitative comparisons can be performed exploit- flat biased 4.5×10−3% 3.5×10−2% 1.87×10−2% ingtheKolmogorov-Smirnov(KS)test.Whenweconsiderthefull N-body flat <∼10−3% 1×10−3% 9.5×10−3% sample,noneoftheinvestigatedpopulationsgivesagoodfittothe N-body biased <∼10−3% 1.5×10−3% 5.7×10−2% data.Thebetterperformer,i.e.apopulationwithN-bodylikeaxial ratiosandbiasedalignments,giveaKSsignificancelevelof<1%, ∼ bothforthestandardortheenhancedc M relation,seeTa- Table3.Probability(in%)tohaveanelongationlargerthanagiventhresh- 200− 200 ble4. oldvaluefordifferentpopulationsofgalaxyclusters. The significance levels improve very significantly when we consider the subsample with e > 0.1. The prediction from ∆ convergence, our method needs only anestimateof theprojected N-body simulations reproduce very well the observed distribu- ellipticity,whichisquitewellmeasuredwithstronglensinganal- tion both for the standard ( 31.1%) and the enhanced relation ∼ yses.Golse&Kneib(2002)discussedindetailshowpotentialand ( 4.7%).Fortheenhancedrelation,alsodistributionsflatinthe ∼ surfacemassellipticitiesarerelated,andtheiranalysisshowedhow axialratiosperformwellforbothpopulationssufferingorientation themassdensityellipticitycanbeestimatedusingapreviousdeter- bias( 2.1%)orunbiased( 97.2%). ∼ ∼ minationofthepotentialellipticity.Oncetheellipticityofthesur- facemassdensityisknown,ourmethodreliesonlyongeometrical 5.2 Ellipticity projectionsandisnotaffectedanymorebylensingnon-linearities. Infact,wealwaysde-projectthesurfacemassdensity(insteadof Theellipticitydistributionofoursampleisnotnearasinformative thepotential)toobtaintheintrinsicmassdistribution. astheelongationone.Probabilitydensityfunctionsbothforunbi- asedorbiasedpopulationshavenotnegligiblevaluesincorrespon- denceoftheobservedellipticities,seeFig.3.Populationswithflat 5 EXPECTEDVS.OBSERVEDELONGATIONAND axialratiosarepreferentiallyrounder(ǫ >∼ 0,e∆ ∼ 1)sincehigh ELLIPTICITY valuesofq1arenotpenalized,buttheobservedsampledonothelp todiscriminate.TheKStestisinconclusivetoo,seeTable5,even Thechancetoobserveaveryelongatedclustercanbeassessedon if the biased N-body-like population performs remarkably better a more firm ground. We derived the probability density function consideringthee > 0.1subsample.However,theellipticitiesof ∆ (PDF)foragivenelongation,P(e∆),andagivenellipticityP(ǫ) such subsample are nothing special. According to a KS test, the underdifferentassumptions.AsdiscussedinSec.3,elongationand ellipticitiesof theoutliers(i.e.clusterswithe < 0.1) might be ∆ ellipticitydependontheintrinsicaxialratios,q1andq2andtheori- drawnfromthefullsamplewithasignificancelevel 98%. entationanglesθandϕ.Weconsideredfourscenarios.Fortheaxial Since our sample is neither homogeneous or ∼statistical, we ratios,weconsideredeithertheN-bodypredictionsinEqs.(4,6) are cautious in drawing conclusions, but some indications seem or a flat distribution, see Eqs. (7, 8). For the alignment we con- to be quite strong. There is a number of clusters whose over- sidered either thebiased distributionfor P(θ)inEq. (9) or aflat concentrationproblemcannotbesolvedjustconsideringsomepar- distribution, Eq. (10). For theazimuth angle ϕwealways used a ticular geometrical configurations. Even strong biases inintrinsic flatdistribution,P(ϕ)=const. triaxialityandalignmentwouldnotsolvetheproblem.Oncesuch outliersareexcludedfromtheanalysis,theoreticalpredictionsare inverygoodagreement withdata.Populationswithanalignment 5.1 Elongation bias perform much better than randomly oriented clusters. There ThePDFfortheelongation,P(e ),isplottedinFig.1.Itispretty isalsosomeevidence forintrinsicaxialratiosdistributedaccord- ∆ evidentthatpopulationsofclusterspreferentiallyalignedwiththe ing tothe outputs of N-body simulations, even if,under suitable lineof sightmakeabetterjobtoreproduce theobserved sample, circumstances,flatpopulationscangivegoodresultstoo. (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 7 Standardc200−M200 Enhancedc200−M200 q1,2 θ All e∆>0.1 All e∆>0.1 flat flat 9×10−8 2.5×10−4 3×10−5 2.1×10−1 flat biased 9×10−6 3.5×10−3 9.3×10−3 9.7×10−1 N-body flat 6×10−7 2.5×10−4 5×10−5 9.1×10−3 N-body biased 7.8×10−3 3.1×10−1 9.6×10−3 4.7×10−2 Table4.Kolmogorov-Smirnovsignificancelevelthattheelongationsoftheobservedsamplesofclusters(eitherallofthemorthesixwithe∆ > 0.1)are drawnfromagivenpopulation.Weconsiderede∆obtainedfromeitherastandardoranenhancedmass-concentrationrelation. Standardc -M Enhancedc -M 200 200 200 200 1.0 1.0 n n o o cti cti n 0.8 n 0.8 u u F F y y bilit 0.6 bilit 0.6 a a b b o o Pr 0.4 Pr 0.4 e e v v ulati 0.2 ffllaattqq,,bfliaatsΘedΘ ulati 0.2 ffllaattqq,,bfliaatsΘedΘ m N-bodyq,flatΘ m N-bodyq,flatΘ Cu N-bodyq,biasedΘ Cu N-bodyq,biasedΘ 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 e e D D Figure2.Predictedcumulativedistributionfunctionsforelongationversusmeasurements.Thefullanddashedstep-linesareforthefullobservedsampleand fortheclusterswithe∆ >0.1,respectively;thesmoothfunctionsarethepredicteddistributionsunderdifferentassumptions,seelegends.Theleftandright panelsshowtheobservedelongationscomputedassumingeitherastandardoranenhancedmass-concentrationrelation,respectively. The assumption that lensing clusters are intrinsically over- (DeFilippisetal.2005;Serenoetal.2006),evenifdiffuseprolate- concentrated partially reduce the problem, but expected distribu- nesscannotbeexcluded(Plionisetal.1991;deTheijeetal.1995; tionsandobservationswouldbecompatiblewithaverylowsignif- Basilakosetal. 2000; Cooray 2000; Plionisetal. 2004; Pazetal. icancelevelof<1%andtheproblemofhavingnearlyhalfofthe 2006).Oncetheelongationofaclusterisknowntogetherwithits ∼ samplewithveryextremeelongationwouldbestillthere.Ingen- projected ellipticity, strong constraints can be put on its intrinsic eral, the data analysis performed on our limited sample does not shape (Sereno2007).Axial symmetry reduces thenumber of un- provide evidence for intrinsic over-concentrations, an orientation knownparameterstoacouple:asingleaxialratio,q(61),andthe bias being enough to account for observations of normal clusters inclinationangleofthesymmetryaxis,i. (e >0.1). Aprolate-likesolutionisadmissiblewhenthesizealongthe ∆ lineofsightislargerthantheminimumwidthintheplaneofthe sky,thatis,whene 6e .Theintrinsicparameterscanbewritten ∆ P 6 INTRINSICAXIALRATIOSANDORIENTATION asq1 = q2 = q and θ = i. Interms of themeasured quantities (Sereno2007), Knowledge of the sizes of a cluster in the plane of the sky and e alongthelineof sightallowsustoputconstraintsonitsintrinsic q = ∆, (26) e2 geometry(Sereno2007).However,evenexploitingsuchstrongas- P sumptionsontheshape,inversioncanbenotunique:intrinsically e2 e2 cosi = e P− ∆. (27) differentellipsoidscancastontheplaneoftheskyinthesameway P e4 e2 (Sereno 2007). In order to infer the properties of the cluster and r P− ∆ Anoblate-likesolutionisadmissiblewhenthesizealongthe deriveitsorientationandshape,wehavetoexploitsomeexternal lineofsightissmallerthanthemaximumsizeintheplaneofthe information.Wewillconsidertwokindsofprior:firstasharpone whichassumestheclustertobeaxiallysymmetric;thensomeless sky,thatis,whene∆ >1.Accordingtoournotation,foranoblate informative priors on the distribution of intrinsic axial ratios for ellipsoid,q1 = q,q2 = 1andcosi = sinθsinϕ.Inversiongives (Sereno2007), triaxialhaloes. 1 q = , (28) e e 6.1 Axialsymmetry P ∆ e2 1 As a working hypothesis, let us first consider if the cluster cosi = ∆− . (29) e2e2 1 shape can be approximated as an ellipsoid of revolution. Previ- r P ∆− ous studies have shown that clusters seems to be quite triaxial Theprolateandtheoblatesolutionsareadmissibleatthesametime (cid:13)c 0000RAS,MNRAS000,000–000 8 M. Sereno et al. 1.0 3.0 on flatq,flatΘ ncti 0.8 2.5 flatq,biasedΘ u N-bodyq,flatΘ F LΕ 2.0 N-bodyq,biasedΘ ability 0.6 HP 1.5 ob Pr 0.4 flatq,flatΘ e flatq,biasedΘ 1.0 ativ NN--bbooddyyqq,,bfliaatsΘedΘ ul 0.2 0.5 m u C 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Ε Ε Figure3. Probability functionfortheprojectedellipticity. Leftpanel:probability densityfunctionsfortheellipticity ofdifferentclusterpopulations, see legend. The bars denote the measured values for our full sample. Right panel: predicted cumulative distribution functions for a given elongation versus observations.Thefullanddashedstep-linesareforthefullobservedsampleandfortheclusterswithe∆ > 0.1,respectively;thesmoothfunctionsarethe predicteddistributionsunderdifferentassumptions,seelegend. Prolate Oblate Name Comp. q cosi Comp. q cosi A1703 ∼1 0.26±0.08 0.94±0.04 0.0342 0.59±0.05 0.25±0.11 MS2137 ∼1 0.040±0.007 0.9994±0.0002 <∼10−5 NA NA AC114 ∼1 0.26±0.05 0.88±0.05 0.622 0.43±0.04 0.26±0.09 ClG2244-02 ∼1 0.40±0.07 0.93±0.03 2.31×10−3 0.74±0.03 0.24±0.12 SDSS1531 ∼1 0.012±0.011 0.999795±0.0002 <∼10−5 NA NA SDSS1446 ∼1 0.0014±0.0014 0.999989±0.000015 <∼10−5 NA NA MS0451 ∼1 0.098±0.017 0.9902±0.003 <∼10−5 NA NA 3C-220.1 ∼1 0.20±0.03 0.94±0.02 0.0542 0.48±0.02 0.16±0.07 SDSS2111 ∼1 0.0010±0.0009 0.999998±10−6 <∼10−5 NA NA MS1137 ∼1 0.35±0.06 0.93±0.03 6.45×10−3 0.68±0.03 0.23±0.11 Table6.Intrinsicparameters(axialratioqandinclinationanglei)assumingeitherprolatenessoroblateness.Thecolumn”Comp.”givesthesignificancelevel foraclustershapetobecompatiblewithagivensetofdata.Foraverylowcompatibilitywithagivenshapehypothesis,parametervaluesarenotavailable (NA). onlywhenthesizealongthelineofsightisintermediate,i.e.1 6 gationandellipticityallowedbythedataiscompatiblewithsuch e 6e . an hypothesis. Only AC 114, with e 1, has a good chance ∆ P ∆ ∼ to be described by an oblate shape ( 60%), otherwise signif- ResultsoftheinversionarelistedinTable6.Intrinsicparam- icance levels are < 5%. For the few∼clusters for which oblate- etershavebeenobtainedbymeansofEqs.(26,27)fortheprolate ∼ nessismarginallycompatible,inclinationangleswouldstillbebi- case and Eqs. (28, 29) for the oblate-case. Input values for elon- ased,symmetryaxisbeingnearlyperpendiculartothelineofsight gationandellipticitywererandomlyextractedfromnormaldistri- (cosi < 0.26), whereas intermediate axial ratios would be pre- butionscentredinthemeasuredvalueandwithdispersionequalto ∼ ferred(0.43<q<0.74). theobservational uncertainty. ThevalueslistedinTable6arethe ∼ ∼ bi-weigthestimatorsofthefinaldistributionsoftheinferredparam- eters.Thesignificancelevelforagivenshapehasbeenobtainedas 6.2 Triaxialclusters the fractionof drawn e and e for which a given compatibility P ∆ Inordertoexactlydeterminetheintrinsicshapeofatriaxialclus- conditions is fulfilled. We considered only elongation values ob- ter, weshould know both ellipticityand elongation together with tainedassuming astandard mass-concentration relation.Thepro- two additional observational constraints. The problem of invert- late hypothesis is compatible with the full sample but the shapes shouldbeextremelylongandnarrow (q < 0.35) andnearlyper- ingaprojectedmapisintrinsicallydegenerateandevenaddingX- ∼ fectlyalignedwiththelineofsight(cosi>0.88).Theconclusion rayobservationsormeasurementsoftheSunyaev-Zeldovicheffect ∼ wouldnotmaketheinversionunique(Sereno2007).Analternative thatclusterswithe < 0.1areoutliersisfurtherstressedbythe ∆ approachistousepriorsontheintrinsicparameters(Corlessetal. verysmallspacevolumeallowedfortheintrinsicparameters(under 2009).Here,wetrytosolvethesystemofequations wronghypotheses,uncertaintiesareverylikelytobeverysmall). Apopulationofoblateclustersdonotprovideagooddescrip- eP = eP(q1,q2;θ,ϕ); (30) tionofthedata.Onlyatinyregionintheparameterspaceofelon- e = e (q ,q ;θ,ϕ) ∆ ∆ 1 2 (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 9 6 7 45 233...505 56 23..50 HLPq123 HLPq2112...050 HLΘPcos234 HLjPcos112...050 1 0.5 1 0.5 0 0.0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure4.Posteriorprobability densityfunctionsfortheintrinsicparametersofA1703.PanelsfromthelefttotherightareforthePDFofq1,q2,cosθ andcosϕ,respectively.FullanddashedthicklineshavebeenobtainedassumingaN-body-likeandaflatpriorontheaxisratios,respectively.Thefulland dashedthinlineintheleftpanelrepresenttheN-bodyandtheflatpriorforP(q1),respectively;thefullanddashedthinlineintheq2-panelrepresentthe priordistributionsaccordingtoeitheraN-bodyoraflatprior,respectively;thethinanddashedfulllineinthecosθ-panelrepresentthebiasedandtheflat distributionsontheorientationangle.SuchpriorsoncosθwerenotusedtoderivethePDFs.Finallytheflatlineinthecosϕ-panelrepresentsanuniform distribution. 6 3.0 7 8 5 2.5 6 HLPq1234 HLPq2112...050 HLΘPcos2345 HLjPcos46 2 1 0.5 1 0 0.0 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure5.ThesameasFig.4fortheclusterAC114. 7 5 10 6 4 8 2.0 5 HLPq134 HLPq223 HLΘPcos 46 HLjPcos11..05 2 1 1 2 0.5 0 0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure6.ThesameasFig.4fortheclusterClG2244. 8 6 3.0 10 5 2.5 6 8 HLPq1234 HLPq2112...050 HLΘPcos24 HLjPcos 46 1 0.5 2 0 0.0 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure7.ThesameasFig.4forthecluster3C220. 8 5 10 2.5 6 4 8 2.0 HLPq14 HLPq223 HLΘPcos 46 HLjPcos11..05 2 1 2 0.5 0 0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure8.ThesameasFig.4fortheclusterMS1137. (cid:13)c 0000RAS,MNRAS000,000–000 10 M. Sereno et al. N-bodyq Flatq Name Comp. q1 q2 cosθ cosϕ Comp. q1 q2 cosθ cosϕ A1703 0.094 0.39±0.07 0.55±0.11 0.87±0.10 0.81±0.16 0.025 0.37±0.10 0.61±0.15 0.90±0.09 0.76±0.17 MS2137.3 <∼10−4 NA <∼10−4 NA AC114 0.104 0.36±0.06 0.52±0.13 0.77±0.11 0.93±0.07 0.054 0.31±0.09 0.61±0.18 0.84±0.12 0.85±0.13 ClG2244 0.149 0.43±0.06 0.57±0.08 0.93±0.04 0.67±0.20 0.026 0.45±0.10 0.60±0.12 0.92±0.05 0.67±0.22 SDSS1531 1.2×10−3 0.44±0.06 0.60±0.10 0.82±0.25 0.70±0.17 4.3×10−4 ∼0.26 ∼0.49 ∼0.83 ∼0.60 SDSS1446 1.7×10−4 ∼0.45 ∼0.70 ∼0.65 ∼0.39 1.7×10−4 ∼0.16 ∼0.76 ∼0.75 ∼0.63 MS0451.6 <∼10−4 NA 3×10−4 ∼0.14 ∼0.27 ∼0.99 ∼0.64 3C220.1 0.037 0.33±0.06 0.50±0.12 0.85±0.07 0.95±0.05 0.025 0.29±0.09 0.56±0.15 0.92±0.06 0.86±0.13 SDSS2111 <∼10−4 NA <∼10−4 NA MS1137.5 0.174 0.38±0.05 0.52±0.08 0.92±0.04 0.74±0.16 0.028 0.41±0.09 0.59±0.12 0.92±0.06 0.73±0.19 Table7.Intrinsicparametersforatriaxialshape(axialratios,q1andq2,andorientationanglesθandϕ)inferredusingdifferentpriorsfortheintrinsicaxial ratiosdistributions.Thecolumn”Comp.”givesthesignificancelevelforaclustershapetobecompatiblewithagivensetofdata. usingacoupleofproxiesfortheaxialratios.Inparticularweex- bothlensingdataandtheoreticalpredictions.Finally,westudiedfor ploit either a flat distribution or the guess from N-body simula- eachclusterwhichintrinsicshapeandorientationwerecompatible tions. Operatively, we randomly extract the axial ratios from the withtheinferredelongationandthemeasuredprojectedellipticity. assumedpriordistributionandthensolveforθandϕinEqs.(30). Ateachstep,wechecked theexploitedhypothesisababsurdo by Foreachiteration,acoupleofinput valuesfore ande isalso findingany inconsistency between theoretical predictionsand ac- P ∆ randomlydrawn.Ifthereisasolutiontothesystem,weconsider tualconditionsunderwhichexpectationscanbeinagreementwith thedrawnq andq andthecorrespondingθandϕtobeasample data. 1 2 fromtheposteriordistribution. We first considered the inferred distribution of elongations, ResultsarelistedinTable7,whereasusual wereportedbi- comparing that with the probability to really see them observ- weightestimators.Finalestimatesarequiteinsensitivetothepriors. ingagivenpopulation. Wefound twogroups inour sample. The Thisassertsthevalidityofourinversionapproach,sinceaBayesian first group is in very good agreement with what expected from analysisiseffectiveasfarastheeffectofpriorsisasnotinforma- a population of clusters fitting the mass-concentration relation tiveaspossible.Theparameterspaceforsolutionsisquitenarrow and preferentially oriented along the line of sight, as suggested forveryelongatedclusters(e < 0.3),andweactuallywereable by theoretical analyses of lensing clusters (Hennawietal. 2007; ∆ tofindveryfewofthem,lessthanoneoutoftenthousandsdraw- Oguri&Blandford2009).Observedellipticitiesandinferredelon- ings.Assumingthesharpprolatepriorontheshape,wecouldfind gationsarealsoinagreement withintrinsicaxialratiosfollowing someextremelyelongatedconfigurations,butsuchintrinsicshapes distributionsderivedinN-bodysimulations.Thereisnoevidence areprettymuchexcludedbyassumingmorerealisticpriorsonthe forsuchlensingclusterstobeintrinsicallyover-concentratedeven axial distributions as the ones expected for general triaxial con- ifdatacannotexcludethat. figurations.Thisfurthersuggeststhatoursamplecontainsseveral Thesecondsubsampleinouranalysisismadeofclustersvery outliersofthemass-concentrationrelation. likelytobeoutliersofthemassconcentrationrelation.Tofulfilthe Posterior probabilities for A1703, AC114, ClG2244, 3C220 expectedrelation,theyshoulddevelopalongthelineofsightasa and MS1137 are plotted in Figs. 4, 5, 6, 7, and 8, respectively. filamentary structure with extreme elongation, a clearly poor de- ThefinaldistributionshavebeensmoothedusingaGaussianker- scriptionformassivehaloes.Evenallowingformoreconcentrated nelestimatorwithreflectiveboundaryconditions(Vioetal.1994; halosforagivenmassbyenhancingthec Mrelation,elongations − Ryden1996).Foreachcluster,whateverthepriorontheaxialra- wouldstillbeextreme. tios,theposteriorprobabilitiesarequitesimilar.Evenifweassume Even if our sample was not statistical, we took care of se- a flat distribution for the axial ratios, the posterior probability is lectingquite regular clusters. However, bimodal structures nearly quitesimilartothepredictionfromN-bodysimulations.Notethat alignedwiththelineofsightwouldseeminglyhavearegularmor- thealignmentbiasisconfirmedbytheaboveanalysiswithoutany phology intheplaneof thesky. Suchconfigurations wouldboost priorassumptionontheorientation. theapparentconcentration,buttheyareveryrareanditisproblem- atictoconsiderallofouroutlierswithinthisscenario.Furthermore, weusedamass-concentration relationderivedforthefullsample ofclusters,notjustthevirializedandregularones. 7 DISCUSSION Thesecondstepinouranalysisfurtherstrengthenssuchview. Recentobservationalanalyseshavebeenfindingmanylensingclus- Using a series of statistical priors, we found for each one of the ters with Einstein radii much larger than expected in a standard mildlyelongatedclustersanintrinsicstructureandorientationcom- ΛCDMmodel(Broadhurstetal.2008;Ogurietal.2009).Weper- patiblewiththeinferredelongation. Prolateshapes make abetter formed a statisticalanalysis on a sample of 10 clusters that were workinexplainingdatathanoblateclusters,butingeneraldataare wellfittedbyasingleNFWmodel.Ourmethodwasasfollow.We fullycompatiblewithtriaxialstructures.Whatever thehypothesis supposed theoreticalexpectationsfromN-bodysimulationstobe exploitedaspriorontheintrinsicaxialratios,inferredintrinsicpa- true and modelled clusters as NFW haloes fitting standard mass- rameterssuggestsmildlytriaxialclusterswithanalignmentbias,in concentration relations. Then, we found the elongation along the verygoodagreementwithexpectationsfromN-bodysimulations. line of sight of the clusters required to satisfy at the same time Analternativeapproachwouldhavebeentoapplythefitting (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.