Mon.Not.R.Astron.Soc.000,000–000(0000) Printed11January2010 (MNLATEXstylefilev2.2) On the over-concentration problem of strong lensing clusters M. Sereno⋆1,2, Ph. Jetzer1 and M. Lubini1 1Institutfu¨rTheoretischePhysik,Universita¨tZu¨rich,Winterthurerstrasse190,8057Zu¨rich,Switzerland 2DipartimentodiFisica,PolitecnicodiTorino,CorsoDucadegliAbruzzi24,10129Torino,Italia 0 Accepted2009December22.Received2009December14;inoriginalform2009September25 1 0 2 ABSTRACT n Λ cold dark matter paradigmpredicts that galaxy clusters follow an universalmass density a profile and fit a well defined mass-concentration relation, with lensing clusters being pref- J erentially triaxial haloes elongated along the line of sight. Oddly, recent strong and weak 1 lensinganalysesofclusterswith alargeEinsteinradiussuggestedthosehaloesto behighly 1 over-concentrated.Here, we investigatewhat intrinsic shape and orientationan halo should have to account for both theoretical predictions and observations. We considered a sample ] O of 10 strong lensing clusters. We first measured their elongation assuming a given mass- concentration relation. Then, for each cluster we found the intrinsic shape and orientation C whicharecompatiblewiththeinferredelongationandthemeasuredprojectedellipticity.We . h distinguished two groups. The first one (nearly one half) seems to be composed of outliers p of the mass-concentrationrelation, which they would fit only if they were characterised by - afilamentarystructureextremelyelongatedalongthelineofsight,thatisnotplausiblecon- o sideringstandardscenariosofstructureformations.Thesecondsamplesupportsexpectations r t ofN-bodysimulationswhichprefermildlytriaxiallensingclusterswithastrongorientation s a bias. [ Keywords: galaxies:clusters:general– cosmology:observations– gravitationallensing– 1 methods:statistical v 6 9 6 1 INTRODUCTION galaxyclustersarethenacrucialprobeofthemeandensityofthe 1 . universe at relatively late epochs. State-of-the art models of cos- 1 Clusters of galaxies, the most recent bound structures to form micstructureformationsuggestthatgalaxyclusterconcentrations 0 in a hierarchical cold dark matter model with a cosmological decreasegraduallywithvirialmass.However,clusterobservations 0 constant (ΛCDM), offer important clues to the assembly pro- haveyettofirmlyconfirmthiscorrelation. 1 cessofstructureintheuniverse.N-bodysimulationsaresuccess- : ful in fitting large-scale structure measurements and are able to On the observational side, the situation at present is v i make detailed theoretical predictions on dark matter halo proper- still unclear due to the plurality of methods employed X ties(Navarroetal.1997;Bullocketal.2001;Diemandetal.2004; (Comerford&Natarajan 2007). The observed concentration- r Duffyetal. 2008) but some disagreement with observations still mass relation for galaxy clusters has a slope consistent with a persists.OnepossibleconflictbetweenΛCDMandmeasurements theoretical prediction fromsimulations, though thenormalization isthedetection of extremelylargeEinsteinradii inmassivelens- factor seems to be higher (Comerford&Natarajan 2007). A ingcluster(Broadhurst&Barkana2008;Sadeh&Rephaeli2008; critical point is that concentrations measured in massive lensing Oguri&Blandford 2009; Zitrinetal. 2009). The Einstein radius clusters appear to be systematically larger than X-ray concen- mirrorsthemasscontainedintheinnerregionsanditsmeasurement trations (Comerford&Natarajan 2007). A similar, though less isquitemodelindependent. EvenifanuniversalNavarro-Freank- pronounced, effect is also found in simulations (Hennawietal. Whitedensityprofile(Navarroetal.1996,1997,NFW)reproduces 2007),whichshowthatmassivelensingclustersareusuallyelon- manycharacteristicsofmassivelenses,suchhaloesshouldbeover- gated along the line of sight. Oguri&Blandford (2009) showed concentratedtofitthedata. thatthelargertheEinsteinradius,thelargertheover-concentration The concentration parameter measures the halo central den- problem,withclusterslookingmoremassiveandconcentrateddue sity, which depends on the assembly history and thereby on the totheorientationbias. time of formation. The halo concentration is then expected to be Theover-concentrationbiasseemstobemuchlargerinobser- relatedto itsvirialmass, withtheconcentration decreasing grad- vations than in simulations. Broadhurstetal. (2008) inferred sig- ually with mass (Bullocketal. 2001). Concentrations of massive nificantly high concentrations for four nearly relaxed high-mass clusters.Suchatrendhasbeenrecentlyexacerbatedwiththeanal- ysisofthelargestknownEinsteinradiusinMACSJ0717.5+3745 ⋆ E-mail:[email protected](MS) (Zitrinetal.2009).Ogurietal.(2009) found that thedatafroma (cid:13)c 0000RAS 2 M. Sereno et al. sampleoftenclusterswithstrongandweaklensingfeatureswere versionmethodwhichundersomegivena-priorihypothesesallows highly inconsistent with the predicted concentration parameters, to infer intrinsic mass, concentration and elongation of a lensing evenincludinga50%enhancementtoaccountforthelensingbias cluster;themethodisthenappliedtoasampleoftenstronglensing (Oguri&Blandford2009).Ontheotherhand,Okabeetal.(2009) clusters.InSec.5wecomparetheobserveddistributionsofelonga- found that the correlation in the c M relation, as measured in tionalongthelineofsightandellipticityintheplaneoftheskyto − a sample of 19 clusters with significant weak lensing signal that differenttheoretical predictions. Section6exploitsthepreviously werewellfittedbyaNFWprofile,wasmarginallycompatiblewith inferredgeometricalparameterstopredicttheintrinsicaxialratios predictionsforbothslopeandnormalization. andtheorientationoftheclustersinthesample.Finally,Sec.7is Different definitions of parameters for spherically averaged devotedtoasummaryandtosomefinalconsiderations. profiles can play a role when comparing observations to predic- Throughout the paper, we assume a flat ΛCDM cosmology tions (Broadhurst&Barkana 2008). Triaxiality issues were ad- withdensityparametersΩ =0.3,Ω =0.7andanHubblecon- M Λ dressed by Corlessetal. (2009), who derived weak lensing con- stantH =100hkms−1Mpc−1,h=0.7.Wequoteuncertainties 0 straintsonthreestronglensingclusterswithoutassumingaspheri- atthe68.3%confidencelevel. calhalomodel.Thelargeerrorsthataccompanytriaxialparameter estimates can make observations compatible, even if marginally, with theoretical predictions. Investigations in the weak lensing 2 THEORETICALPREDICTIONS regime demonstrated that neglecting halo triaxiality can lead to over- and under-estimates of up to50% and afactor of 2 inhalo High resolution N-body simulations have shown that the density mass and concentration, respectively (Corless&King 2007). An profiles of dark matter halos are successfully described as NFW analysisofAC114usingonlystronglensingdataandaccounting densityprofiles(Navarroetal.1996,1997),whose3Ddistribution for triaxiality also supported that projection effects play a major follows role in the estimate of the concentration (Serenoetal. 2009). Fi- ρ = ρs , (1) nally,analysesofstackedweaklensingclustersoflessermassdoes NFW (r/rs)(1+r/rs)2 not exhibit the high concentration problem (Johnstonetal. 2007; where ρ is the characteristic density and r is the characteristic s s Mandelbaumetal. 2008), in agreement with theoretical findings length scale. N-body simulations showed as well that haloes are (Oguri&Blandford2009). aspherical and that such profiles can be accurately described by Severaleffectscanplayarole:over-concentratedclustershave concentrictriaxialellipsoidswithalignedaxes(Jing&Suto2002). a larger lensing cross section (Hennawietal. 2007); strong lens- A NFW equivalent profile whose density is constant on a family ingclusterspreferentiallysamplethehigh-massendofthecluster of similar, concentric, coaxial ellipsoids is obtained by replacing massfunction(Comerford&Natarajan2007);whileextremecases the spherical radius r with an ellipsoidal radial variable ζ in the oftriaxialityarerare,suchhaloscanbemuchmoreefficientlenses intrinsic orthogonal framework centred on the cluster barycentre thantheirmoresphericalcounterparts(Oguri&Blandford2009); andwhosecoordinates,x ,arealignedwithitsprincipalaxes, i,int the strongest lenses in the universe are expected to be a highly biased population preferentially orientated along the lineof sight 3 ζ2 e2x2 , (2) (Hennawietal.2007;Oguri&Blandford2009);estimatesoflens- ≡ i i,int ing concentrations can be also inflateddue tosubstructures close Xi=1 tothelineofsight(Puchwein&Hilbert2009).Ontheotherhand, where e are the intrinsicaxial ratios. Without loss of generality, i contamination of weak lensing catalogues can lead to underesti- wecanfixe > e > e = 1.Inthefollowing,wewillalsouse 1 2 3 matetheconcentration(Limousinetal.2007). theinverseratios,0<q =1/e 61. i i In order to check the ΛCDM paradigm is then crucial to According to recent N-body simulations (Netoetal. 2007; account for all possible biases when comparing theoretical re- Maccio` etal.2008;Gaoetal.2008;Duffyetal.2008),thedepen- lations with lensing observations. Such approach was taken in dence of dark matter halo concentration c on halo mass M and Broadhurst&Barkana (2008), whoderived theprobability distri- redshiftzcanbeadequatelydescribedbyapowerlaw bution of Einsteinradii fromconcentration distributions found in c=A(M/M )B(1+z)C. (3) N-body simulations. Also after considering that lensing clusters pivot areintrinsicallyover-concentratedandthattheinherenttriaxiality Since several assumptions were used by competing groups, re- ofCDMhaloesalongwiththepresenceofsubstructure enhances sults can be somewhat different, in particular as far as the over- theprojectedmassinsomeorientations,theyfoundthattheoretical all normalization is concerned. Several values for the linear am- predictions are excluded at a 4σ significance. Sadeh&Rephaeli plitude of mass fluctuations σ were considered. The higher σ , 8 8 (2008)reachedasimilarconclusion.TheyimpliedtheEinsteinra- theearlier the formation epoch for haloes of a given mass. Here, diusdistributionfromtheprobabilitydistributionofclusterforma- we follow Duffyetal. (2008), who used the cosmological pa- tiontimesandfromaformationredshift-concentrationscalingde- rameters from WMAP5 (σ = 0.796) and found A,B,C = 8 { } rivedfromN-bodysimulations. However duetovariousinherent 5.71 0.12, 0.084 0.006, 0.47 0.04 forapivotalmass { ± − ± − ± } uncertainties,thestatisticalrangeofthepredicteddistributionmay Mpivot =2 1012M⊙/hintheredshiftrange0 2fortheirfull × − besignificantlywiderthancommonlyacknowledged. sampleofclusters. Here,wecomparemeasurementswiththeoreticalpredictions ByseparatelystudyingthedistributionofNFWprofileparam- fromsemi-analyticalinvestigationsandN-bodysimulationsavoid- etersbothforthegeneralhalopopulationandforthelensingpop- ing some possible biases connected to spherical averaging. The ulation(i.e.haloesweightedbytheirstronglensingcross-section) paper isasfollows. In Section2, wereview thepredictions from Hennawietal.(2007)showedthatthedistributionof3Dconcentra- either N-body simulations or semi-analytical investigations. Sec- tionsofthelenspopulationisthesameasthatofthegeneralhalo tion 3 discusses how projected quantities are related to intrinsic populationexceptforashiftupwardsbyafactorof 17%.Inthe ∼ parametersforanellipsoidalcluster.InSec.4,wedevelopourin- following,wewillthenalsoconsideranenhancedc M relation − (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 3 forlensingclusters,withA 6.68.Notethatsuchincreasedvalue δ = 200 c200 . (11) ofAcouldbealsoseenasd∼uetoalargervalueofσ8. c 3 ln(1+c200)−c200/(1+c200) N-bodysimulationsprefermildlytriaxialhalos.Jing&Suto The virial mass, M , is the mass within the ellipsoid of semi- 200 (2002)investigatedtheprobabilitydistributionofintrinsicaxialra- majoraxisr ,M =(800π/3)q q r3 ρ .Suchdefinedc 200 200 1 2 200 cr 200 tiosandproposedanuniversalapproximatingformulaforthedis- and M have small deviations with respect to the parameters 200 tributionofminortomajoraxisratios, computed fittingspherically averaged density profiles, asdone in (q q /r )2 N-bodysimulations.Theonlycaveatisthatthesphericalmassob- P(q1)∝exp − 1−2σµ2 q1 (4) tainedinsimulationsissignificantlylessthantheellipsoidalM200 (cid:20) s (cid:21) forextremeaxialratios(Corless&King2007).However,sincethe whereq =0.54,σ =0.113and dependence of the concentration on the mass is quite weak, see µ s Eq.(3),thiswillhavenegligibleeffectsonouranalysis. rq1 =(Mvir/M∗)0.07ΩM(z)0.7, (5) Threerotationanglesrelatetheintrinsictotheobserver’scoor- dinatesystem,i.e.thethreeEuler’sangles,θ,ϕandψ.Afteralign- withM∗thecharacteristicnonlinearmassatredshiftz.Thecondi- ment of the observer’s coordinate system with the direction con- tionalprobabilityforq ,theratiooftheintermediatetothemajor 2 nectingtheobservertotheclustercentre,thelineofsighthaspolar axis-length,goesas angles θ,ϕ π/2 intheintrinsicsystem.Withathirdrotation, { − } 3 2q /q 1 r ψ,wecanproperlyalignthecoordinateaxesintheplaneofthesky. P(q1/q2|q1)= 2(1 rmin) 1− 1 12−rm−in min (6) Ifnotstatedotherwisewewilllineupsuchaxeswiththeaxesof − (cid:20) − (cid:21) theprojectedellipses. forq1/q2 > rmin max[q1,0.5],whereasisnullotherwise.The Whenviewedfromanarbitrarydirection,quantitiesconstant ≡ lensing population has nearly the same triaxialily distribution as onsimilarellipsoidsproject themselves onsimilarellipses(Stark the total cluster population (Hennawietal. 2007). This could be 1977).Ingeneral,theprojectedmapF ontheplaneofthesky 2D explained astheresultof twocounter-balancing effects.Whereas and the intrinsic spheroidal volume density F are related by 3D bothtriaxialityandconcentrationincreasethelensingcrosssection, (Stark1977;Sereno2007), theshapeof adarkhaloiscorrelatedwithitsconcentration, with ∞ moreconcentratedclustersbeingmorespherical. F (ξ;l ,p )= 2 F (ζ;l ,p ) ζ dζ, (12) 2D P i 3D s i Forcomparisonwewillalsoconsideraflatdistributionforthe √f ζ2 ξ2 Zξ − axialratios,suchthat where ξ is the elliptical radius in the plapne of the sky, ls is the P(q1)=1 (7) typical length scale of the 3D density, lP is its projection on the planeofthesky,p aretheotherparametersdescribingtheintrinsic forthefullrange0<q 61and i 1 densityprofile(slope, ...)andf isafunction oftheclustershape P(q q )=(1 q )−1 (8) andorientation, 2 1 1 | − forq2 >q1 andzerootherwise.Theresultingprobabilityforq2 is f =e21sin2θsin2ϕ+e22sin2θcos2ϕ+cos2θ; (13) then P(q ) = ln(1 q )−1. Such aflat distribution allowsalso 2 2 thesubscriptPdenotesmeasurableprojectedquantities. forverytriaxialclust−ers(q < q 1),whicharepreferentially 1 ∼ 2 ≪ Letusseeinsomedetailshowtheparametersdescribingthe excludedbyN-bodysimulations. projectedmapdependontheintrinsicshapeandorientationofthe Finally, semi-analitycal (Oguri&Blandford 2009) and nu- 3Ddistribution.Theaxialratioofthemajortotheminoraxisofthe merical (Hennawietal. 2007) investigations showed a large ten- observedprojectedisophotes,e (>1),canbewrittenas(Binggeli P dencyforlensingclusterstobealignedwiththelineofsight.De- 1980), notingtheanglebetweenthemajoraxisandthelineofsightasθ, suchconditioncanbeexpressedas(Corlessetal.2009) j+l+ (j l)2+4k2 e = − , (14) P (cosθ 1)2 sj+l p(j l)2+4k2 P(cosθ) exp − , (9) − − ∝ − 2σ2 (cid:20) θ (cid:21) wherej,kandlapredefinedas withσθ =0.115.Forcomparison,wewillalsoconsiderapopula- j = e2e2sin2θ+e2cos2θcos2ϕ+e2cos2θsin2ϕ, (15) tionofclustersrandomlyoriented,i.e. 1 2 1 2 k = (e2 e2)sinϕcosϕcosθ, (16) 1− 2 P(cosθ)=1 (10) l = e2sin2ϕ+e2cos2ϕ. (17) 1 2 for06cosθ61. Inthefollowingwewillalsousetheellipticityǫ=1 1/e . P − Theobservedscalelengthl istheprojectionontheplaneof P theskyoftheclusterintrinsiclength(Stark1977), 3 PROJECTIONOFTRIAXIALHALOES e 1/2 l l P f1/4. (18) Dealingwithellipsoidalhalos,weneedgeneralizeddefinitionsfor p ≡ s e1e2 (cid:16) (cid:17) theintrinsicNFWparameters.WefollowCorless&King(2007), Equation(18)canberewrittenas whodefinedatriaxialvirialradiusr suchthatthemeandensity 200 l l containedwithinanellipsoidofsemi-majoraxisr is∆ = 200 s P , (19) times the critical density at the halo redshift; the20c0orresponding √f ≡ e∆ concentrationisc r /r .Then,thecharacteristicoverden- where the parameter e quantifies the elongation of the triaxial 200 200 s ∆ ≡ sityisexpressedintermsofc asforasphericalprofile, ellipsoidalongthelineofsight(Sereno2007), 200 (cid:13)c 0000RAS,MNRAS000,000–000 4 M. Sereno et al. e∆ = ee1Pe2 1/2f3/4. (20) M200 = 43π ×200ρcr×(c200rsP)3ef3Pg/eo2. (25) (cid:16) (cid:17) ThequantitylP/e∆representsthehalf-size(alongthelineofsight) InordertoestimateM200andc200fromtheprojectedNFWparam- oftheellipsoidasseenfromabove,i.e.perpendicularlytotheline etersdirectlyinferredfromthelensinganalysis,weneedtoknow of sight. If e∆ < 1, then thecluster ismoreelongated along the the elongation of the cluster. The problem is intrinsically degen- lineofsightthanwideintheplaneofthesky.Thesmallerthee∆ erate and can not be solved based on lensing information alone, parameter,thelargertheelongation.Inthefollowing,wewilluse evenintheidealcaseofobservationswithoutnoise.Ifaclusteris asanelongationparameteralsoageometricalfactor elongatedalongthelineofsight,theconcentrationparameterand thevirialmassestimatedfromlensingareoverestimated(Gavazzi (e e )1/2 e1/2 f 1 2 = P . (21) 2005;Ogurietal.2005).Ontheotherhand,therearemoreineffi- geo ≡ f3/4 e∆ cientlensingorientationsforatriaxialhalothanthereareefficient Summarising,thesurfacedensitycanbeexpressedintermsof ones(Corlessetal.2009). projectedquantitiesas F = lP f (ξ;e ,ψ;l ;p ,...), (22) 4.1 Datasample 2D e 2D P P i ∆ Wecompiledasampleofstronglensingclustersdrawingfrompre- wheref hasthesamefunctionalformasforasphericallysym- 2D existing lensing analyses. As selection criteria, we retained only metrichalo. IInorder towriteEq.(22)initsactual form,weex- clustersthatarewelldefinedbyasingledarkmatterhaloandwhose ploitedthat theintegral inζ inEq. (12) isproportional tothein- lensingdatawerefittedwithanellipticalNFWmodel.Table1lists trinsic scale length l . The dependence on the elongation e is s ∆ thefinalclustersample,togetherwithcorrespondingNFWparam- decoupledfromthedependenceontheapparentellipticityandin- etersandreferencestowherethelensinganalyseswereperformed. clination.Theotherparameterscharacterisingthe3Dprofileonly For clusters that do not have published arc/multiple images red- account for theradial dependence of theprojected density. Then, shift, we assumed a source redshift z = 2.5. Many input data s whenwedeprojectasurfacedensity,thenormalizationofthevol- were originally presented with asymmetric uncertainties. To ob- ume density can be known only apart from a geometrical factor. tain unbiased estimates, we applied correction formulae for the Notethatinournotation,theellipticalradiusiswrittenasafunc- mean andstandard deviation asgiven by equations (15) and (16) tionofthecoordinatesintheplaneoftheskyas inD’Agostini (2004). Notethat therearedifferent definitionsfor ξ2 =(x2+e2x2)(l /l )2, (23) the elliptical radius, which affect the numerical value of the pro- 1 P 2 s P jectedscale-length.Wetookcaretotranslatepublisheddatatothe so that in order to obtain the elliptical projection from the corre- notationinthepresentpaper.Furthermore,somestudiesexploited spondingspherical halowehavei)tomultiplytheoverallprofile elliptical NFW potential instead of elliptical mass density. When by1/√f ,ii)tosubstitutethepolarsphericalradiuswithξ.The necessary,i.e.forthesub-samplefromComerfordetal.(2006),we intrinsicscale-lengthhasthentobeexpressedintermsofthepro- convertedthepotentialellipticitytoisodensityellipticityaccording jectedone,seeEq.(19). totherelationinGolse&Kneib(2002).Asafinalprecaution,we forcederrorsonκ andr tobeatleastof10%andtheerroronǫ s sP tobeatleast0.015.Suchuncertaintiesmirrordiscrepanciesamong differentstudiesofthesamedataset,seetheanalysesofA1703in 4 LENSINGINVERSION Richardetal.(2009)andOgurietal.(2009)orMS2137.3-2353in For gravitational lensing studies, the projected map of interest is Comerfordetal.(2006)andGavazzi(2005). thesurfacemassdensity.WewilldescribetheprojectedNFWden- Usingthefullprobabilitydistributioninsteadoftheestimate sityintermsofthestrengthofthelensκ ,seeEq.(24),andofthe of mean and error for the ellipticity and the central convergence s projectedlengthscaler ,i.e.thetwoparametersdirectlyinferred would be an improvement. However, we limited our method to sP byfittingprojectedlensingmaps.Theprojectedsurfacemassden- quiteregularclusters(uni-modalandwellfittedbyaNFWprofile). sityΣofthesedensityprofilesisexpressedintermsoftheconver- Fromthedetailedanalysescollectedintheliteratureforeachclus- genceκ,i.e.inunitsofthecriticalsurfacemassdensityforlensing, ter,wefoundnoevidenceforcomplexparameterdistributions,with Σ = (c2D )/(4πGD D ), where D , D and D are the probability functions that are single-peaked and generally well- cr s d ds s d ds source,thelensandthelens-sourceangulardiameterdistances,re- behaved. spectively.AccordingtoournotationinSec.3,foraNFWprofile, theintrinsicl and theprojected l lengths havetobe readasr s P s 4.2 Inferredparameters andr ,respectively. sP The central convergence of a NFW profile estimated from In order to extract the physical information, i.e. to the determine lensing can be written in terms of c200 and the projected length theparametersc200,M200 ande∆,wehavethentouseadditional scalemodulusafactorfgeo(Serenoetal.2009), constraints. Sincewewant totesttheoretical predictions, wewill employthepriorfromthec M relationasgiveninEq.(3). Σcr×κs = √fgeePoρsrsP, (24) Slouwcshuasntaodddeittieornmailntehitrhdeceolon2ns0t0graa−tiinotn,t2oo0fg0eththeecrluwsittehrEanqds.i(t2s4m,a2s5s),aanld- where as usual ρ = δ ρ (z) with ρ being the critical den- concentration. The prior isvery strong so the estimated c and s c cr cr 200 sityoftheuniverseattheclusterredshift.Theconcentrationenters M willfitnicelythetheoreticalprediction.Ontheotherhand, 200 Eq.(24)throughδ ,seeEq.(11).TheestimateofthemassM e isfreetotakewhatevervalueallowstheclustertofitthelens- c 200 ∆ dependsalsoonthescale-lengthr whichisknownmodulusafac- ingconstraintsandthec M relationatthesametime.Un- s 200 200 − tor√f/e ,seeEq.(19).Then physicalvaluesfore (either 1or 1),thatwoulddescribe ∆ ∆ ≪ ≫ (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 5 Name zd zs κs rsP(kpc/h) ǫ refa Abell1703 0.28 0.888 0.19±0.04 540±90 0.37±0.035 1 MS2137.3-2353 0.313 1.501 0.67±0.07 112±11 0.226±0.015 2 AC114 0.315 3.347 0.22±0.02 680±70 0.502±0.018 3 ClG2244-02 0.33 2.237 0.18±0.02 300±30 0.242±0.015 4 SDSSJ1531+3414 0.335 1.096 1.2±0.8 210±110 0.47±0.23 1 SDSSJ1446+3032 0.464 - 3.2±2.0 110±50 0.62±0.34 1 MS0451.6-0305 0.55 0.917 0.28±0.03 350±30 0.425±0.015 4 3C220.1 0.62 1.49 0.18±0.02 320±30 0.497±0.015 4 SDSSJ2111-0115 0.637 - 7.1±1.5 57±11 0.46±0.27 1 MS1137.5+6625 0.783 - 0.26±0.03 330±30 0.300±0.015 4 Table 1. The strong lensing cluster data sample. References: 1 stands for Ogurietal. (2009); 2 for Gavazzi (2005); 3 for Serenoetal. (2009); 4 for Comerfordetal.(2006).Forclusters withmultiple imagesystems,wepicked outonesourceredshift(Col. 2).Thecentral convergence κs fortheNFW modelreferstosuchredshift;rsPistheprojectedscalelength. Name Standardc200−M200 Enhancedc200−M200 c200 M200(1014M⊙/h) e∆ c200 M200(1014M⊙/h) e∆ A1703 2.98±0.16 12±4 0.66±0.19 3.46±0.18 13±5 0.91±0.26 MS2137 3.41±0.13 2.0±0.4 0.068±0.011 3.95±0.15 2.3±0.5 0.093±0.014 AC114 2.94±0.13 12±3 1.06±0.17 3.40±0.16 14±3 1.44±0.024 ClG2244-02 3.26±0.13 3.3±0.7 0.69±0.11 3.77±0.15 3.7±0.8 0.95±0.15 SDSS1531 3.1±0.4 7±7 0.04±0.04 3.6±0.4 8±8 0.06±0.05 SDSS1446 3.2±0.4 3±3 0.015±0.014 3.7±0.5 3±3 0.020±0.019 MS0451 2.82±0.13 7.6±1.6 0.29±0.05 3.27±0.15 8.6±1.9 0.40±0.06 3C220.1 3.03±0.13 2.6±0.6 0.79±0.13 3.51±0.15 2.9±0.6 1.09±0.17 SDSS2111 3.0±0.2 2.6±1.6 0.004±0.002 3.5±0.2 2.8±1.8 0.006±0.003 MS1137 2.77±0.13 4.3±0.9 0.71±0.12 3.21±0.15 4.9±1.0 0.97±0.16 Table2.Concentration, massandelongationforeachclusterinferredthroughlensinginversionassumingasaprioreitherastandardoranenhancedmass concentrationrelation.Massesareinunitsof1014M⊙/h. morefilamentarystructuresthanvirializedclusters,willpointmore plane of the sky. Lensing parameters of SDSS1531, SDSS1446 tooutlierswithrespecttopredictionsthantoextremelyelongated andSDSS2111hadquitelargeobservational uncertaintieswhich structures. The most likely explanation for extreme e values is propagateintheestimateoftheintrinsicclusterparameters.How- ∆ thenthatthecorrespondingclustersdonotfollowtherelationim- ever,theestimatedvaluesofe aresosmallthattheordinaryvalue ∆ posedapriori.Thiscanbeviewasasortofproofababsurdo. of 1 can be excluded for such clusters at a high confidence ∼ ResultsarelistedinTable2.Weconsidered boththec level.Evendoublingthenormalizationfactorofthec M relation 200 − − M as determined in Duffyetal. (2008) and the case of over- (i.e. assuming A 11.4), elongation parameters for two cluster 200 ∼ concetratedclusters(A =6.68).Toaccountformeasurementser- (SDSS2112andSDSS1446)wouldremainsmallerthanonetenth rors,wedrawlensingparameters(κsandrsP)fromrandomnormal (e∆ ∼0.019and0.070,respectively). distributionswithmeananddispersiongivenbythereportedcentral Notethatfinalresultsonelongationwouldhavebeenconsis- locationandscale,seeTable1.Similarly,theoreticaluncertainties tentifwehadchosendifferentmethodsforderivingthestronglens- onthemass-concentrationrelationwereaccountedforbydrawing ingparameters.TheelongationofA1703calculatedusingthedata theparametersA,BandC,whichdescribeEq.(3),fromGaussian reportedinRichardetal.(2009)or Limousinetal.(2008), which distributionswithmeananddispersionvaluesfoundinDuffyetal. both fitted the lensing potential, turns out to be 0.35 0.11 or ± (2008).Then,foreachsetofparameters(κ ,r ,A,BandC)we 0.77 0.17 respectively, the value of e based on Ogurietal. s sP ∆ ± solvedthesystemofequationsEqs.(3,24,25),discardingonlyso- (2009),thatdirectlyfittedtheconvergence,beingintermediatebe- lutionswitheitherc200 > 40orM200 > 1018M⊙/h.Thevalues tween the two, see Table 2. The elongation of MS 2137 using listedinTable2arethebiweightestimatorsforlocationandscale datainComerfordetal.(2006),thatfittedthelensingpotential,is ofthefinalinferreddistributions(Beersetal.1990). 0.051 0.008,compatiblewiththeresultbasedondirectconver- ± Ifweusetheenhancedc M relation,theconcentration gencefittinginGavazzi(2005),seeTable2.Then,independently 200 200 − ofeachclusterincreasesby 16%,themassby 13%ande of the lensing technique used, results are quite consistent within ∆ ∼ ∼ by 27%, i.e.theelongation shrinks. Evenif clusterscome out theerrors,bothformildly(A1703)orveryelongated(MS2137) ∼ less elongated if we assume that the lensing population is intrin- clusters. sicallyover-concentrated,weseethatsomeoutliersarestillthere. Itisquitereassuringthatwheneveraclusterhasbeenanalyzed Fouroutof10clustershavee < 0.1,i.e.thesizealongtheline eitherfittingthepotentialortheconvergence,theestimatedelonga- ∆ ofsightshouldbelargerthantentimesthemaximumlengthinthe tiondoesnotchangeinasignificantway.Togetherwiththecentral (cid:13)c 0000RAS,MNRAS000,000–000 6 M. Sereno et al. n 4 q1,2 θ All e∆>0.1 nctio ffllaattqq,,bfliaatsΘedΘ flat flat 4.8×10−2 1.5×10−2 Fu 3 NN--bbooddyyqq,,bfliaatsΘedΘ flat biased 2.6×10−2 1.0×10−2 sity N-body flat 7.9×10−1 5.9×10−1 Den 2 N-body biased 8.6×10−3 1.2×10−1 y bilit Table5.Kolmogorov-Smirnovsignificancelevelthatthemeasuredelliptic- a 1 ob itiesoftheobservedsamplesofclusters(eitherallofthemorthesixwith Pr e∆>0.1)aredrawnfromagivenpopulation. 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 apart from the group at e < 0.1. Cumulative distributions are eD ∆ plottedinFig.2andprobabilitiesatverylowthresholdvaluesare listedinTable3.Chancesforveryelongatedclustersareverytiny. Figure1.Probabilitydensityfunctionsfortheelongationsofdifferentclus- Evenforbiaseddistributionsjustoneoutoffewthousandsclusters terpopulations,seelegend.Thebarsdenotethemeasuredvaluesforourfull sampleassumingastandardc200−M200relation. isexpected to have e∆ < 0.1. Even in the most favourable case ofapopulation of clustersbiased inθ andflatinaxial ratios,the chancetohavefouroutoftenclusterswithe < 0.1wouldbea ∆ verytiny1.7 10−16.Sowecanconcludethatsuchclustersare q1,2 θ P(e∆<0.1) P(e∆<0.2) P(e∆<0.3) verylikelyou×tliersofthemass-concentrationrelations. flat flat <∼10−3% 8×10−3% 2.7×10−3% Further quantitative comparisons can be performed exploit- flat biased 4.5×10−3% 3.5×10−2% 1.87×10−2% ingtheKolmogorov-Smirnov(KS)test.Whenweconsiderthefull N-body flat <∼10−3% 1×10−3% 9.5×10−3% sample,noneoftheinvestigatedpopulationsgivesagoodfittothe N-body biased <∼10−3% 1.5×10−3% 5.7×10−2% data.Thebetterperformer,i.e.apopulationwithN-bodylikeaxial ratiosandbiasedalignments,giveaKSsignificancelevelof<1%, ∼ bothforthestandardortheenhancedc M relation,seeTa- Table3.Probability(in%)tohaveanelongationlargerthanagiventhresh- 200− 200 ble4. oldvaluefordifferentpopulationsofgalaxyclusters. The significance levels improve very significantly when we consider the subsample with e > 0.1. The prediction from ∆ convergence, our method needs only anestimateof theprojected N-body simulations reproduce very well the observed distribu- ellipticity,whichisquitewellmeasuredwithstronglensinganal- tion both for the standard ( 31.1%) and the enhanced relation ∼ yses.Golse&Kneib(2002)discussedindetailshowpotentialand ( 4.7%).Fortheenhancedrelation,alsodistributionsflatinthe ∼ surfacemassellipticitiesarerelated,andtheiranalysisshowedhow axialratiosperformwellforbothpopulationssufferingorientation themassdensityellipticitycanbeestimatedusingapreviousdeter- bias( 2.1%)orunbiased( 97.2%). ∼ ∼ minationofthepotentialellipticity.Oncetheellipticityofthesur- facemassdensityisknown,ourmethodreliesonlyongeometrical 5.2 Ellipticity projectionsandisnotaffectedanymorebylensingnon-linearities. Infact,wealwaysde-projectthesurfacemassdensity(insteadof Theellipticitydistributionofoursampleisnotnearasinformative thepotential)toobtaintheintrinsicmassdistribution. astheelongationone.Probabilitydensityfunctionsbothforunbi- asedorbiasedpopulationshavenotnegligiblevaluesincorrespon- denceoftheobservedellipticities,seeFig.3.Populationswithflat 5 EXPECTEDVS.OBSERVEDELONGATIONAND axialratiosarepreferentiallyrounder(ǫ >∼ 0,e∆ ∼ 1)sincehigh ELLIPTICITY valuesofq1arenotpenalized,buttheobservedsampledonothelp todiscriminate.TheKStestisinconclusivetoo,seeTable5,even Thechancetoobserveaveryelongatedclustercanbeassessedon if the biased N-body-like population performs remarkably better a more firm ground. We derived the probability density function consideringthee > 0.1subsample.However,theellipticitiesof ∆ (PDF)foragivenelongation,P(e∆),andagivenellipticityP(ǫ) such subsample are nothing special. According to a KS test, the underdifferentassumptions.AsdiscussedinSec.3,elongationand ellipticitiesof theoutliers(i.e.clusterswithe < 0.1) might be ∆ ellipticitydependontheintrinsicaxialratios,q1andq2andtheori- drawnfromthefullsamplewithasignificancelevel 98%. entationanglesθandϕ.Weconsideredfourscenarios.Fortheaxial Since our sample is neither homogeneous or ∼statistical, we ratios,weconsideredeithertheN-bodypredictionsinEqs.(4,6) are cautious in drawing conclusions, but some indications seem or a flat distribution, see Eqs. (7, 8). For the alignment we con- to be quite strong. There is a number of clusters whose over- sidered either thebiased distributionfor P(θ)inEq. (9) or aflat concentrationproblemcannotbesolvedjustconsideringsomepar- distribution, Eq. (10). For theazimuth angle ϕwealways used a ticular geometrical configurations. Even strong biases inintrinsic flatdistribution,P(ϕ)=const. triaxialityandalignmentwouldnotsolvetheproblem.Oncesuch outliersareexcludedfromtheanalysis,theoreticalpredictionsare inverygoodagreement withdata.Populationswithanalignment 5.1 Elongation bias perform much better than randomly oriented clusters. There ThePDFfortheelongation,P(e ),isplottedinFig.1.Itispretty isalsosomeevidence forintrinsicaxialratiosdistributedaccord- ∆ evidentthatpopulationsofclusterspreferentiallyalignedwiththe ing tothe outputs of N-body simulations, even if,under suitable lineof sightmakeabetterjobtoreproduce theobserved sample, circumstances,flatpopulationscangivegoodresultstoo. (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 7 Standardc200−M200 Enhancedc200−M200 q1,2 θ All e∆>0.1 All e∆>0.1 flat flat 9×10−8 2.5×10−4 3×10−5 2.1×10−1 flat biased 9×10−6 3.5×10−3 9.3×10−3 9.7×10−1 N-body flat 6×10−7 2.5×10−4 5×10−5 9.1×10−3 N-body biased 7.8×10−3 3.1×10−1 9.6×10−3 4.7×10−2 Table4.Kolmogorov-Smirnovsignificancelevelthattheelongationsoftheobservedsamplesofclusters(eitherallofthemorthesixwithe∆ > 0.1)are drawnfromagivenpopulation.Weconsiderede∆obtainedfromeitherastandardoranenhancedmass-concentrationrelation. Standardc -M Enhancedc -M 200 200 200 200 1.0 1.0 n n o o cti cti n 0.8 n 0.8 u u F F y y bilit 0.6 bilit 0.6 a a b b o o Pr 0.4 Pr 0.4 e e v v ulati 0.2 ffllaattqq,,bfliaatsΘedΘ ulati 0.2 ffllaattqq,,bfliaatsΘedΘ m N-bodyq,flatΘ m N-bodyq,flatΘ Cu N-bodyq,biasedΘ Cu N-bodyq,biasedΘ 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 e e D D Figure2.Predictedcumulativedistributionfunctionsforelongationversusmeasurements.Thefullanddashedstep-linesareforthefullobservedsampleand fortheclusterswithe∆ >0.1,respectively;thesmoothfunctionsarethepredicteddistributionsunderdifferentassumptions,seelegends.Theleftandright panelsshowtheobservedelongationscomputedassumingeitherastandardoranenhancedmass-concentrationrelation,respectively. The assumption that lensing clusters are intrinsically over- (DeFilippisetal.2005;Serenoetal.2006),evenifdiffuseprolate- concentrated partially reduce the problem, but expected distribu- nesscannotbeexcluded(Plionisetal.1991;deTheijeetal.1995; tionsandobservationswouldbecompatiblewithaverylowsignif- Basilakosetal. 2000; Cooray 2000; Plionisetal. 2004; Pazetal. icancelevelof<1%andtheproblemofhavingnearlyhalfofthe 2006).Oncetheelongationofaclusterisknowntogetherwithits ∼ samplewithveryextremeelongationwouldbestillthere.Ingen- projected ellipticity, strong constraints can be put on its intrinsic eral, the data analysis performed on our limited sample does not shape (Sereno2007).Axial symmetry reduces thenumber of un- provide evidence for intrinsic over-concentrations, an orientation knownparameterstoacouple:asingleaxialratio,q(61),andthe bias being enough to account for observations of normal clusters inclinationangleofthesymmetryaxis,i. (e >0.1). Aprolate-likesolutionisadmissiblewhenthesizealongthe ∆ lineofsightislargerthantheminimumwidthintheplaneofthe sky,thatis,whene 6e .Theintrinsicparameterscanbewritten ∆ P 6 INTRINSICAXIALRATIOSANDORIENTATION asq1 = q2 = q and θ = i. Interms of themeasured quantities (Sereno2007), Knowledge of the sizes of a cluster in the plane of the sky and e alongthelineof sightallowsustoputconstraintsonitsintrinsic q = ∆, (26) e2 geometry(Sereno2007).However,evenexploitingsuchstrongas- P sumptionsontheshape,inversioncanbenotunique:intrinsically e2 e2 cosi = e P− ∆. (27) differentellipsoidscancastontheplaneoftheskyinthesameway P e4 e2 (Sereno 2007). In order to infer the properties of the cluster and r P− ∆ Anoblate-likesolutionisadmissiblewhenthesizealongthe deriveitsorientationandshape,wehavetoexploitsomeexternal lineofsightissmallerthanthemaximumsizeintheplaneofthe information.Wewillconsidertwokindsofprior:firstasharpone whichassumestheclustertobeaxiallysymmetric;thensomeless sky,thatis,whene∆ >1.Accordingtoournotation,foranoblate informative priors on the distribution of intrinsic axial ratios for ellipsoid,q1 = q,q2 = 1andcosi = sinθsinϕ.Inversiongives (Sereno2007), triaxialhaloes. 1 q = , (28) e e 6.1 Axialsymmetry P ∆ e2 1 As a working hypothesis, let us first consider if the cluster cosi = ∆− . (29) e2e2 1 shape can be approximated as an ellipsoid of revolution. Previ- r P ∆− ous studies have shown that clusters seems to be quite triaxial Theprolateandtheoblatesolutionsareadmissibleatthesametime (cid:13)c 0000RAS,MNRAS000,000–000 8 M. Sereno et al. 1.0 3.0 on flatq,flatΘ ncti 0.8 2.5 flatq,biasedΘ u N-bodyq,flatΘ F LΕ 2.0 N-bodyq,biasedΘ ability 0.6 HP 1.5 ob Pr 0.4 flatq,flatΘ e flatq,biasedΘ 1.0 ativ NN--bbooddyyqq,,bfliaatsΘedΘ ul 0.2 0.5 m u C 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Ε Ε Figure3. Probability functionfortheprojectedellipticity. Leftpanel:probability densityfunctionsfortheellipticity ofdifferentclusterpopulations, see legend. The bars denote the measured values for our full sample. Right panel: predicted cumulative distribution functions for a given elongation versus observations.Thefullanddashedstep-linesareforthefullobservedsampleandfortheclusterswithe∆ > 0.1,respectively;thesmoothfunctionsarethe predicteddistributionsunderdifferentassumptions,seelegend. Prolate Oblate Name Comp. q cosi Comp. q cosi A1703 ∼1 0.26±0.08 0.94±0.04 0.0342 0.59±0.05 0.25±0.11 MS2137 ∼1 0.040±0.007 0.9994±0.0002 <∼10−5 NA NA AC114 ∼1 0.26±0.05 0.88±0.05 0.622 0.43±0.04 0.26±0.09 ClG2244-02 ∼1 0.40±0.07 0.93±0.03 2.31×10−3 0.74±0.03 0.24±0.12 SDSS1531 ∼1 0.012±0.011 0.999795±0.0002 <∼10−5 NA NA SDSS1446 ∼1 0.0014±0.0014 0.999989±0.000015 <∼10−5 NA NA MS0451 ∼1 0.098±0.017 0.9902±0.003 <∼10−5 NA NA 3C-220.1 ∼1 0.20±0.03 0.94±0.02 0.0542 0.48±0.02 0.16±0.07 SDSS2111 ∼1 0.0010±0.0009 0.999998±10−6 <∼10−5 NA NA MS1137 ∼1 0.35±0.06 0.93±0.03 6.45×10−3 0.68±0.03 0.23±0.11 Table6.Intrinsicparameters(axialratioqandinclinationanglei)assumingeitherprolatenessoroblateness.Thecolumn”Comp.”givesthesignificancelevel foraclustershapetobecompatiblewithagivensetofdata.Foraverylowcompatibilitywithagivenshapehypothesis,parametervaluesarenotavailable (NA). onlywhenthesizealongthelineofsightisintermediate,i.e.1 6 gationandellipticityallowedbythedataiscompatiblewithsuch e 6e . an hypothesis. Only AC 114, with e 1, has a good chance ∆ P ∆ ∼ to be described by an oblate shape ( 60%), otherwise signif- ResultsoftheinversionarelistedinTable6.Intrinsicparam- icance levels are < 5%. For the few∼clusters for which oblate- etershavebeenobtainedbymeansofEqs.(26,27)fortheprolate ∼ nessismarginallycompatible,inclinationangleswouldstillbebi- case and Eqs. (28, 29) for the oblate-case. Input values for elon- ased,symmetryaxisbeingnearlyperpendiculartothelineofsight gationandellipticitywererandomlyextractedfromnormaldistri- (cosi < 0.26), whereas intermediate axial ratios would be pre- butionscentredinthemeasuredvalueandwithdispersionequalto ∼ ferred(0.43<q<0.74). theobservational uncertainty. ThevalueslistedinTable6arethe ∼ ∼ bi-weigthestimatorsofthefinaldistributionsoftheinferredparam- eters.Thesignificancelevelforagivenshapehasbeenobtainedas 6.2 Triaxialclusters the fractionof drawn e and e for which a given compatibility P ∆ Inordertoexactlydeterminetheintrinsicshapeofatriaxialclus- conditions is fulfilled. We considered only elongation values ob- ter, weshould know both ellipticityand elongation together with tainedassuming astandard mass-concentration relation.Thepro- two additional observational constraints. The problem of invert- late hypothesis is compatible with the full sample but the shapes shouldbeextremelylongandnarrow (q < 0.35) andnearlyper- ingaprojectedmapisintrinsicallydegenerateandevenaddingX- ∼ fectlyalignedwiththelineofsight(cosi>0.88).Theconclusion rayobservationsormeasurementsoftheSunyaev-Zeldovicheffect ∼ wouldnotmaketheinversionunique(Sereno2007).Analternative thatclusterswithe < 0.1areoutliersisfurtherstressedbythe ∆ approachistousepriorsontheintrinsicparameters(Corlessetal. verysmallspacevolumeallowedfortheintrinsicparameters(under 2009).Here,wetrytosolvethesystemofequations wronghypotheses,uncertaintiesareverylikelytobeverysmall). Apopulationofoblateclustersdonotprovideagooddescrip- eP = eP(q1,q2;θ,ϕ); (30) tionofthedata.Onlyatinyregionintheparameterspaceofelon- e = e (q ,q ;θ,ϕ) ∆ ∆ 1 2 (cid:13)c 0000RAS,MNRAS000,000–000 Arelensingclustersover-concentrated? 9 6 7 45 233...505 56 23..50 HLPq123 HLPq2112...050 HLΘPcos234 HLjPcos112...050 1 0.5 1 0.5 0 0.0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure4.Posteriorprobability densityfunctionsfortheintrinsicparametersofA1703.PanelsfromthelefttotherightareforthePDFofq1,q2,cosθ andcosϕ,respectively.FullanddashedthicklineshavebeenobtainedassumingaN-body-likeandaflatpriorontheaxisratios,respectively.Thefulland dashedthinlineintheleftpanelrepresenttheN-bodyandtheflatpriorforP(q1),respectively;thefullanddashedthinlineintheq2-panelrepresentthe priordistributionsaccordingtoeitheraN-bodyoraflatprior,respectively;thethinanddashedfulllineinthecosθ-panelrepresentthebiasedandtheflat distributionsontheorientationangle.SuchpriorsoncosθwerenotusedtoderivethePDFs.Finallytheflatlineinthecosϕ-panelrepresentsanuniform distribution. 6 3.0 7 8 5 2.5 6 HLPq1234 HLPq2112...050 HLΘPcos2345 HLjPcos46 2 1 0.5 1 0 0.0 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure5.ThesameasFig.4fortheclusterAC114. 7 5 10 6 4 8 2.0 5 HLPq134 HLPq223 HLΘPcos 46 HLjPcos11..05 2 1 1 2 0.5 0 0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure6.ThesameasFig.4fortheclusterClG2244. 8 6 3.0 10 5 2.5 6 8 HLPq1234 HLPq2112...050 HLΘPcos24 HLjPcos 46 1 0.5 2 0 0.0 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure7.ThesameasFig.4forthecluster3C220. 8 5 10 2.5 6 4 8 2.0 HLPq14 HLPq223 HLΘPcos 46 HLjPcos11..05 2 1 2 0.5 0 0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 q1 q2 cosΘ cosj Figure8.ThesameasFig.4fortheclusterMS1137. (cid:13)c 0000RAS,MNRAS000,000–000 10 M. Sereno et al. N-bodyq Flatq Name Comp. q1 q2 cosθ cosϕ Comp. q1 q2 cosθ cosϕ A1703 0.094 0.39±0.07 0.55±0.11 0.87±0.10 0.81±0.16 0.025 0.37±0.10 0.61±0.15 0.90±0.09 0.76±0.17 MS2137.3 <∼10−4 NA <∼10−4 NA AC114 0.104 0.36±0.06 0.52±0.13 0.77±0.11 0.93±0.07 0.054 0.31±0.09 0.61±0.18 0.84±0.12 0.85±0.13 ClG2244 0.149 0.43±0.06 0.57±0.08 0.93±0.04 0.67±0.20 0.026 0.45±0.10 0.60±0.12 0.92±0.05 0.67±0.22 SDSS1531 1.2×10−3 0.44±0.06 0.60±0.10 0.82±0.25 0.70±0.17 4.3×10−4 ∼0.26 ∼0.49 ∼0.83 ∼0.60 SDSS1446 1.7×10−4 ∼0.45 ∼0.70 ∼0.65 ∼0.39 1.7×10−4 ∼0.16 ∼0.76 ∼0.75 ∼0.63 MS0451.6 <∼10−4 NA 3×10−4 ∼0.14 ∼0.27 ∼0.99 ∼0.64 3C220.1 0.037 0.33±0.06 0.50±0.12 0.85±0.07 0.95±0.05 0.025 0.29±0.09 0.56±0.15 0.92±0.06 0.86±0.13 SDSS2111 <∼10−4 NA <∼10−4 NA MS1137.5 0.174 0.38±0.05 0.52±0.08 0.92±0.04 0.74±0.16 0.028 0.41±0.09 0.59±0.12 0.92±0.06 0.73±0.19 Table7.Intrinsicparametersforatriaxialshape(axialratios,q1andq2,andorientationanglesθandϕ)inferredusingdifferentpriorsfortheintrinsicaxial ratiosdistributions.Thecolumn”Comp.”givesthesignificancelevelforaclustershapetobecompatiblewithagivensetofdata. usingacoupleofproxiesfortheaxialratios.Inparticularweex- bothlensingdataandtheoreticalpredictions.Finally,westudiedfor ploit either a flat distribution or the guess from N-body simula- eachclusterwhichintrinsicshapeandorientationwerecompatible tions. Operatively, we randomly extract the axial ratios from the withtheinferredelongationandthemeasuredprojectedellipticity. assumedpriordistributionandthensolveforθandϕinEqs.(30). Ateachstep,wechecked theexploitedhypothesisababsurdo by Foreachiteration,acoupleofinput valuesfore ande isalso findingany inconsistency between theoretical predictionsand ac- P ∆ randomlydrawn.Ifthereisasolutiontothesystem,weconsider tualconditionsunderwhichexpectationscanbeinagreementwith thedrawnq andq andthecorrespondingθandϕtobeasample data. 1 2 fromtheposteriordistribution. We first considered the inferred distribution of elongations, ResultsarelistedinTable7,whereasusual wereportedbi- comparing that with the probability to really see them observ- weightestimators.Finalestimatesarequiteinsensitivetothepriors. ingagivenpopulation. Wefound twogroups inour sample. The Thisassertsthevalidityofourinversionapproach,sinceaBayesian first group is in very good agreement with what expected from analysisiseffectiveasfarastheeffectofpriorsisasnotinforma- a population of clusters fitting the mass-concentration relation tiveaspossible.Theparameterspaceforsolutionsisquitenarrow and preferentially oriented along the line of sight, as suggested forveryelongatedclusters(e < 0.3),andweactuallywereable by theoretical analyses of lensing clusters (Hennawietal. 2007; ∆ tofindveryfewofthem,lessthanoneoutoftenthousandsdraw- Oguri&Blandford2009).Observedellipticitiesandinferredelon- ings.Assumingthesharpprolatepriorontheshape,wecouldfind gationsarealsoinagreement withintrinsicaxialratiosfollowing someextremelyelongatedconfigurations,butsuchintrinsicshapes distributionsderivedinN-bodysimulations.Thereisnoevidence areprettymuchexcludedbyassumingmorerealisticpriorsonthe forsuchlensingclusterstobeintrinsicallyover-concentratedeven axial distributions as the ones expected for general triaxial con- ifdatacannotexcludethat. figurations.Thisfurthersuggeststhatoursamplecontainsseveral Thesecondsubsampleinouranalysisismadeofclustersvery outliersofthemass-concentrationrelation. likelytobeoutliersofthemassconcentrationrelation.Tofulfilthe Posterior probabilities for A1703, AC114, ClG2244, 3C220 expectedrelation,theyshoulddevelopalongthelineofsightasa and MS1137 are plotted in Figs. 4, 5, 6, 7, and 8, respectively. filamentary structure with extreme elongation, a clearly poor de- ThefinaldistributionshavebeensmoothedusingaGaussianker- scriptionformassivehaloes.Evenallowingformoreconcentrated nelestimatorwithreflectiveboundaryconditions(Vioetal.1994; halosforagivenmassbyenhancingthec Mrelation,elongations − Ryden1996).Foreachcluster,whateverthepriorontheaxialra- wouldstillbeextreme. tios,theposteriorprobabilitiesarequitesimilar.Evenifweassume Even if our sample was not statistical, we took care of se- a flat distribution for the axial ratios, the posterior probability is lectingquite regular clusters. However, bimodal structures nearly quitesimilartothepredictionfromN-bodysimulations.Notethat alignedwiththelineofsightwouldseeminglyhavearegularmor- thealignmentbiasisconfirmedbytheaboveanalysiswithoutany phology intheplaneof thesky. Suchconfigurations wouldboost priorassumptionontheorientation. theapparentconcentration,buttheyareveryrareanditisproblem- atictoconsiderallofouroutlierswithinthisscenario.Furthermore, weusedamass-concentration relationderivedforthefullsample ofclusters,notjustthevirializedandregularones. 7 DISCUSSION Thesecondstepinouranalysisfurtherstrengthenssuchview. Recentobservationalanalyseshavebeenfindingmanylensingclus- Using a series of statistical priors, we found for each one of the ters with Einstein radii much larger than expected in a standard mildlyelongatedclustersanintrinsicstructureandorientationcom- ΛCDMmodel(Broadhurstetal.2008;Ogurietal.2009).Weper- patiblewiththeinferredelongation. Prolateshapes make abetter formed a statisticalanalysis on a sample of 10 clusters that were workinexplainingdatathanoblateclusters,butingeneraldataare wellfittedbyasingleNFWmodel.Ourmethodwasasfollow.We fullycompatiblewithtriaxialstructures.Whatever thehypothesis supposed theoreticalexpectationsfromN-bodysimulationstobe exploitedaspriorontheintrinsicaxialratios,inferredintrinsicpa- true and modelled clusters as NFW haloes fitting standard mass- rameterssuggestsmildlytriaxialclusterswithanalignmentbias,in concentration relations. Then, we found the elongation along the verygoodagreementwithexpectationsfromN-bodysimulations. line of sight of the clusters required to satisfy at the same time Analternativeapproachwouldhavebeentoapplythefitting (cid:13)c 0000RAS,MNRAS000,000–000