ebook img

On the nature of the Milky Way satellites PDF

0.83 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the nature of the Milky Way satellites

Mon.Not.R.Astron.Soc.000,1–18(2010) Printed18January2010 (MNLATEXstylefilev2.2) On the nature of the Milky Way satellites 1⋆ 2 1 Yang-Shyang Li , Gabriella De Lucia and Amina Helmi 0 1KapteynAstronomicalInstitute,UniversityofGroningen,P.O.Box800,9700AVGroningen,theNetherlands 1 2INAF-AstronomicalObservatoryofTrieste,viaG.B.Tiepolo11,I-34143Trieste,Italy 0 2 n 18January2010 a J 8 ABSTRACT 1 Wecombineaseriesofhigh-resolutionsimulationswithsemi-analyticgalaxyformationmod- elstofollowtheevolutionofasystemresemblingtheMilkyWayanditssatellites.Thesemi- ] analytic model is based on that developedfor the Millennium Simulation, and successfully A reproducesthe propertiesof galaxieson large scales, as well as those of the Milky Way. In G thismodel,weareabletoreproducetheluminosityfunctionofthesatellitesaroundtheMilky h. WaybypreventingcoolinginhaloeswithVvir <16.7kms−1(i.e.theatomichydrogencool- inglimit)andincludingtheimpactofthereionizationoftheUniverse.Thephysicalproperties p - ofourmodelsatellites(e.g.meanmetallicities,ages,half-lightradiiandmass-to-lightratios) o are in good agreementwith the latest observationalmeasurements.We do not find a strong r dependenceupontheparticularimplementationofsupernovafeedback,butaschemewhich t s ismoreefficientingalaxiesembeddedinsmallerhaloes,i.e.shallowerpotentialwells,gives a better agreementwith the propertiesof the ultra-faintsatellites. Our modelpredictsthatthe [ brightestsatellitesareassociatedwiththemostmassivesubhaloes,areaccretedlater(z ∼<1), 2 and have extended star formation histories, with only 1 per cent of their stars made by the v endofthereionization.Ontheotherhand,thefaintersatellitestendtobeaccretedearly,are 1 dominatedbystarswithage>10Gyr,andafewofthemformedmostoftheirstarsbeforethe 9 reionizationwascomplete.ObjectswithluminositiescomparabletothoseoftheclassicalMW 2 satellitesareassociatedwithdarkmattersubhaloeswithapeakcircularvelocity∼>10kms−1, 1 inagreementwiththelatestconstraints. . 9 0 Keywords: galaxies:dwarf–galaxies:formation–LocalGroup–cosmology:theory–dark 9 matter 0 : v i X 1 INTRODUCTION stellarpopulation (> 10Gyr), whichlikelykeeps theimprintsof r theyoungUniverse. a The satellites of the Milky Way (MW) are powerful touchstones In recent years, the number of known satellites around the for galaxy formation and evolution theories. Their proximity fa- MW has doubled, thanks to the discovery of very low surface cilitates detailed observations and characterisation of their prop- brightnessdwarfgalaxiesintheSloanDigitalSkySurvey(SDSS) erties and hence constrains ‘near-field’ cosmology. In addition, (Willmanetal.2005a,b;Belokurovetal.2006,2007;Zuckeretal. their shallow potential wells make them more sensitive to astro- 2006a,b; Irwinetal. 2007; Walshetal. 2007; Belokurovetal. physicalprocessessuchassupernova(SN)feedback(Larson1974; 2008, 2009). Since the sky coverage of SDSS DR5 is about 1/5 Dekel&Silk1986)or tothepresence of aphotoionization back- of the full sky and the surface brightness limit is about µ ∼ ground(Babul&Rees1992). Deep images have allowed the construction of colour- 30magarcsec−2 (Koposovetal.2008),manysatellitesarelikely yet to be discovered in the next generations of surveys. E.g. magnitudediagrams(CMD)oftheMWsatellites,fromwhichthe Tollerudetal. (2008) have used sub-samples of the Via Lactea I star formation histories have been deduced. These studies indi- (Diemandetal. 2007) subhaloes to conclude that the total num- cate that there is alarge variety in the star formation histories of berofMWsatelliteswithin400kpcshouldbebetween∼300and thesegalaxies(Mateo1998;Dolphinetal.2005).Thetwogas-rich ∼600anddominatedbysatellitesfainterthanM =−5. dwarf irregular (dIrr) Magellanic Clouds show on-going star for- V mationwhiletheotherdwarfspheroidalgalaxies(dSphs)aregas- ThenewSDSSsatelliteshavelowersurfacebrightness(µ > deficientandshow generallylittleevidenceforrecentstarforma- 27magarcsec−2)comparedtotheclassicalsatellites,butsimilar tion.Modernstudieshaverevealedthatallsatellitescontainanold physicalsizes.TheyhavecomparableluminositiestosomeGalac- ticglobular clusters, but aresignificantlybigger (Belokurovetal. 2007). The nature of these newly discovered satellites isstill un- clear.Theycouldbetheprolongationtowardsfainterluminosities ⋆ Email:[email protected] oftheclassicalMWsatellites(Kirbyetal.2008),tidalfeatures(e.g. 2 Y.-S. Li, G. DeLucia andA. Helmi HerculesdSph,Colemanetal.2007;Sandetal.2009),orrepresent ingsatellitesarethosewhichformedwhiletheUniversewasstill acompletelynewclassofobjects. neutral. This study was carried out before the boost at the faint Kinematic modelling based on line-of-sight velocity disper- endofthesatelliteluminosityfunction.Althoughtheydidpredict sions,havedemonstratedthattheclassicalMWsatellitesaredom- alargenumberoffaintsatellitesbelowMV = −5,afterextrapo- inated by dark matter (Mateoetal. 1993; Mateo 1998). Recent latingtheirpredictionontheluminosity-sizespacetothefaintend, studies have shown that, under the assumption of virial equilib- Bensonetal.’sfaintsatellitestendtobetoosmallatagivenabso- rium, theultra-faint satelliteshavemass-to-light ratiosashigh as lutemagnitudecomparedtotheultra-faintsatellitesdiscoveredin ∼100−1000,implyingthattheseobjectsarethemostdarkmatter SDSS(Koposovetal.2008).Morerecentstudieshaveturnedtheir dominatedsystemsknown(e.g. Mun˜ozetal.2006;Simon&Geha attentiontotheultra-faintsatellites:Maccio` etal.(2009)haveused 2007). The constraint on the total mass inferred by velocity dis- three different SA galaxy formation models to study the satellite persionsisstilluncertainbecauseofthemass-velocityanisotropy populationofMW-likegalaxies.Theyhaveusedbothanalyticand degeneracyandofthesmallnumber oftracersemployedinthese numericalmerginghistoriesofMW-likehaloesandshownthatall studies.RecentanalysessuggestthattheMWsatellites(including threemodelsreproduce theluminosityfunctionoftheMWdown thenewlydiscoveredSDSSsatellites)haveacommonmassscale toM =−2,withahintforabendingaroundM =−5. V V when considering their innermost regions within 600 or 300 pc In this paper we combine high-resolution simulations of a (Strigarietal.2007,2008). MW-likehalowithaSAgalaxyformationmodeltoinvestigatehow The cold dark matter (CDM) hierarchical paradigm suc- variousastrophysicalprocessesaffecttheformationandevolution cessfully explains the large scale structures of the Universe ofsatellitesaroundtheMilkyWay.Ourstudyextendstheanalysis (Spergeletal. 2007). Semi-analytic (hereafter SA) galaxy forma- presentedinDeLucia&Helmi(2008),whichfocusedonthefor- tion models coupled with merger trees extracted from N-body mationoftheMWgalaxyandofitsstellarhalo.Wefindthatbypre- simulations,representausefultechniquetodiagnosethecomplex ventingcoolinginhaloeswithTvir <104K(theatomichydrogen physicsinvolvedingalaxyformation,withmodest computational cooling limit) and including theimpact of the reionization of the costs. In recent years, SA models have been proved to success- Universe,ourmodelisabletoreproducethelatestmeasurementsof fullyreproduceanumberofobservationalmeasurements(e.g.spa- thesatelliteluminosityfunctionbyKoposovetal.(2008).Weshow tialandcolour-magnitudedistributions)forgalaxiesseeninthelo- thatthesamemodelreproducesthemetallicitydistributionfunction calUniverseandathigherredshift(forarecentreview,seeBaugh (MDF)oftheMWsatellites,byincludingaroutetorecyclemetals 2006).Inspiteoftheencouragingprogressonthelargescale,how- producedinnewlyformedstarsthroughthehotphase.Ourmodel ever, CDM still faces severe challenges on the galaxy-scale and satellitesexhibitseveralscalingrelationssimilartothosefollowed below.Anexampleisthe‘missingsatellitesproblem’:namelythe by the MW satellites, such as the metallicity-luminosity and the substructuresresolvedinagalaxy-sizeDMhalosignificantlyout- luminosity-sizerelations.Thepropertiesofthemodelsatellitesre- numberthesatellitesobservedaroundtheMW(Klypinetal.1999; semblingthenewlydiscoveredultra-faintSDSSsatellitesappearto Mooreetal.1999).Anumberofstudieshavesuggestedthatastro- besensitivetotheSNfeedbackrecipeadopted.Aswewilldiscuss physicalprocessessuchasthepresenceofaphotoionizationback- inthefollowing,ourmodelsuggeststhatthesurvivingsatellitesare ground might reconcile this discrepancy (e.g. Kauffmannetal. generally associated withhaloes whosepresent-day peak circular 1993; Bullocketal. 2000; Bensonetal. 2002; Somerville 2002), velocity,Vmax,∼> 10kms−1,totalmassexceededafew106M without invoking modifications on the nature of the DM parti- at z ∼ 10−20 and which acquired their maximum dark matte⊙r cles to reduce the power on small scales of the power spectrum masswellabovethecoolingthreshold,afterz∼6. (Kamionkowski&Liddle2000;Zentner&Bullock2003). This paper is organised as follows. Section 2.1 presents the Severalgroupshaverecentlyattemptedtomodel theproper- simulations used in this study, and in Section 2.2 we summarise tiesoftheMWanditssatellitesina(semi-)cosmological setting. oursemi-analyticalgalaxyformationmodel,emphasisingthenew Forexample,Kravtsov,Gnedin&Klypin(2004)haveanalysedthe featuresaddedtothemodelpresentedinDeLucia&Helmi(2008). dynamical evolution of substructures in high-resolution N-body InSection3wepresentourmainresultsandinSection4wediscuss simulations of MW-like haloes and suggested that all the lumi- theimplicationsofourstudy.WegiveourconclusionsinSection5. nousdwarfspheroidalsintheLocalGrouparedescendantsofthe relatively massive (∼ 109M ) high-redshift haloes, which were ⊙ notsignificantlyaffectedbytheextragalacticultravioletradiation. 2 THEHYBRIDMODELOFGALAXYFORMATION Fontetal.(2006)havesuccessfullyreproducedtheobservedchem- ANDEVOLUTION icalabundancepatternoftheMWstellarhalobycombiningmass accretionhistoriesofgalaxy-sizehaloeswithachemicalevolution 2.1 ΛCDMSimulationsofaMW-likehalo modelforindividualsatellites.Itshouldbenotedthatinthesestud- WehaveusedaseriesofhighresolutionsimulationsofaMW-like ies, thephenomenological recipesadopted for star formation and halo(Stoehretal.2002;Stoehr2006).Wenotethatthisistheex- feedback have been tunedtoreproduce someof the propertiesof actGAnewseriesusedinpreviousstudiesbyLi&Helmi(2008), thesatellitesintheLocalGroup. DeLucia&Helmi (2008) and Lietal. (2009). Wetherefore only Bensonetal. (2002) have used a SA model which success- summarise the basic properties of the simulations here, and re- fully reproduces the present-day field galaxy luminosity function fer the reader to those papers for more details. The simulations to study the properties of dwarf satellite galaxies known at the werecarriedoutwithGADGET-21(Springeletal.2001)adopting time. Their model calculates the influence of reionization self- aΛCDMcosmologicalmodel,withΩ0 =0.3,ΩΛ =0.7,h=0.7, consistently,basedontheproductionofionizingphotonsfromstars σ8(z =0)=0.9,andHubbleconstantH0=100hkms−1Mpc−1. and quasars, and the reheating of the intergalactic medium. This same model reproduces quite nicely the luminosity and size dis- tributions,gascontentandmetallicityoftheclassicalsatellitesof 1 TheGAnewsimulations wereinfactcarriedoutusinganintermediate theMW and M31. Theseauthors have suggested that the surviv- versionbetweenGADGETandGADGET-2. ThenatureoftheMW satellites 3 The target MW-like halo was simulated at four increasing reso- maryofthephysicalprocessesimplementedinourmodelswhich lution levels (the mass resolution was increased by a factor 9.33 arecrucialtothepropertiesofthesatellites. each time). In the highest resolution simulation (GA3new), there areapproximately107particleswithmassm =2.063×105M p h−1withinthevirialradius.Eachre-simulationproduced108ou⊙t- 2.2.1 Reionization puts,equallyspacedlogarithmicallyintimebetweenz=37.6and Following Crotonetal. (2006), we make use of the results by z=2.3,andnearlylinearlyspacedfromz=2.3topresent. Gnedin(2000)whosimulatedcosmologicalreionizationandquan- Mergertreesforallself-boundhaloeswereconstructedasde- tifiedtheeffectof photoionization onthebaryon fractionof low- scribedindetailinDeLucia&Helmi(2008).Virialisedstructures mass haloes. Gnedin found that reionization reduces the baryon were identified using the standard friends-of-friends (FOF) algo- contentinhaloeswhosemassaresmallerthanaparticular‘filter- rithmandlinkingallparticlesseparatedbylessthan0.2themean ingmass’scale,thatvarieswithredshift.Thefractionofbaryons, inter-particle separation. The algorithm SUBFIND (Springeletal. 2001) was then applied to each FOF group to find the gravita- fbhalo,inahaloofmassMviratredshiftz,isdecreasedcompared totheuniversalbaryonfraction2 accordingtotheratioofthehalo tionallyself-boundsubstructures.FollowingNavarroetal.(1997), massandthe‘filteringmass’,M : wedefineR200 astheradiusofasphereenclosingamass,M200, F whoseaveragedensityis200timesthecriticaldensityoftheUni- f verseatredshiftz,i.e.: fbhalo(z, Mvir)= [1+0.26MFb(z)/Mvir]3. (1) 4πR3 100H(z)2R3 For M (z), we use the analytical fitting function given in Ap- M200 = 3200 ·200δcrit(z)= G 200. pendixFBofKravtsovetal.(2004). In our fiducial satellite-model, we assume that reionization Thevelocity,V200,isdefinedasthecircularvelocityofthehaloat Rth2e0s0im(Vu2l0a0tio=nspanGdMus2e0d0/toRc2a0l0c)u.lMate20R02i0s0dairnedctVly20m0.eIansuoruedrmfroodm- tMsitoaWnrts-lamastotsrdefedolsrahadibfotopzute0td0=.z10125=Gayn8rd)a.enFndodrzsrsaimt=zprl7i=c(iitny1,1bw.o5te,hwrmehfoeilrdeetotlhstehreoeiroriengiiioznnaa--l els,weapproximatethevirialpropertiesofdarkmatterhaloes,e.g. virial radius (Rvir), virial mass (Mvir) and virial velocity (Vvir) giziavteisontheeproigchht,szhreaipoe,aasnzd0thheerneoarfmtear.liOsautriocnhofoicrethoefsfiaxteinllgitzerleuiom=ino1s5- by R200,M200 and V200 respectively, unless otherwise explicitly ityfunction.Wediscussthedependenceofthesatellitesluminosity stated. functionondifferentassumptionsforthereionizationepochinSec- Following DeLucia&Helmi (2008), we scaled down the tion3.1. original outputs by a factor of 1.423 for the mass and 1.42 for the positions and velocities, in order to have a MW-like halo withV200 ∼ 150kms−1 (Battagliaetal.2005;Smithetal.2007; 2.2.2 Cooling Xueetal.2008).Afterthescaling,thesmallestresolvedsubhaloes (containing 20 particles) have dark matter mass MDM ∼ 2 × In our model, the cooling of the shock-heated gas is treated as a 106M in the highest resolution run (GA3new). MDM denotes classicalcoolingflow(e.g. White&Frenk1991),withthecooling ⊙ thetotal bound massat z = 0determined bySUBFIND through- ratedepending on the temperature and metallicityof the hot gas. outthispaper.Thepresent-dayvirialmassandthevirialradiusfor As in DeLuciaetal. (2004), we model these dependences using the MW-like halo are M200 ∼ 1012M and R200 = 209 kpc, the collisional ionisation cooling curves of Sutherland&Dopita ⊙ respectively. (1993).Forprimordial(orlow-metallicity)composition,thecool- ing is dominated by bremsstrahlung (free-free) emission at high temperatures(T ∼> 106K)anditismostefficientatT ∼ 105K and ∼ 1.5×104K (the H and He+ peaks of the cooling func- 2.2 Semi-analyticmodelling tion).Linecoolingfromheavyelementsdominatesinthe106–107 Weuseasemi-analyticalgalaxyformationmodeltostudythebary- K regime for non primordial compositions. For T < 104K, i.e. onicpropertiesofaMW-likegalaxyanditssatellites.Thismodel belowtheatomichydrogencoolinglimit,thedominantcoolantis hasbeendeveloped mainlyattheMax–Planck–Institut fu¨rAstro- molecularhydrogen(H2).Thevirialtemperatureofahalocanbe physik and werefertoit asthe‘Munich model’ later inthetext. expressedasafunctionofitsvirialvelocityas: Theessentialideasofanysemi-analyticmodelcanbetracedback 2 taondthiencwluodrkespbhyysWicahlitpero&ceRseseesss(1u9ch78a)sathnedcWoohliitneg&ofFgreansk,s(t1ar99fo1r)-, Tvir(z)=35.9 Vkmvirs(z)1 . (2) − ! mationandfeedbackduetosupernovaexplosions.Overtheyears, theMunich model hasbeenenriched withnew ‘ingredients’, e.g. Therefore, a halo with Tvir = 104K corresponds to a virial ve- the growth of supermassive black holes (Kauffmann&Haehnelt locity of Vvir = 16.7kms−1, which is equivalent to Mvir ∼ 2000), the inclusion of dark matter substructures (Springeletal. 3×107M whenz=15,andMvir ∼2×109M whenz =0. 2001),chemicalenrichment(DeLuciaetal.2004)andAGNfeed- In the⊙MW-model, haloes with Tvir lower th⊙an 104K, are back (Crotonetal. 2006). The model we use in this study has able to cool as much gas as a 104K halo with the same metal- been presented in DeLucia&Helmi (2008) and builds upon licity. In the satellite-model, we forbid cooling in small haloes the model whose results have been made publicly available with Tvir < 104K, for any metallicities and at all times. This (DeLucia&Blaizot 2007). In order to reproduce the properties is a reasonable approximation since molecular hydrogen is very of the MW satellites, we have made a few modifications to the sensitivetophoto-dissociation causedbyUVphotonsfrom(first) original model. In the following, we refer to the model used by DeLucia&Helmi(2008)astheMW-modelandtothefiducialone usedinthisworkasthesatellite-model.Herewegiveabriefsum- 2 WeusetheWMAP3-yearvaluefb=0.17(Spergeletal.2007). 4 Y.-S. Li, G. DeLucia andA. Helmi stellar objects (Haimanetal. 2000, see also Kravtsovetal. 2004; Analternativesupernovafeedback Koposovetal.2009). Sincedwarfgalaxieshaveshallowpotentialwells,theirproperties areexpectedtobeparticularlysensitivetotheadoptedSNfeedback 2.2.3 Starformationandsupernovafeedback model.Toexplorethisdependency,wehavealsousedanalternative SNfeedbackrecipeinadditiontothe‘standard’recipementioned Thestarformation model used inthisworkisdescribed indetail above.Wenotethatthisalternativefeedbackrecipeisequivalentto inDeLucia&Helmi(2008),whilewerefertoCrotonetal.(2006) theejectionmodeldescribedinDeLuciaetal.(2004),andwerefer and DeLuciaetal. (2004) for details on the supernova feedback tothispaperformoredetailsonthisparticularfeedbackmodel.In models. Cold gas is assumed to be distributed in an exponential the ejection model, the gas reheated by SNe is computed on the diskandprovidestherawmaterialforstarformation,whichoccurs basisofenergyconservationargumentsanddependsonthegalaxy atarate: massas: ψ=αSFMsf/tdyn, (3) ∆M = 4ǫ VS2N ∆M . (9) reheat 3 V2 ∗ where αSF is a free parameter which controls the star formation vir efficiency,tdynisthediskdynamicaltimeandMsf isthegasmass Our choices of the feedback parameters (ǫ = 0.05 and VSN ∼ aboveacriticaldensitythreshold.AsinDeLucia&Blaizot(2007) 634kms−1) imply that galaxies with Vvir < 87kms−1 would and DeLucia&Helmi (2008), we fix αSF at 0.03, and adopt a haveinthismodelmoreheatedmassperunitofnewlyformedstel- ChabrierIMF.Thesurfacedensitythresholdtakesaconstantvalue lar mass, compared to the standard recipe (Eq. 6). In this model throughout the disk(see DeLucia&Helmi 2008, for details). At thematerialreheatedbysupernovaexplosionsincentralgalaxiesis eachtimestep,∆t,wecalculatetheamountofnewlyformedstars, assumedtoleavethehaloandtobedepositedinan‘ejected’com- ponent that canbe re-incorporated intothehot gasat later times. ∆M =ψ∆t. (4) ∗ ThematerialreheatedbySNeexplosionsinsatellitegalaxiesisas- Massive stars explode as SNe and inject energy in the sur- sumedtobeincorporateddirectlyinthehotcomponentassociated roundinginterstellarmedium.Inourmodel,wedonotconsiderthe withthecorrespondingcentralgalaxy. delaybetweenstarformationandSNenergy(andmetals)injection, Wewilldiscusslaterhowourresultsforthebaryonicproper- i.e.thelifetimeofsuchstarsisassumedtobezero.Theenergyin- tiesofthesatellitesdependontheadoptedfeedbackscheme. jectionbySNepersolarmasscanbeexpressedasVS2N =ηSN·ESN whereηSN =8.0×10−3M−1isthenumberofSNeperunitsolar massexpectedfromaChabr⊙ierIMF3 andESN = 1.0×1051 erg 2.2.4 Metalrecyclingthroughthehotphase istheaverageenergy per SN.Theenergy releasedbySNeinthe Ateach timestep, themassesexchanged among thefour phases: sametimeintervalis: Mhot,Mcold,M ,Meject,(i.e.hotgas,coldgas,starsandejecta) ∗ ∆ESN=ǫhalo·0.5VS2N∆M∗. (5) (a2re00u4p)d.aTtehdeamsedteaslclircibiteydiinneSaecchtipohna4s.e7iasnddeFniogt.e1diansDZexLauncdiaisetdael-. whereǫhalorepresentstheefficiencywithwhichtheenergyisable fined as the ratiobetween the mass in metals in each component toreheatdiskgas.Weassumethattheamountofcoldgasreheated (MZ)andthecorrespondingmass(M )wherethesuffixxishot, x x bySNeisproportionaltothenewlyformedstars: cold,staroreject.Inthesatellite-model,weincludearoutetore- cyclemetalsproducedbynewlyformedstarsthroughthehotphase ∆M =ǫ ∆M . (6) reheat disk ∗ ofagalaxy. Theequations giveninSection4.7ofDeLuciaetal. Ifthisgaswereaddedbacktothehotphasewithoutchanging its (2004)modifyasfollows: specificenergy,thetotalthermalenergywouldchangeby: M˙Z =+(1−R)·ψ·Z cold ∆E =0.5∆M V2 . (7) ∗ hot reheat vir If∆ESN >∆Ehot,SNfeedbackisenergeticenoughtoejectsome M˙hZot = −M˙cool·Zhot+M˙back·Zeject ofthehotgasoutsidethehaloandweassumethat: + (M˙reheat·Zcold)+FZhot·Y ·ψ sat ∆Meject = ∆ES0N.5−Vv∆2irEhot = ǫhaloVVSv22iNr −ǫdisk!∆M∗. (8) M˙Z = +XM˙ ·Z −(1−R)·ψ·Z cold cool hot cold The ejected material can be re-incorporated into the hot compo- +(1−F )·Y ·ψ−M˙ ·Z Zhot reheat cold nent associated with the central galaxy as the halo keeps grow- ing by accreting material from the surroundings (DeLuciaetal. 2004; Crotonetal. 2006). For thetwo parameters which regulate M˙eZject =+M˙eject·Zhot−M˙back·Zeject. thefeedback,ǫ andǫ ,weassumethevalues0.35and3.5re- halo disk Aconstant yieldY ofheavyelementsisassumedtobeproduced spectively, followingCrotonetal.(2006)and DeLucia&Blaizot persolarmassofgasconvertedintostars.Thegasfractionreturned (2007). This means that for galaxies with Vvir < 200kms−1, byevolvedstarsisR=0.43,appropriateforaChabrierIMF.Inthe ∆Meject >0for∆M∗ >0. aboveequations,M˙coolrepresentsthecoolingrate;M˙backprovides there-incorporationrate;M˙ isthereheatingratebySNe,and reheat 3 Thisisthefractionofstarswithmasslargerthan∼ 8M perunitof M˙ejectistherateofmassejectedoutsidethehalo. stellarmassformed.Notethat,sincewehaveadoptedaninst⊙antaneousre- ForthealternativeSNfeedbackrecipe,thereheatedgasisas- cyclingapproximation,itismoreappropriatetocomparethemetallicities sumedtobeejectedfromthecoldphasedirectlyforcentralgalax- ofourmodelgalaxieswithelementssynthesisedbyTypeIIsupernovae. ies.Inthiscase,themetallicityintheejectaisupdatedas ThenatureoftheMW satellites 5 M˙eZject =+M˙reheat·Zcold−M˙back·Zeject. correspondstothe‘satellite-model’(thefourthrowinTable1).In thismodel,reionizationstartsatz=15,and95percentofthenew IntheMW-model,allnewlyproducedmetalsreturnedtothe metals are deposited directly into the hot component in galaxies cold phase immediately, i.e. F = 0. Hydrodynamical simu- lbaltoiwonnsobuytfMroamcLsmowall&gaFlearxriaersawZ(h1iot9ht99g)assumgagsessbtetlhoawt m10e7taMls ca(ncobre- wwiethfoMrbvidirc<oo5li×ng1i0n1h0aMlo⊙es.wInitahllTmviord<els1w04ithKt.heprefix‘satellite’, rmesopdoenl,dwinegatsosuamhealaosoifmMplevirtw=o-s3ta.5te×va1lu0e8Mfor⊙F). In outor as⊙actceolulintet theceBnetlroawlM,wWe-blirkieeflgyaldaixsycuosnsothuerdcehpaenngdeesnfcoerozrfemioo,dtheelrceosoullitnsgfoinr Zhot smallhaloesandmetalrecyclingthroughhotphase.Theresultsfor fortheabovemassdependence: thesatellitegalaxiesarepresentedinSection3.Table2summarises FZhot = 00..095 iofthMervwiris>e.5×1010M⊙ tzhe=p0ro.perties of the MW-like galaxies indifferent SA models at (cid:26) TheresultscorrespondingtotheMW-modelaregiveninthe This means that for galaxies with a dark matter halo with virial firstrow(seealsoFig.2ofDeLucia&Helmi2008).Theonlydif- masslessthan5×1010M ,95percentofnewlyproducedmetals ference between the MW-model and the satellite-model A is the ⊙ aredepositeddirectlyintothehotphaseinthismodel. suppression of cooling in small haloes. Comparing the results of thesetwomodels,wefindnosignificantchangesintheproperties of the present-day MW-likegalaxy. Insatellite-model B, wealso 2.3 Treatmentofsatellitegalaxies changezreioto15andkeepFZhot =0.Theonlysignificanteffect Wefollowtheconventionestablishedalongthedevelopmentofthe of an early reionization is to bring down the black hole mass by Munich model to classify galaxies according to their association ∼ 15percentcomparedtothevalueobtainedintheMW-model. withadistinctdarkmattersubstructure.Thegalaxyassociatedwith Theearlyreionization alsoresultsinaslight increaseof thestel- the most massive subhalo in aFOFgroup isreferred toas ‘Type larmassbutthisisstillwellwithintheobservationaluncertainties 0’ or central galaxy. Other galaxies in a FOF group are usually (M ∼5−8×1010M ). referredtoassatellitesandarefurtherdifferentiatedinto‘Type1’ ∗Our fiducial satellit⊙e-model givesatotal stellarmass similar galaxies, iftheir darkmatter subhalo isstillidentified,and ‘Type tothat obtained from the MW-model and inagreement withcur- 2’,whentheirsubhalohasfallenbelowtheresolutionlimitofthe rentobservationalconstraints.Theresultsofthesetwomodelsare simulation. alsoverycloseintermsofthemassofthebulgeandthecoldgas Whenagalaxybecomesasatellite,thedarkmattermassofthe content. The black hole mass MBH = 6.9 × 106M from the parent subhalo is approximated using the number of bound dark satellite-model is in marginal agreement with the lates⊙t measure- matter particles given by SUBFIND. The disk size is fixed at the mentoftheMWblackholemassMBH = (4.5±0.4)×106M valueithadjustbeforeaccretion.Inourmodel,onlyType0central (Ghezetal.2008).Theejectionofmetalsintothehotcomponenti⊙n galaxiesareallowedtoaccretethematerialthatcoolsfromthehot smallgalaxies(cf.satellite-modelB)onlymakesthebulgeslightly gasassociatedwiththeparentFOFgroup.Satellitegalaxiesdonot moremetal-poor(∼ 0.06dex).ResultslistedinTable2showthat havehotandejectedcomponentsandthecoolingisforbidden,i.e. themodificationsdiscussedaboveinfluenceonlythepropertiesof Mhot =Meject =M˙cool =0.Whenagalaxybecomesasatellite, dwarf galaxies, while preserving the properties of the MW-like itshotandejectedcomponentsaretransferredtothecorresponding galaxiesdiscussedinDeLucia&Helmi(2008). components ofthecentralgalaxy.Asaconsequence, oncematter The5throwinTables1and2correspondstoamodelwhich leavesthecoldphase of asatellite,it doesnot rejointhe(Type1 incorporatesthe‘alternative’(orejection)SNfeedbackschemede- orType2) satelliteatalatertime,butitcanbeaccretedontothe scribedinSection2.2.3.Whencomparedtothe‘standard’scheme, correspondingcentralgalaxy. the dependency of the amount of reheated gas on 1/V2 in this vir schemeresultsinamoreefficientfeedbackforsmallgalaxiesand inalessefficientejectionformoremassivesystemsliketheMW 2.4 ModelimprovementsandthecentralMW-likegalaxy galaxy. These galaxies tend to have larger stellar masses, a more ThevaluesoftheparametersthatenterintheSAmodelwerecho- massivebulgeandtendtobemoremetal-richinthisscheme.Aswe sen so as to reproduce several observations of galaxies in the lo- willshowinSection3,however,thisalternativefeedbackscheme calUniverse,inparticularthelocalgalaxyluminosityfunctionand isabletobettermatchthepropertiesoftheMWsatellites. themassandluminosityofMW-likegalaxies(seeDeLuciaetal. We therefore propose a combination of these two feedback 2004;Crotonetal.2006;DeLucia&Blaizot2007).Itistherefore recipestoaccountforthepropertiesofgalaxiesonlargeandsmall notentirelysurprisingthatthissameparametersetprovidesresults massscales. Thismodel corresponds tothe‘satellite-model com- thatareinniceagreementwithobservationalpropertiesofourMW bined’,andinthisscheme,wecalculatetheamountofgasreheated galaxy(DeLucia&Helmi2008).Inordertoobtainagoodagree- bySNedependingonthelocalpotentialwell(massoftheassoci- mentwiththeobserved propertiesoftheMWsatellites,however, atedsubhalo): wefoundthatwehadtoimplementsomeslightmodifications. Inoursatellite-model,weadoptthesameparametersetusedin 4ǫ VS2N ∆M ifV2 < 4 ǫ V2 DeLucia&Helmi(2008)exceptforthereionizationepoch,zreio, Mreheat =( ǫ3diskV∆v2irM ∗ othevriwrise.3ǫdisk SN andfractionofmetalejectedintothehotcomponent,F .Table1 ∗ Zhot introducestheSAmodelsthatweemployinthisstudy.IntheMW- Thereheatedgasistreatedasintheejectionscenario,i.e.itisadded modelbyDeLucia&Helmi(2008),reionizationoccursatzreio = totheejectedcomponent ofacentralgalaxyandlostintothehot 8,haloeswithTvir < 104 Kareallowedtocoolatthesamerate componentforasatellite.The‘satellite-modelcombined’entryin ofa104 Khalowiththesamehotgasmetallicity,a‘standard’SN Table2liststhepropertiesoftheMW-likegalaxyinthisscheme. feedbackrecipeisadoptedandallnewmetalsarekeptinthecold Asexpected,thestellarmass,thetotalandbulgemetallicity,aswell gasphase(F =0).Ourfiducialmodelforthesatellitegalaxies asthetotalluminosityarenowverysimilartowhatwegetwiththe Zhot 6 Y.-S. Li, G. DeLucia andA. Helmi Table1.Nomenclatureandfeaturesofthesemi-analyticmodelsusedinthisstudy. ModelName z0,zr coolingforVvir<16.7kms−1 SNfeedback FZhot (1) (2) (3) (4) (5) MW-model (8,7) Yes Standard 0.0 satellite-modelA (8,7) No Standard 0.0 satellite-modelB (15,11.5) No Standard 0.0 satellite-model (15,11.5) No Standard (0.95,0.0) satellite-modelejection (15,11.5) No ejection (0.95,0.0) satellite-modelcombined (15,11.5) No combined (0.95,0.0) Differentcolumnslist:(1)themodelname;(2)thereionizationepoch;(3)theadoptedcoolingrecipeinhaloeswithTvir<104K;(4)theadoptedfeedback recipe;(5)thefractionofmetalsinjecteddirectlyintothehotcomponent. Table2.PropertiesoftheMilkyWay-likegalaxyinthesemi-analyticmodelsemployedinthisstudy,fortheGA3newsimulation. ModelName M∗ Mbulge Mcoldgas MBH LogZZ⊙∗ LogZZ⊙b MB [1010M ] [1010M ] [1010M ] [106M ] [dex] [dex] [mag] (1) (2) ⊙ (3) ⊙ (4) ⊙ (5) ⊙ (6) (7) (8) MW-model 5.73 0.64 1.06 8.2 −0.05 −0.28 −19.53 satellite-modelA 5.75 0.64 1.07 8.0 −0.05 −0.28 −19.50 satellite-modelB 5.85 0.62 1.11 7.1 −0.06 −0.30 −19.52 satellite-model 5.88 0.63 1.11 6.9 −0.06 −0.35 −19.52 satellite-modelejection 8.26 2.58 1.09 12.8 0.12 0.00 −19.08 satellite-modelcombined 5.02 0.84 0.95 12.0 −0.08 −0.25 −19.53 Differentcolumnslist:(1)themodelname;(2)stellarmass;(3)massofthebulge;(4)coldgascontent;(5)massoftheblackhole;(6)logarithmicvalueof thetotalstellarmetallicity;(7)logarithmicvalueofthebulgemetallicity;(8)B-bandabsolutemagnitudecorrectedforinternaldustattenuation. standardfeedbackscheme,albeitthebulge(andtheblackhole)are more than 97 per cent of their dark matter by present. Therefore nowmoremassive.ThelasttwomodelslistedinTable1populate it is quite unlikely that a bound stellar core would survive such thesamesetofsubhaloeswithstars,withalmostidenticalproper- aseveretidalstripping.WewilldiscussmoreaboutType2model ties.Forsimplicity,wewillnotdiscusstheresultsofthecombined galaxiesinSection4.2.Throughoutthispaper,wewillrefertosub- schemeforsatellitegalaxies. haloesthathoststarsas‘luminoussatellites’orsimply‘satellites’, andwillrefertothosethatdonothostanystarasdarksatellitesor subhaloes. 3 THEMILKYWAYSATELLITES 3.1 Thesatelliteluminosityfunction In thisSection, we define as SA model satellitesof the MW-like galaxy those that satisfy the following conditions at z = 0: (i) Our fiducial satellite-model gives 51 luminous satellites within a satellite has to belong to the same FOF group where the MW- 280kpcforGA3new.Thisisingoodagreementwiththeestimated like galaxy is; (ii) the distance to the MW-like galaxy must be ‘all sky’ number of satellites (∼ 45) brighter than M = −5.0 V < 280 kpc; (iii)the galaxy isassociated witha dark matter sub- byKoposovetal.(2008).Ifweremovethedistanceconstraint,the halo (i.e. it has to be Type 1 galaxies). The distance cut corre- number of satellitesis only increased by one, and the number of sponds to the current observational limits, but we include in our subhalosvariesfrom1865to1869. comparisontheverydistantandrecentlydiscoveredsatelliteLeoT Themassfunctionsforthefiducialsatellite-modelandofthe (at∼420kpcfromtheMilkyWay). survivingsubhaloeswithin280kpcinGA3newareshowninFig.1. Wedo not consider here satellitesthat had their dark matter Themassplottedhereisthedarkmattermassatz =0determined haloestidallystrippedbelowtheresolutionlimitofthesimulation bySUBFIND.Asindicatedbythedashedhistogram,allsubhaloes (Type2galaxies).Thisselectionismotivatedbythefactthatwhile withpresent-dayMDM >109M resolvedinGA3newhostlumi- ⊙ resolved,ourType1galaxiesaredarkmatterdominatedatallradii noussatellites.Themassfunctionofthesesubhaloesdeviatesfrom (seeSection 3.5, and inagreement withobservations of satellites thepower-lawshapemassfunctionofthefullsubhalopopulation aroundtheMWandM31,e.g. Simon&Geha2007;Strigarietal. andisfairlyflatbelow MDM = 109M ,down totheresolution 2007,2008;Walkeretal.2009).SinceType2galaxiesinourfidu- limit(MDM ∼ 106.5M ).Forcompari⊙son, thedottedhistogram ⊙ cial model, reach a maximum virial mass during their evolution inFig.1showsthemassfunctionofsurvivingsubhaloes,withinthe largerthan6.8×107M ,thismeansthatthesegalaxieshavelost samedistancerangefromthecentralgalaxy,fromthelowerreso- ⊙ ThenatureoftheMW satellites 7 10000 GA3new subhaloes (1865) surviving subhaloes (N = 1865) GA2new subhaloes (225) 1000 satelMlitWe-m-mooddele lA ( N(N = = 2 8886)) 1000 satellite-model (51) satellite-model B (N = 51) M M D D M M 100 g 100 g o o L L d d N/ N/ d d 10 10 1 1 6 7 8 9 10 11 6 7 8 9 10 11 Log M [M ] Log M [M ] DM O • DM O • Figure 1. The solid histogram shows the present-day mass function of Figure 2. Present-day mass functions (solid histograms) for dark matter model satellites using the satellite-model for the highest resolution sim- subhaloesassociatedwithsatellitespredictedbythesemi-analyticmodels ulation. Errorbarsdenote the1-σ Poissonuncertainties. Thedashedhis- listedinTable1.Thedashedhistogramagainindicates thesubhalomass togramshowsthesubhalomassfunctionforthehighestresolutionsimula- functionfortheGA3newsimulation. tion,whichsteeplyrisesuptotheresolutionlimit.Thedottedhistogramis thesubhalomassfunctionforalowerresolutionsimulation(i.e.GA2new). SDSS’power-lawluminosityfunctionofsatelliteswithin280kpc, estimatedbyKoposovetal.(2008).Forsatellite-modelB,weshow Table3.NumberofsatellitesaroundthemodelMWgalaxyforthedifferent the1-σPoissonnoise.Thefilledcirclesshowtheluminosityfunc- SAmodelsusedinthisstudyfortheGA3newsimulation. tionofthe22knownsatellitesoftheMW,includingthelatestultra- faintsatelliteLeoV(Belokurovetal.2008).Asareference,inthe ModelName Nsat z0,zr FZhot MW-model the number of surviving satellitesis286. The drastic (1) (2) (3) (4) differencebetweentheMW-andthesatellite-modelBismostlyat MW-model 286 (8,7) 0.0 thefaintendoftheluminosityfunction,anditisduetothecom- binedeffectofanearlyreionizationandnocoolinginsmallhaloes. satellite-modelA 88 (8,7) 0.0 In a model with no cooling in small haloes and a later reioniza- satellite-modelB 51 (15,11.5) 0.0 tion,thenumberofsatellitesis88(comparetheMW-modelandthe satellite-model 51 (15,11.5) (0.95,0.0) satellite-modelA).Thenumberofsatellitesisfurtherreducedto51 whenassuminganearlierreionizationepoch(zreio = 15),witha satellite-modelejection 51 (15,11.5) (0.95,0.0) reduction of galaxies in the luminosity range M ∈ [−7,−10] V satellite-modelcombined 51 (15,11.5) (0.95,0.0) comparedtoamodelwithalaterreionization.Wehavealsoexper- imentedvaluesforzreioatredshift10and12andfoundanumber Different columns list: (1) the model name; (2) the number ofluminous ofsurvivingsatellitesofNsat = 79and58,respectively.Tosum- satellites; (3) the adopted reionization epoch; (4) the fraction of metals marise,thesechoices ofzreio = [8,10,12,15] allgiveanumber ejecteddirectlyintothehotcomponent. of satellitesdown toM = −5which isconsistent withthees- V timationby Tollerudetal. (2008) (see their Fig. 6). However, af- lution simulation GA2new. The smallest subhalo which could be ter examining the shape of the luminosity functions with differ- resolvedinGA2newhasMDM ∼2×107M .Thesubhalomass ent zreio, wedecided touse zreio = 15 inour fiducial model, as functions from the two simulations agree we⊙ll down to 108M . thischoicegivesboththerightnormalisationandashapewhichis ⊙ At lower masses, numerical effectsstart tobecome important for inbetteragreementwiththeobservationalmeasurements(seenext GA2new.However,thenumberofsatelliteswithMDM <109M paragraphs).Werecallthatourresultsarebasedononlyonehalo, ⊙ is still lower than the number of subhaloes resolved in GA2new, withmasscomparabletothatestimatedforourMilkyWay.Acer- which suggests that numerical resolution should not be an issue tainscatterinmodelpredictions, duee.g.totheassemblyhistory and that the observed decline of luminous satellitesisa result of oftheparenthalo,isexpectedandthismightbesignificantlylarger howwemodelthebaryonicphysics,e.g.SNfeedback,aswewill thanthePoissonnoiseplottedinFig.3. seelater. TheleftpanelinFig.4showstheluminosityfunctionofthe Fig. 2 compares the mass function for the SA models ex- satellites in our fiducial satellite-model (solid histograms), com- plored in this study. In Table 3, we list the number of luminous paredtothe‘allskySDSS’luminosityfunctionbyKoposovetal. satellites for these models. Note that all the models which adopt (2008)andtheobservationaldataforthe22knownMWsatellites. zreio = 15andforbidcoolinginhaloeswithVvir <16.7kms−1, Themodel luminosity function covers a similarluminosity range i.e.satellite-modelB,satellite-model,satellite-modelejectionand as the 22 MW satellites though the model predicts a lower num- satellite-modelcombined, populategalaxiesinthesamesetof51 beroffaint(M >−5)satelliteswithrespecttotheexpected‘all V subhaloes. Themassfunctionsof thesefour modelsaretherefore sky’luminosityfunction.Infact,thesatellite-modeldoesnotpre- identical. dictanysatellitefainterthanM = −4mag.Ontheotherhand, V Fig. 3 shows the luminosity functions of the first three SA it shows an excess with respect to the data of 10 − 15 satellites modelslistedinthetables.The(red)dashedlineshowsthe‘allsky aroundM =−10.Thesesatellitesinexcessareallwithinadis- V 8 Y.-S. Li, G. DeLucia andA. Helmi ‘‘all sky SDSS’’ Koposov et al. (2008) ‘‘all sky SDSS’’ Koposov et al. (2008) satellite-model (N = 51) satellite-model ejection (N = 51) 10.0 10.0 V V M M d d N/ N/ d d 1.0 1.0 0.1 0.1 0 -5 -10 -15 -20 0 -5 -10 -15 -20 M M V V Figure4.LuminosityfunctionfortheobservedMWsatellites(filledcirclesandreddashedline)andforthemodelsatellites(blackhistograms).Theleftpanel isforourfiducialmodelandtherightpanelisforthemodelwithamoreefficientSNfeedbackforsmallgalaxies(seeSection2.2.3).Dataarethesameas thoseinFig.3. survivingsatellitesresultingfromthealternativefeedbackscheme (satellite model ejection). This model luminosity function agrees 100.0 MW-model (N = 286) very well with the observations. When compared with that from satellite-model A (N = 88) satellite-model B (N = 51) thestandardfeedbackscheme,thealternativeluminosityfunction extendstofainterluminosities,reachingM ∼ −3anddoesnot V show any excess atM ∼ −10. Notethat inthesatellite-model 10.0 V V ejection,thesame51subhaloesarepopulatedwithluminousgalax- M d ies.ThissuggeststhattheSNfeedbackaloneisunlikelytosolvethe N/ d ‘missingsatellitesproblem’ (Somerville2002),andthatthepres- ence/absenceofaluminousgalaxywithinadarkmattersubstruc- 1.0 tureisduetotheparticularassemblyanddynamicalhistoryofthe halo,andtothereionizationhistoryoftheUniverse. These different results are entirely due to the SN scheme 0.1 adopted. In the ejection scheme, the amount of gas reheated by 0 -5 -10 -15 -20 MV SNe scales as 1/Vv2ir, and for a galaxy with Vvir < 87kms−1, moregasisheatedbyperunitofnewlyformedstarswithrespect tothestandardscheme,wheretheamountofgasheatedbySNeis Figure3.LuminosityfunctionoftheobservedMWsatellites andforthe onlyproportionaltotheamountofnewlyformedstars.Inthislatter modelsatellitesaroundaMW-likegalaxy,forthefirstthreemodelslisted inTable3.TheintegratedV-bandluminositiesofMWsatellites(dots)are case,forgalaxieswithlowstarformationrates(asisthecasefor taken fromvarious sources. Theclassical dSphs arefrom Mateo (1998); galaxiesthatliveinsmallsubhaloes),onlyverylittlegasisheated. mostoftheultra-faintdwarfsarefromMartinetal.(2008),exceptLeoT As long as the density threshold for star formation is met, these (Ryan-Weberetal.2008)andLeoV(Belokurovetal.2008). galaxieskeepformingstars.Thisismostlikelythereasonwhyour fiducialmodelexhibitsanexcessofsatellitesaroundM ∼ −10 V andalackofultrafaintobjectsintheluminosityfunction. Inthe alternativefeedback model, when star formation occurs ina cen- tanceof200kpcfromthehostgalaxyandhavehalf-lightradiibe- tral galaxy, some cold gas is ejected outside the halo, and has to tween100and500pc.Theyshouldthereforehaveappearedinthe wait several dynamical time-scales to be reincorporated into the ‘all-sky’ SDSS luminosity function if they existed (provided the hothalo,delayinganysubsequentstarformation.Furthermore,the distribution for these bright satellites is isotropic, as assumed by impact on thestar formation of a satellitegalaxy associated with Koposovetal. 2008). It alsoseems that the model under-predicts the number of very bright satellites.Thisis, however, the regime a subhalo with Vvir < 87kms−1 is more drastic in this model, because the ejected gas cannot be re-incorporated onto the satel- whereboththedataandthesimulationssufferfromsmallnumber lite any longer. Small satellites therefore consume their cold gas statistics. reservoir more efficiently in this ejection scenario, which causes A comparison to Fig. 3 shows that the luminosity function thesurfacedensitiesofthecoldgastofallbelowthecriterionfor given by satellite-model B and by satellite-model are very simi- formingstars. lar,implyingthatsatelliteluminositiesdonotdependstronglyon thefractionofnewlyproducedmetalsputintothehotcomponent Given the reasonable match of the satellite-model and of of agalaxy. However, the metallicitydistribution functions differ satellite-modelejectiontotheobservedluminosityfunctions,inthe significantly(seeSection3.2). restofthepaperwewillconcentrateonthepropertiesofthesatel- The right panel of Fig. 4 shows the luminosity function of litepopulationsinthesetwoSAmodels. ThenatureoftheMW satellites 9 20 20 all MW sat. (22) all MW sat. (22) classic MW sat. (11) classic MW sat. (11) satellite-model (47) satellite-model ejection (38) 15 15 N 10 N 10 5 5 0 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0 Log(Z/Z ) or <[Fe/H]> Log(Z/Z ) or <[Fe/H]> * O • * O • Figure 5. Histogram of the mean iron abundance [Fe/H] determined for red giant branch stars in the MW satellites. For the model satellites we plot log(Z /Z ).Theleftpanelcompares theMWsatellites withmodelsatellites fromourfiducial modelandtherightpanelfromthemodelwithamore efficien∗tSN⊙feedbackfordwarfgalaxies(seeSection2.2.3).DatafortheMWsatellites aretakenfromvarioussources:LMCandSMCfromWesterlund (1997);SgrfromCole(2001);UrsaMinorandDracofromHarbecketal.(2001);Sextans,Sculptors,CarinaandFornaxfromtheDARTsurvey(Helmietal. 2006);LeoIIfromKochetal.(2007);LeoIfromKochetal.(2007).ForthenewlydiscoveredSDSSultra-faint dwarfs,wetakethemeasurements from Kirbyetal.(2008),exceptforBo¨otesIforwhichweuseMun˜ozetal.(2006),Bo¨otesIIfromKochetal.(2009)andLeoVfromWalkeretal.(2009). 3.2 Themetallicitydistribution In the right panel of Fig. 5 we plot the metallicity function ofthe38nonmetal-free4 satellitesinthesatellite-modelejection. The left panel of Fig. 5 compares the metallicity distribution of Thepeakofthisdistributionisalsoshiftedtoslightlyhighervalues model satellites in our fiducial satellite-model with the observed thanobserved,butithasamoreevendistributioncomparedtothe distribution.Themetallicityinourmodelismass-weightedandis standardrecipe.AsdiscussedinSection3.1,thisisduetothefact defined astheratiobetween themass of metalsinstarsand total stellarmass: thatsatelliteswithVvir < 87kms−1 loosemoreoftheircoldgas reservoir(andalargerfractionoftheirmetals,seeSection2.2.4)in Z =MZ/M . thismodelwithrespecttothestandardfeedbackscheme. ∗ ∗ ∗ Sinceourmodeldoesnotdistinguishthelong-livedmainironcon- tributors(SNIa)fromtheshort-livedα-elementsenrichers(SNII), 3.3 Starformationhistories adirectcomparisonofZ to[Fe/H]isquestionable.Nevertheless, InFig.6wepresenttheevolutionofthestellarmassandtheSUB- here we assume that the logarithmic value of the mass-weighted FIND dark matter mass predicted in our fiducial satellite-model. metallicitynormalisedtothesolarvalue(Z =0.02)canbecom- Weremindthatthismodeldoesnotgiveanysatellitefainterthan ⊙ pared qualitatively with the [Fe/H] derived from spectra of Red M =−4,andgivesonly2satellitesfainterthanM =−5.We V V GiantBranchstarsintheMWsatellites. therefore restrict our comparisons to the classical MW satellites, Amongthe51survivingsatellitesinthesatellite-model,four andwesortthemby theirpresent-day luminosityintothreebins: of them are free of metals since they have only made stars once luminous(−16<M <−13,similartoSagittariusandFornax), V frompristinegas.Thesefourmetal-freesatellitesallhavepresent- intermediate(−12 < M < −10 likeLeo I and Sculptor),and day MDM ∼< 109M and M of 104 −105M .Wedonot in- faint (−10 < M < −V8 i.e. Leo II, Sextans, Carina, UMi and ⊙ ∗ ⊙ V clude these ‘metal-free’ satellites in the left panel of Fig. 5 and Draco).Satellitesbelongingtothesethreebinsareshownfromtop (metallicity) related discussions. Fig. 5 shows the histograms of tobottominFig.6.Wedonotincludeherethetwomodelsatellites themean[Fe/H]ofresolvedstarsineachMWsatellite.Thedis- (one inthe luminous and one inthe intermediate luminosity bin) tributionofthe11classicalMWsatellitesisshownbythedotted- whichhavemorestellarmassthandarkmattermassatz =0,due dashed histogram, while the corresponding distribution including tosignificanttidalinteractionswiththemainhalo.Werecallthatin also11ultra-faintsatellitesisgivenbythedashedhistogram.The ourmodelling,wedonotaccountfortidalstrippingofstarsandfor metallicitydistributionsofmodelandMWsatellitescoversimilar thelossofthecoldgasduetoe.g.ram-pressure.Therefore,wealso ranges.However,thepeakofthemetallicitydistributionforthe22 refrainfromconsideringsystemswhichform>50percentoftheir MWsatellitesisshiftedtolowervalueswithrespecttothecorre- starsafterbecomingsatellitesoftheMW-likehalo.Thischoiceis spondingdistributionfromthesatellite-model.Theexcessofmodel motivatedbytheprevalenceofoldstars(i.e.>10Gyr)seeninthe satellitesintherangeof−2<log(Z /Z )<−0.5corresponds MWdSphs(Dolphinetal.2005;Orbanetal.2008).Whenexclud- tothebumpatMV ≃−10seeninthe∗lum⊙inosityfunction. ingthesegalaxies, thenumber of satellitesisreduced from16to If we had set FZhot = 0 (as in satellite-model B), the pre- 13intheintermediatebin; 14to7inthelow luminositybin. We dictedmetallicitydistributionwouldbeshiftedtowardsevenhigher willlaterseethatfaintsatellitesaremostlyaccretedbeforez = 1 metallicity. In this case, 36 satellites are more metal-rich than thustheirgasshouldhavebeenreducedduetotheinteractionswith log(Z /Z ) = −1, and only 11 of them have log(Z /Z ) < −1, in∗cons⊙istent with the observations. This is why ou∗r fid⊙ucial modelispreferredtosatellite-modelB. 4 i.e.13satellitesare‘metal-free’inthiscase. 10 Y.-S. Li, G. DeLucia andA. Helmi −16<M <−13 V 1.0 1010 0.8 = 0) 109 M(z * 0.6 (t)M M(t) / * 0.4 MD 108 0.2 107 0.0 106 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 lookback time [Gyr] lookback time [Gyr] −12<M <−10 V 1.0 1010 0.8 = 0) 109 M(z * 0.6 (t)M M(t) / * 0.4 MD 108 0.2 107 0.0 106 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 lookback time [Gyr] lookback time [Gyr] −10<M <−8 V 1.0 1010 0.8 = 0) 109 M(z * 0.6 (t)M M(t) / * 0.4 MD 108 0.2 107 0.0 106 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 lookback time [Gyr] lookback time [Gyr] Figure6.Evolutionofthestellarmass(left)anddarkmattermass(right)forsatellitesinthefiducialsatellite-model.SatellitesaresortedbyMV(z=0)into threegroups:−16<MV <−13(toppanel);−12<MV <−10(middlepanel);−10<MV <−8(bottompanel).Stellarmassesarenormalisedby thepresent-dayvalues,M (z=0).Differentcolourscorrespondtodifferentsatellites,andthearrowsindicatetheaccretiontime,definedaswhenasatellite ∗ wasidentifiedasacentralgalaxyforthelasttime.Thesamecolourisusedtoplotthestellarandthedarkmattermassforagivensatelliteinthepanelaside. Theverticaldashedlinesmarktheendofthereionization,zr =11.5,inthesatellite-model. thecentralgalaxyandthestarformationshouldhave(onaverage) litesbuilduptheirstellarcontentoveralongerperiodoftimecom- ceasedshortlyafterbeingaccreted. paredtothefaintestonesasobservedintheLocalGroupsatellites It isencouraging that the model satellitesshow in Fig. 6 all (Dolphinetal.2005).Thefivesystemsthathavebeenaccretedear- contain stars older than 10 Gyr regardless of their luminosities, liest(>9Gyr),areassociatedwithfaintersatellites(M >−12), V in good agreement with observations5. The most luminous satel- and are dominated by old stars, which means that these galaxies 5 Inthefullsampleofmodelsatellites,43outof51madetheirfirstgen- populationsareexcludedintheanalysisherewiththecriterionthathalfof erationofstars∼>10Gyrago.Thosethatarenotdominatedbyoldstellar thestarswereinplacebeforetheaccretion.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.