ebook img

On the multi-orbital band structure and itinerant magnetism of iron-based superconductors PDF

3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the multi-orbital band structure and itinerant magnetism of iron-based superconductors

AnnalenderPhysik,18January2011 On the multi-orbital band structure and itinerant magnetism of iron-based superconductors 1 1 0 OleKroghAndersen1 andLiliaBoeri1 2 n Keywords Fe-basedsuperconductors,ElectronicStructure,Tight-Binding,Downfolding,Magnetism,In- a terlayerCoupling J This paper explains the multi-orbital band structures and itinerant magnetism of the iron-pnictide and 6 chalcogenidesuperconductors. Wefirstdescribethegenericbandstructureofasingle,isolatedFeAslayer. 1 Use of its Abelian glide-mirror group allows us to reduce the primitive cell to one FeAs unit. For the linesandpointsofhighsymmetryinthecorresponding large,squareBrillouinzone, wespecifyhow the ] one-electron Hamiltonian factorizes. From density-functional theory, and for the observed structure of n LaOFeAs,wegeneratethesetofeightFedandAsplocalizedWannierfunctionsandtheirtight-binding o (TB)Hamiltonian,h(k). Forcomparison,wegeneratethesetoffiveFedWannierorbitals. Thetopology c ofthebands,i.e. allowedandavoidedcrossings,specificallytheoriginofthed6pseudogap,isdiscussed, - r andtheroleoftheAsporbitalsandtheelongationoftheFeAs4tetrahedronemphasized. Wethencouple p thelayers,mainlyviainterlayerhoppingbetweenAspz orbitals,andgivetheformalismforsimpletetrag- u onalandbody-centeredtetragonal(bct)stackings. Thisallowsustoexplainthematerial-specific3Dband s structures, inparticular thecomplicatedones ofbct BaFe As and CaFe As whoseinterlayer hoppings . 2 2 2 2 at arelarge. Duetothehighsymmetry,severallevelinversionstakeplaceasfunctionsofkz orpressure,and linearband dispersions(Diraccones) arefoundatmany places. Theunderlying symmetryelementsare, m however, easilybroken byphonons orimpurities, forinstance, sothattheDiracpointsarenotprotected. - NoraretheypinnedtotheFermilevelbecausetheFermisurfacehasseveralsheets.Fromtheparamagnetic d TB Hamiltonian, we form the band structures for spin spirals with wavevector q by coupling h(k) and n h(k+q).Thebandstructureforstripeorderisstudiedindetailasafunctionoftheexchangepotential, o ∆,ormoment,m,usingStonertheory.GappingoftheFermisurface(FS)forsmall∆requiresmatchingof c FSdimensions(nesting)andd-orbitalcharacters.Theinterplaybetweenpdhybridizationandmagnetismis [ discussedusingsimple4 4Hamiltonians. Theoriginofthepropeller-shapedFermisurfaceisexplained indetail. Finally,weexpr×essthemagneticenergyasthesumoverband-structureenergiesandthisenables 3 usto understand towhat extent the magnetic energies might be described by a Heisenberg Hamiltonian, v andtoaddressthemuchdiscussedinterplaybetweenthemagneticmomentandtheelongationoftheFeAs 8 4 tetrahedron. 5 6 1 Copyrightlinewillbeprovidedbythepublisher . 1 [1]Max-Planck-InstituteforSolidStateResearch,Heisenbergstrasse1,D70569Stuttgart,Germany 1 0 1 : Foreword v i X ThispaperisdedicatedtoManuelCardona,ontheoccasionofhis75thbirthday.ManuelCardonaisworld- r famousnotonlyforbeinganoutstandingandcreativeexperimentalist,butalsoforhavingdeeptheoretical a insights, in particularinto the bandstructuresof solids. Hisbook[1] with Peter Yu onFundamentalsof Semiconductors,nowa classic ofsolid-statephysics, devotesa largepartto theexplanationoftheoryin simple,accessiblelanguage.ForourcontributiontothepresentFestschrift,wehavechosenatopicoffthe mainlineofthisspecialissue,butwehopethatManuelandotherswillappreciateourefforttofollowhis exampleandmakeacomplicatedproblemmoretransparent. Westartedworkingonsuperconductivityintheironpnictides,andthelaterdiscoveredchalchogenides, notonlybecausewefeltthatthisphenomenonwouldcreatethesamekindofexcitementashigh-temperature superconductivityin cuprateshaddonetwodecadesearlier, an excitementthatthe seniorauthorhadex- perienced under the leadership of Manuel Cardona, but also because we –like many other researchers– hadhopedthatthiswouldprovideashortcuttounderstandinghigh-temperaturesuperconductivity.Infact, thesenewiron-basedsuperconductorsandthecuprates(aswellasheavy-Fermionsystems)sharethemost Copyrightlinewillbeprovidedbythepublisher 4 O.K.Andersen:Onthemulti-orbitalbandstructureanditinerantmagnetismofiron-basedsuperconductors importantpropertyofhavingasuperconductingphasecloseto–orevencoexistingwith–anantiferromag- neticphase. Intheiron-basedsuperconductors,however,thelatteris metallicratherthaninsulating,and thesesuperconductorsmaythereforelackthecomplicationsofstrong-correlationMott-Hubbardphysics. In both iron-based superconductors and cuprates, phonons seem to play a minor role for the coupling, although the debate is still alive [2]. After two and a half years with enormous theoretical and experi- mentaleffort,publishedinover2000papers,[3,4,5]ithasbecomeclearthat,althoughsuperconductivity in the iron-based superconductors could turn out to be simpler than in the cuprates, the former are in manyrespectsmorecomplicatedthanthelatter–theirbandstructures,forexample,areconsiderablymore intricate–andourpresentunderstandingisfarfromcomplete. Tryingtoswimupwardsthroughthiscascadeofpapershasblindedatleasttheseniorauthorandmade him focus on finally publishing our own results. Encouraged by Manuel Cardona, to whom this could neverhavehappened,wenowtaketheopportunitytopublishapedagogical,self-containedaccountofthe bandstructuresanditinerantmagnetismintheiron-basedsuperconductors,stressingtheroleofsymmetry and,asfaraspossible,reducingproblemstothatofdiagonalizinga2 2matrix. × 1 Introduction The first report of superconductivity in an iron pnictide, specifically in F-doped LaOFeP below 5K in 2006 [6, 7], was hardly noticed and only two years later, when F-doped LaOFeAs was reported to su- perconductbelow28K,thepotentialofironpnictidesashigh-temperaturesuperconducingmaterialswas realized.[8]Followingthisdiscovery,morethan50newironsuperconductorswiththesamebasicstruc- turewerediscovered[9]withT reachingupto56K.[10]ThisstructureisshowninFig. 1forthecase c of LaOFeAs. The common motive is a planar FeAs layer in which the Fe atoms form a square lattice, tetrahedrally coordinatedwith As atoms placed alternatingly above and below the hollow centers of the squares. Instead of As, the ligand could be another pnictogen(P) or a chalcogen (X=Se or Te), but for simplicity,inthispaperweshallrefertoitasAs. Thesesuperconductorsaredividedinfourmainfamilies dependingon their 3D crystal structure [11]: The iron chalcogenidesare simple tetragonal(st) with the FeXlayersstackedontopofeachother(11family). TheironpnictideshavetheFeAslayersseparatedby alkalimetals(111family),orbyrare-earthoxygen/fluorideblockinglayers(1111familyasinFig.1),inst stacking,orbyalkali-earthmetals(122family)inbody-centeredtetragonal(bct)stacking. Iron-basedsuperconductorssharesomegeneralphysicalproperties,althoughthedetailsareoftenspe- cific to families, or even to compounds. With the exception of LiFeAs, the undoped compounds are spin-densitywave(SDW)metalsatlowtemperaturewiththeFespinsorderedanti-ferromagneticallybe- tween nearest neighbors in the one direction and ferromagnetically in the other, thus forming stripe or double-stripe (FeTe) patterns. The values of the measured magnetic moments range from 0.4µ /Fe in B LaOFeAs[12],to 1µ inBaFe As compounds,toover2µ indopedtellurides.[3,4,5]Atatemper- B 2 2 B ∼ atureaboveorattheNeeltemperature,whichisoforder100K,thereisatetragonal-to-orthorhombicphase transitioninwhichthein-planelatticeconstantcontractsby0.5-1.0%inthedirectionofferromagneticor- der. Superconductivitysetsinwhenthemagneticorderissuppressedbypressure,electronorholedoping, orevenisovalentdopingontheAssite,andatamuchlowertemperature.Bothsuperconductivityandmag- netismarefoundtodependcruciallyonthedetailsofthecrystalstructure;forexampleisitoftenobserved thatthehighestT soccurinthosecompoundswheretheFeAs tetrahedraareregular.[13]Criticaltemper- c 4 aturesrangefromafewKiniron-phosphidesto56KinSmOFeAs. Thevariationsinthephononspectra are, however,small andseem uncorrelatedwith T . This, togetherwith the proximityof magnetismand c superconductivityinthephasediagram,wasafirstindicationthatthesuperconductivityisunconventional. Astrongerindicationseemstocomefromthesymmetryofthesuperconductinggap,whichiscurrentlya stronglydebatedissue. [14] Dependingonthesample, andontheexperimentaltechnique,multiplegaps withssymmetryandvariousdegreesofanisotropy–butalsoofnodes–havebeenreported.[3,4,5]Itnow seemsasifthegapsymmetryisnotuniversal,butmaterialspecificinthesecompounds. Copyrightlinewillbeprovidedbythepublisher andpheaderwillbeprovidedbythepublisher 5 y Y X x Fig. 1 The layered structure of simple tetragonal LaOFeAs. The 3D primitive cell contains one Fe As and one 2 2 La O layer,eachcontainingthreesheets: asquareplanarFe(red)orO(blue)sheetsandwichedbetweentwoplanar 2 2 As(green)orLa(yellow)sheets. c=874pm. ThecoordinationofFewithAs,orOwithLa,istetrahedral. xandy arethevectorsbetweentheFe-FeorO-Onearestneighbors(separatedbya=285pm)andXandYarethosebetween As-AsorLa-Lanearestneighborsinthesamesheet.Thedirectionsofthosevectorsweshalldenotex,y,X,andY. Currentunderstandingofthebasicelectronicstructurehasbeenreachedmainlybyangle-resolvedpho- toemission(ARPES)[15,16,17,18,19,20,21,22,23,24],quantumoscillation,andde-Haas-van-Alphen (dHvA)experiments[25,26,27,28,29,30,31]incombinationwithdensity-functional(DFT)calculations. [32,33,34,35,36,37,38,39,40,41,42,43]AllparentcompoundshavetheelectronicconfigurationFe d6 andaremetallic. Inallknowncases, theFermisurface(FS)intheparamagnetictetragonalphasehas two concentric hole pockets with dominantd /d character and two equivalentelectron pockets with xz yz respectively d /d and d /d character. A third hole pocketmay also be present, but its character, xz xy yz xy dxy ord3z2−1,aswellasthesizesandshapesofallsheets,varyamongdifferentfamiliesofcompounds, and, within the same family, with chemicalcompositionandpressure. In all stoichiometriccompounds, the volumesofthe holesheetscompensatethose ofthe electronsheets. Themagneticallystripe-ordered phase remains metallic, but the FS becomes much smaller and takes the shape of a propeller [18] plus, possibly,tinypockets.[25] Giventhestrongtendencytomagnetism,andthelowvalueofthecalculatedelectron-phononinterac- tion, [44, 45, 46] spin fluctuations are the strongest candidate for mediating the superconductivity. Al- ternativescenarioshavebeenproposed,inwhichsuperconductivityisduetomagneticinteractionsinthe strong-couplinglimit,polarons,ororbitalfluctuations.[47]Modelsforspinfluctuationsarebasedonthe weak-coupling, itinerant limit, with superconductivityrelated to the presence of strong nesting between hole andelectron sheetsof the paramagneticFermisurface, which is also held responsibleforthe insta- bility towards magnetism. [42, 43, 48] This possibility has been investigated using more ore less sound modelsofthebandstructure,combinedwithdifferentmany-bodymethods(RPA,FLEX,frG,modelME calculations) which do seem to agree on a picture with competing instabilities towards magnetism and superconductivity.[42,43,49,50,51,52,53,54,55,56,57,58,59,60]Thesuperconductingphaseshould becharacterizedbymultiplegaps,withsanddsymmetriesalmostdegenerate. Modifyingtheshapeand Copyrightlinewillbeprovidedbythepublisher 6 O.K.Andersen:Onthemulti-orbitalbandstructureanditinerantmagnetismofiron-basedsuperconductors orbital characters of the different sheets of the Fermi surface by doping, pressure, or chemistry can in- fluence the leading instability and affect the structure of the gap. As a result, a reasonable, qualitative picture of the materials trend, such as the dependenceof T and gap symmetryon the tetrahedralangle, c hasevolved. [52,57]Mostexperimentalevidenceseemstosupportthispicture,butseveralpointsremain controversial. Abadlyunderstoodissueishowtoinclude3Deffects,whichisparticularlyseriousforthe bct122compounds. Anotherproblemconcernsthemagnetism:Whileitistruethatspin-polarizedDFT(SDFT)calculations reproducethecorrectatomiccoordinatesandstripe-orderofthemoment,themagnitudeofthemomentis, exceptin dopedFeTe, at least two times largerthan what is measured by neutronscattering, or inferred fromthegapsmeasuredbyARPES,[30,61],dHvA,andoptics,[62]albeitmuchsmallerthanthesatura- tion momentof 4 µ /Fe. Suppressing the too large momentsin the calculationswill, however, ruin the B goodagreementforthestructureandthephononspectra.[45,63,64,65,66]Thisover-estimationofthe momentisoppositetowhatwasfound25yearsagoforthesuperconductingcuprateswheretheSDFTgave nomoment,butistypicalforitinerantmagnetsclosetoamagneticquantumcriticalpoint(QCP).[63]The magneticfluctuationsintimeandspacehavebeendescribed[67]usingalocalizedHeisenbergmodelwith competingferro-andantiferromagneticinteractionsbetweenrespectivelyfirstandsecond-nearestneigh- bors,buttoreconcilethismodelwiththepartlymetallicbandstructureisaproblem.[48,68,69,70,71] Another possible solution of the moment problem in SDFT is that moments of the predicted size are present,butfluctuateonatimescalefasterthanwhatisprobedbytheexperiments.[63]Infact,tworecent studiesofrealistic,DFT-derivedmulti-bandHubbardmodelssolvedinthedynamicalmean-fieldapproxi- mation(DMFT)showthatthemagnetismhastwodifferentenergyscales.[72,73]Itisthereforepossible thattheelectroniccorrelationsafteralldoplayaroleinthesemulti-band,multi-orbitalmaterials.[74,75] Experimentsandcalculationshaverevealedamarkedinterplaybetweenthedetailsofthebandstructure and the superconductingproperties. Most of these observationsare empiricaland we feel thatthere is a need to explain the origin of such details. In this paper, we therefore attempt to give a self-contained, pedagogicaldescriptionoftheparamagneticandspin-polarizedbandstructures. Specifically, wediscuss theFedAspband-structuretopology,causingthepseudogapatd6 aswellasnumerousDiraccones,the interlayer hoppingin the simple-tetragonaland body-centered-tetragonalstructures, the spin-spiral band structures,andtheband-resolvedmagneticenergies. Inallofthis,thecovalencybetweenFedandAspis foundtoplayacrucialrole.Applicationstosuperconductivityarebeyondthescopeofthepresentpaper. InSect. 2weexplainthestructureofasingle,isolatedFeAslayerandusetheglidemirrortoreducethe primitivecelltooneFeAsunitandhavek runninginthe large, squareBrillouinzone(BZ)knownfrom thecuprates.Halvingthenumberofbandswillproveimportantwhenitcomestounderstandingthemulti- orbitalbandstructure. InSect. 3weshowthatthisbandstructuremaybegeneratedandunderstoodfrom downfolding,[76]oftheDFTHilbertspaceforLaOFeAstoabasissetconsistingofthefiveFed,localized Wannierorbitals,or–asweprefer–includingexplicitelyalsothethreeAsporbitals. Eventhelatter8 8 × tight-binding(TB)Hamiltonian,h(k),haslong-rangedppandpdhoppingsduetothediffusenessofthe Asporbitals,anditsaccurate,analyticalmatrixelementsaresospaciousthattheywillbepublishedata differentplace. [77] The crucialrole of the As p orbitals for the low-energyband structure, the electron bands in particular, and the presence of a d6 pseudogap is emphasized. The different sheets of the FS arediscussed. InFig. 2weshowthefactorizationoftheBlochwavesalongthelinesandpointsofhigh symmetryinthelargeBZ.Thehighsymmetryofthesingle,tetragonallayerallowsmanybandstocross andleadstolineardispersions,andeventoDiraccones. Ourunderstandingofthisgenericbandstructure ofasinglelayerthenallowsustodiscussstandardDFTcalculationsforspecificmaterials. Thisisdonein Sect.4,wherewefirstseethatincreasingtheAsheightmovesanantibondingp /d leveldowntowards z xy the degeneratetop of the d /d hole bands, with which it cannotcross, and thereby causes the inner, xz yz longitudinalband to develop a linear dispersion. Interlayerhoppingis shown to proceedmainly via the Asp orbitalandtohaveastrengthand(k ,k )-dependencewhichdependsonthematerialfamily. This z x y hoppingisstrongestforthebctstructurewheretheAsatomsinneighboringlayersfaceeachother. Inst SmOFeAsandfork attheedgeofthe3D BZ,theantibondingp /d levelreachesthetopofthehole z z xy bands and forms a Dirac cone together with the longitudinalhole band. In LiFeAs and FeTe the Dirac Copyrightlinewillbeprovidedbythepublisher andpheaderwillbeprovidedbythepublisher 7 Fig. 2 Upper-right quarter of the large Brillouin zone (BZ) for the glide-mirror space group of the single FeAs layer (black), the factorization of the band Hamiltonian (blue), and theLaOFeAsFermi surface (red). The BZ for merely thetranslational part of the space group has half thearea and isfolded-in as indicated by thedashed black lines. In order to distinguish the corners, M, and edge midpoints, X, of these two square BZs, we use an over- bar for the large BZ. Hence Γ=Γ¯, M=X¯, and X is the common midpoint of the X¯Y¯ and Γ¯M¯-lines. The folding causes all three hole pockets to be centered at Γ and the two electron pockets be centered at M with their axes crossed. The blue boxes along the lines of high symmetry contain the orbitals whose Bloch-sums may hybridize (belong to the same irreducible representation). At the high-symmetry points, this factorization of the Hamilto- nian into diagonal blocks is as follows: Γ¯ [xy][XY][Xz,X][Yz,Y][zz,z], X¯ [xz][xy,y][yz,z][XY,zz,x], andM¯ [XY][zz][xy,z][Xz,X][Yz,Y].Withoftenusednotations[43],theinnerandoutersheetoftheM¯-centered xz/yz-like hole pockets are respectively α1 and α2 while the X¯ and Y¯-centered xy/xz and xy/yz-likeelectrons sheetsarerespectivelyβ1andβ2,andtheΓ¯-centeredxy-likeholepocketisγ. pointisinsidetheBZ.TheinterlayerhoppingnotonlycausestheAsp -like2Dbandstodispersewithk , z z butalsofoldsthebandsintotheconventional,smallBZ,i.e. itcouplesh(k)andh(k+πx+πy). The formalismforinterlayerhoppingisgiveninSect.4.2, anditsincreasinginfluenceonthebandstructures ofBaFe As , CaFe As ,andcollapsedCaFe As isshownandexplained,forthefirsttime,webelieve. 2 2 2 2 2 2 InCaFe As ,wefindthatthenearlylineardispersionofthed /p -likeelectronbandhasdevelopedinto 2 2 xy z afullDiraccone. Theeffectsofspinpolarisationonthegeneric2DbandstructurearediscussedinSect.5. Weconsider spinspiralswhichhaveatranslationallyinvariantmagnitudebutaspirallingorientationwhichisgivenby q.TheirbandHamiltonianpossessestranslationalsymmetrybothinconfigurationalandinspin-space,but independentlyofeachotheraslongasspin-orbitcouplingisneglected. Thespinspiralthereforesimply couplesh(k)toh(k+q),regardlessofwhetherqiscommensurableornot. Forh(k)weusetheDFT pdHamiltonianderivedinSect.3.Inordertokeeptheanalysistransparentandamenabletogeneralization, weshalltreattheexchangecouplingusingtheStonermodelratherthanfullSDFT.Thishastheavantage thatitdecouplesthebandstructureandself-consistencyproblems,sothatwecanstudythebandstructure asafunctionoftheexchangepotential,∆.InSect.5.2wediscussthebandsandFSsfortheobservedstripe order. Aslongasthemomentisalinearfunctionof∆,gappingrequiresmatchingofd-orbitalcharacters as wellas FS dimensions(nesting). For largermoments, andferromagneticorderin the x direction,the FSisdifferentandshapedlikeatwo-bladepropellerinthek direction. Itisformedbycrossingd /p - y xy z d and d /d bands, which cannothybridizealong the line throughthe bladesand the hub. The yz↓ zz↓ XY↑ resulting Dirac cone has been predicted before [78] and also observed. [31, 79] The interplay between pdhybridizationandmagnetismisdiscussedusingsimple, analytical4 4models. InSect.5.3we first × show the static spin-suceptibility, m(∆)/∆, calculated for stripe and checkerboardorders as functions of the electrondopingin the rigid-bandapproximation. The low-momentsolution –maybefortuitously– Copyrightlinewillbeprovidedbythepublisher 8 O.K.Andersen:Onthemulti-orbitalbandstructureanditinerantmagnetismofiron-basedsuperconductors resembles the behaviour of the observed moment as a function of doping and q. We then discuss the electronic origin of the magnetic energies and first show how the magnetic energy may be interpreted asthedifferencebetweendouble-counting-correctedmagneticandnon-magneticband-structureenergies. This directly relates the magnetism to the band structure and we specifically look at the origin of the magneticenergy.Wefindthatthemagneticenergygainiscausedbythecouplingoftheparamagneticd xy holeandd /p electronbands,aswellasbythatofthed partsofthetwootherelectronandholebands. xy z xz TheFermi-surfacecontributionstothemagneticenergyarecomparativelysmall. Wecanthenexplainwhy increasingthedistancebetweentheAsandFesheetsincreasesthestripe-orderedmoment,andviceversa. Attheend,wecompareourresultswiththoseoffullyself-consistentSDFTspin-spiralcalculationsof momentsandenergiesasfunctionsofqanddopinginthevirtual-crystalapproximation,forLaO F FeAs 1−x x andBa K Fe As . 1−2y 2y 2 2 2 Structure The basic structural unit for the iron-based superconductors is a planar FeAs layer consisting of three sheets: (Fig. 1). In the high-temperature paramagnetic tetragonal phase, the iron atoms form a square sublattice (a 1) with each Fe tetrahedrally coordinated by four As ligands. The latter thus form two ≡ √2 √2 square lattices above and below the Fe plane at a vertical distance of approximately half the × a-constantoftheFesublattice. TheFeandAspositionsarethusdescribedbyrespectively: 1 1 η 1 X+ηz t=n x+n y and n n x+ n +n + y z=T+ (1) x y x− y ± 2 x y 2 ±2 2 Y ηz (cid:18) (cid:19) (cid:18) (cid:19) (cid:26) − wherexandyaretheorthogonalvectorsbetweentheFenearestneighborsandn andn takeallinteger x y values. z is perpendicularto x and y, and has the same length. For perfect tetrahedra, η = 1, and for LaOFeAs, η = 0.93. Instead of η √2cotθ/2 2√2z , it is customary to specify the As-Fe-As As ≡ ≡ tetrahedralangle,θ,ortheinternalparameter,z .WhiletarethetranslationsoftheFesublattice,T As ≡ n X+n YarethoseoftheAssublatticewhoseprimitivetranslationsareX y+xandY y x. X Y ≡ ≡ − The latter are turnedby 45◦ with respectto x andy, and √2 longer. The translationgroupofthe FeAs layer is T and has two FeAs units per cell. These are, however, related by a glide mirror. Rather than usingtheirreduciblerepresentationsofthe2Dtranslationgroup,itisthereforesimplertousethoseofthe groupgeneratedbytheprimitiveFe-translations,xandy,combinedwithmirroringintheFe-plane.These glide-mirroroperations(”take a step andstand on yourhead”)generatean Abeliangroupwith onlyone FeAsunitpercellandirreduciblerepresentations,exp(ik r),whichareperiodicforkinthereciprocal · lattice,h 2πx+h 2πy,withh andh integer.ThecorrespondingBrillouinzone(BZ)showninFig. 2is x y x y asquare,centeredattheΓ¯-point,k=0,withcornersattheM¯-points,k=πy πxand πy πx,i.e. at πXand πY,andedge-centersattheX¯ andY¯-points,k = πxand πy.±Inthispa−per,w∓eshalluse ±thismoreh±eavynotationinsteadofe.g. (π,π)forM¯ and(π,0)±forX¯ asd±oneforcuprates,becauseforthe ironsuperconductors,noconsensusexistsaboutwhethertousethe(x,y)orthe(X,Y)coordinatesystem. Theoverbarisusedtodesignatethehigh-symmetrypointsinthe2Dreciprocalspacefortheglide-mirror group. Inconclusion,useoftheglide-mirrorgroupreducesthenumberofbandsbyafactoroftwo, and thisisimportantwhenattemptingtounderstandtheintricaciesofthebandstructure. In Fig. 3 we sketch the antibonding Bloch sums of the Fe d (top) and d (bottom) orbitals, and xy xz realizethatwiththeglide-mirrornotationtheformerhask=0andthelatterk x=π.Accordingly,the topofthepureFe d bandisatΓ¯,whilethedegeneratetopofthepured an·dd bandsisatM¯. We xy xz yz shalloftenreturntothis.(Authorswhounfoldwithoutreferencetotheglide-mirrorgroup,mayhaveΓ¯and M¯ interchanged,withthe resultthatthexy holepocketandthe twoxz/yz holepocketsarerespectively atM¯ andΓ¯. Inordertoavoidthisconfusion,itisusefultorememberthatthetwoxz/yzholepocketsare thosetowardswhichtheelectronsuperellipsesatX¯ andY¯ arepointing). Thereal3DcrystalsconsistofFeAslayersstackedinthez-directionwithotherlayersintercalated,al- thoughtheironchalcogenides,FeX,havenointercalation.Fig1specificallyshowsLaOFeAs,forwhichall Copyrightlinewillbeprovidedbythepublisher andpheaderwillbeprovidedbythepublisher 9 Fig.3 SketchoftheantibondingBlochsumofFedxyorbitalsinthexy-plane(top)andoftheantibondingBlochsum ofFedxz orbitalsinthexz-plane(bottom). ABlochsumisformedbyaddingtheglide-mirroredorbitalmultiplied byexp(ik t),wheretheglide,t,isaprimitivetranslation,xory,andthemirroristheFeplane. Theantibonding · Blochsumofdxy orbitalshask=0andthatofdxz orbitalshaskx=π.ThatthelobesoftherealWannierorbitals · avoidtheAssites(Fig.6)isindicatedbyenhancingthecountoursofthelobespointingtowardsthereader. ourWannier-orbital(3D)calculationsweredone,unlessotherwisestated. Theinterlayercouplingisweak butnotnegligible,anditdependsonthematerial. Althoughthe2Dglide-mirrormaytakethe3Dcrystal intoitself,asisthecaseforLnOFeAs,FeX,andLiFeAs,wedowanttousek toenumeratethestatesin z thethirddirection. Forthe3Dcrystalsweshallthereforeusethestandard3Dtranslationgroupaccording to which onlythe Xand Y translations, combinedwith an out-ofplanetranslation, leave the crystalin- variant. Thecorresponding2Dreciprocallattice ish πX+h πY = (h +h )πy+(h h )πx. X Y X Y X Y Hence,the3DBrillouinzoneisasshownbythedashedlinesinFig.2(fork =π/2c),withM¯ f−allingonto z Γ¯ andwithcornersatX¯ andY¯,nownamedM.Interlayerhoppingmaythuscoupletheglide-mirrorstates atkwiththoseatk+πx+πy.Thismaterial-dependentcouplingwillbeconsideredinSection4afterwe haveexplainedthegenericelectronicstructureofasingleFeAslayer. Spin-orbitinteractionalsoinvalidatestheglide-mirrorsymmetry,butthesplittingofstatesdegenerate atkandk+πx+πyisatmost 3ζ 0.1eV,andthisonlyoccursifallthreexy, yz,andxz states 2 Fe3d ≈ happentobedegenerateandpurelyFed-like. 3 Paramagnetic2D band structure In this section we shall describe the generic 2D band structure of an isolated FeAs layer. We start by observingthatthebandsaregroupedintofullandempty,separatedbyapseudogap. Wethendiscussthe groupingof the bandsinto Fe 3d and As 4p, and derive two sets of Wannier orbitalsfrom DFT, one set describingmerelythefiveFed-likebandsandanothersetdescribingtheeightFed-andAsp-likebands. Armed with those sets, we can return to a detailed description of the low-energybandstructure, i.e. the onewhichformsthepseudogapatd6andtheFermisurface.Thisisdoneinsubsection3.3whereweshall seethatthehybridizationbetween–orcovalencyof–theAspandtheFedorbitalsiscrucialfortheband Copyrightlinewillbeprovidedbythepublisher 10 O.K.Andersen:Onthemulti-orbitalbandstructureanditinerantmagnetismofiron-basedsuperconductors 2 6 10 p d 1 6 6 p d 0 ) V e -1 ( E 6 0 p d -2 -3 -4 0 0 p d Γ X M Γ Fig.4 Bandstructureofparamagnetic,tetragonalpureLaOFeAswiththeexperimentalstructureneartheFermilevel ( 0) and for k along the high-symmetry lines in the large 2D Brillouin zone (Fig. 2). Band energies are in eV. ≡ TheseDFT-GGAbandswerecalculatedwiththeNMTOmethodandabasisofFedandAspdownfoldedNMTOs. Transformation to real space yields the eight Wannier functions shown in Fig 6. The 2D bands were obtained by neglectingtheinterlayerhoppingsandformingglide-mirrorBlochsumsoftheWannierorbitalsonasingleFeAslayer, i.e. byappropriatelyflippingthesignsoftheintra-layerhoppingintegrals. Thelargegapsinthefigurearelabelled byanelectronicconfigurationwhichcorrespondstoap-setandad-setofWannierorbitalswhichspanrespectively thethreelowestandthefivehighestbands. Thisd-setisillustratedinFig5. Uponelectrondopingintherigidband approximation,theΓ¯-centeredholepocketfillsoncethedopingexceeds0.1e/Fe,andwhenitexceeds0.3e/Fe,also theM¯-centeredholepocketsfill. topology. Bringing this out clearly, was in fact our original reason for deriving the eight-orbitalpd set, althoughthefive-orbitaldsetsufficestodescribethelow-energybandstructure. ForFeTeandLaOFeAstheformalionicstatesarerespectivelyFe2+Te2− andLa3+O2−Fe2+As3−.In fact, for all parents of the iron-based superconductors, the nominal electronic configurationis ligandp6 Fed6. The generic 2D band structure is shown in Fig. 4 for energiesranging from 4.5 eV below to 2.5 eV above the Fermi level and along the high-symmetry lines of the BZ (Fig. 2). In the energy range considered, there are eight bands which are seen to separate into three low-energyand five high-energy bands. They may be called respectively the ligand p- and iron d-bands, and the correspondingelectron countisaswrittenonthefigure. Atp6d6 thetwouppermostbandsareseentobedetachedfromtherest, exceptatone(Dirac)pointalongtheX¯M¯-linewheretwo bandscross, becausetheirBloch functionsare respectively even and odd with respect to reflection in a vertical mirror parallel to X¯M¯ and containing nearest-neighbor As atoms. If the energy of this crossing could be moved up, above the relative band maximaatΓ¯ andM¯,itwoulddragtheFermilevelalongandthematerialwouldtransformintoazero-gap semiconductor. For the iron-based superconductors, however, the Fermi level is merely in a pseudogap and the Fermi surface (FS) consists of a Γ¯-centered hole pocket, two M¯-centeredhole pockets, and two compensatingelectronpocketscenteredatrespectivelyX¯ andY¯ (Fig. 2). 3.1 Fedfive-orbitalWannierbasis CharacterizingthefiveupperbandsasFedissound,becausetheycanbespannedexactlybyfiveWannier functions[43] which behavelike Fe d-orbitals. This can be seen in Fig.5. Our Wannier functionswere constructed[76] to have d characteron the centralFe site and no d characteron any otherFe site. This Copyrightlinewillbeprovidedbythepublisher andpheaderwillbeprovidedbythepublisher 11 Fig. 5 The set of five Fe d-like Wannier orbitals (downfolded and orthonormalized NMTOs) which span the five LaOFeAsbandsextendingfrom-1.8eVbelowto2.2eVabovetheFermilevel. Shownarethepositiveandnegative contours,χm(r)= c ,withtheformerinredandthelatterinblue.Orientationandcoloring(Fered,Asgreen,La ±| | yellow,andOblue)asinFig.1.Thethreeorbitalstotheleftandthetwototherightwouldbelongtorespectivelythe t2 anderepresentations,hadthepointsymmetrybeentetragonal. Now,t2 splitintoa(dxy)andt(dxz,dyz).Note thatthetorbitalsdxz (dXz dYz)/√2anddyz (dXz+dYz)/√2,whoseBlochsumsformtheproperlinear combinationsforkalo≡ngΓ¯X¯ a−ndX¯M¯ (Fig.2),aren≡otsimply45◦ -turnedversionsofdXz anddYz shownhere,in particularbecausetheptailsofthelatterareondifferentpairsofarsenics.Theptailsarethusalwaysdirectedtowards thenearestAsneighborsinthesameplane,i.e.theyareXorY,andtheyantibondwiththethead. makesthemlocalizedWannierorbitals.ThefivebandsofcoursehavecharactersotherthanFed,andthose characters are mixed into the Fed Wannier orbitals. This by-mixing follows the point symmetry in the crystal. Specifically,theFed Wannierorbitalhason-siteFep characterbreakingthehorizontal-mirror xy z symmetryofthepured orbital,aswellasstrongoff-sitep characteronallfourAsneighbors.Thesign xy z oftheAsp characterisantibondingtoFed becausetheAsphybridizationpushestheFedbandupin z xy energy. ThecorrespondingnodesbetweentheFedandAsptailsmakeneighboringlobesdifficulttosee in the figure. Hence, onlythe As p lobespointingtowardsthe La layersare big. Similarly, the Fed z Xz Wannierorbitalantibondswithp onthetwoAsneighborsintheX direction,andFed antibondswith X Yz p onthetwoAsneighborsin theY direction. IftheFe-site symmetryhadbeenexactlytetragonal,the Y threeabove-mentionedWannierorbitalswouldhavebeendegenerateandtransformedaccordingtothet 2 irreducible representation. However, the non-tetrahedralenvironment, e.g. flattening of the tetrahedron (η <1), increasestheenergyofthed orbitalabovethatofthedorbitalsbelongingto t, i.e. d and xy Xz d or,equivalently,d andd . InLaOFeAs, theenergyofd is 0.1eV abovethatofd . Thetwo Yz xz yz xy t ∼ remainingWannierorbitals, d3z2−1 dzz anddy2−x2 dXY, antibondless with Asp becausetheir lobes ≡ ≡ point between the arsenics. Fe d is seen to antibond with p on the four As neighbors and Fe d zz z XY antibondswithp onthetwoAsneighborsintheX direction,andwithp onthetwoAsneighborsinthe Y X Y direction. Intetrahedalsymmetrythesetwoorbitalswouldtransformaccordingtotheerepresentation, and that holds quite well also in the real materials where the orbitals are degenerate within a few meV. Their energyis 0.2 eV below that of the d and d orbitals. This e-t splitting of a centrald shell Xz Yz 2 ∼ ina tetrahedronhavingporbitalsatits cornersisanorderofmagnitudesmallerthanthet -e splitting 2g g in an octahedron which allows for better alignment of the p and d orbitals. The 0.2 eV e-t splitting 2 ∼ in LaOFeAs is 20 times smaller than the width of the Fed-band structure in Fig.4 and does not cause separationintotwolowereandthreehighert bandswithapseudogapatd4.Nevertheless,thet ande 2 2 orbitals do play quite differentroles in forming the band structure near the Fermi level, as we shall see later. Whereas in cubic perovskites, includingthe cuprate superconductors,the effective dd hoppingin the separatedt ande bandsproceedsalmostexclusivelythroughtheptails,whichareplacedbetweenthe 2g g nearest-neighbordorbitals, theeffectiveddhoppingintheiron-basedsuperconductorsproceedsdirectly Copyrightlinewillbeprovidedbythepublisher 12 O.K.Andersen:Onthemulti-orbitalbandstructureanditinerantmagnetismofiron-basedsuperconductors Fig. 6 Same as Fig.5, but for the set of eight Asp- and Fed-like Wannier functions which span the entire band structureshowninFig.4. betweennearest-neighbordorbitalsonthesquarelatticeaswellasviatheptailslyingaboveandbelow theplaneofthedorbitals. Tabulationsofthehoppingintegralsforthed-orbitalHamiltonianmaybefoundinRefs.[43]and[59]. 3.2 FedAspeight-orbitalWannierbasisanditsHamiltonian Inordertoexplainthebandstructure,andinparticulartheinterlayercouplinginSect.4,wefinditusefulto exhibittheAspcharactersexplicitly.WethereforechoosenottodownfoldtheAspchannels,butspanthe entireeight-bandstructureinFig.4bytheeightAspandFedWannierorbitals;allotherchannelsremain downfolded[76]. TheseeightorbitalsareshowninFig.6. DuetothelackofAsptails,theFedorbitals ofthispdsetaremorelocalizedthanthoseofthedsetandtheintegralsforhoppingbetweenthemhave ashorterrange. Thisbasissetisalsomoresuitedforincludingtheon-siteCoulombcorrelations. TheAs porbitalsare,ontheotherhand,quitediffuseandgiverisetostrongandlong-rangedppandpdhoppings insidethelayer.Forthep orbital,thisispartlyduetoitsLadandOptails. Thissituationisverydifferent z fromtheonefoundinthecuprates,wherelong-rangedpphoppingisblockedbythepresenceofCuinthe sameplane.AlthoughtheorbitalsoftheAsFepdsetresembleatomicorbitalsmorethanthoseofthedset, theydotendtoavoidthespacecoveredbytheotherorbitalsintheset: TheFedorbitalsavoidtheAssites andtheAsporbitalsavoidtheFesites. ThisdistortsinparticulartheFet orbitals. Theon-siteenergies, 2 ǫ ,andthenearest-neighborhoppingintegrals,tnx,ny,aregiveninthetablebelow. Here,allenergiesare α α,β ineVandthehoppingintegralisthematrixelementoftheHamiltonianbetweenWannierorbitalsαandβ withn x+n ybeingthevectorfromαtoβ,projectedontotheFeplane. Allhoppingintegralsneeded x y toobtainconvergedenergybandstogetherwiththeiranalyticalexpressionswillbepublishedinRef.[77]. Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.