ebook img

On the Meissner Effect of the Odd-Frequency Superconductivity with Critical Spin Fluctuations: Possibility of Zero Field FFLO pairing PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Meissner Effect of the Odd-Frequency Superconductivity with Critical Spin Fluctuations: Possibility of Zero Field FFLO pairing

Typeset with jpsj2.cls <ver.1.2> Full Paper On the Meissner Effect of the Odd-Frequency Superconductivity with Critical Spin Fluctuations: Possibility of Zero Field FFLO pairing Yuki Fuseya∗ and Kazumasa Miyake Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 1 1 0 Weinvestigate theinfluenceof critical spin fluctuationson electromagnetic responses in the 2 odd-frequency superconductivity. It is shown that the Meissner kernel of the odd-frequency superconductivityisstronglyreducedbythecriticalspinfluctuationorthemasslessspinwave n a modeintheantiferromagneticphase.Theseresultsimplythatthesuperfluiddensityisreduced, J andtheLondonpenetrationdepthislengthenedfortheodd-frequencypairing.Itisalsoshown 1 that thezero field Flude-Ferrell-Larkin-Ovchinnikovpairingis spontaneously realized bothfor even- and odd-frequency in the case of sufficiently strong coupling with low lying spin-modes. ] n KEYWORDS: odd-frequencysuperconductivity,Meissner effect,spinfluctuation,superfluiddensity,pene- o tration depth,zero-field FFLO c - r p 1. Introduction Besides the studies on the possible existence of odd-ω u s Odd-frequency superconductivity, whose gap function SC,thethermodynamicstabilityorthesignoftheMeiss- t. is odd in frequency, is an old but new class of super- ner response had been still remaining unclear. Within a a conductivity. It was introduced originally by Berezin- naive calculation, the Meissner kernelof the odd-ω pair- m skii for triplet pairing,1 and by Balatsky and Abrahams ingseemstohaveanoppositesingfromthatoftheusual d- for singlet pairing.2 Soon after the Balatsky-Abrahams, (even-ω )pairing,suggestingthethermodynamicallyun- n the possibility ofodd-frequency superconductivity (odd- stable superconducting states. Very recently, this puzzle o ω SC) was discussed in a wide variety of models, e.g., wassolvedbytheappropriatetreatmentofthegapfunc- c the Kondo lattice model,3–7 the square-8 and triangular tionwithretardationinthepath-integralformalism.48,49 [ lattice9 Hubbard model, and the t-J model.10 According to these works, the odd-ω SC is thermody- 2 The experimental evidence on the odd-ω SC was first namicallystable,andexhibits theconventionalMeissner v pointedoutbytheauthors.11 InCe-basedheavyfermion effect. However, these arguments are restricted only to 2 superconductors,suchasCeCu Si andCeRhIn ,several thecoherentpart(withoutthecorrelationsduetothein- 2 2 2 5 7 experimentsonthenuclearmagneticrelaxationrate12–14 coherentpartofthequasiparticle).Bycontrast,previous 3 and specific heat15,16 exhibited behaviors of gapless SC studies3–9,11,20–23demonstratedthattheodd-ωsolutions 6. near the antiferromagnetic (AF) quantum critical point are realized only when the Cooper pairs are mediated 0 (especially in the AF phase). The origin of this gap- by a certain strong spin fluctuation, strongly suggesting 0 less SC had long been a mystery. In Ref. 11, the au- the relevant contribution of the incoherent part. So we 1 thors showed that the odd-ω SC is realized due to spin- havetodiscusscarefullytheMeissnereffectoftheodd-ω v: fluctuationneartheAFquantumcriticalpointand/orin pairingconsideringthecontributionsfromtheincoherent i theAFstatebysolvingtheBethe-Salpeterequation17 of part,whichareneglectedinthepreviousarguments.48,49 X SC based on the itinerant-localized duality theory.18,19 Inthispaper,weconsidertheincoherentcorrectionsdue ar The phase diagram so obtained agrees well with the ex- to criticalspin fluctuations which are crucialingredients perimental phase diagram, considering the fact that the for realizing the odd-ω SC. odd-ω SCexhibitsthegaplessbehavior.Accordingly,the In 2, the ordinary arguments for the electromagnetic § originof the gapless SC in Ce-compounds can be under- response, where the incoherent part is neglected, are stood as the odd-ω SC. briefly reviewed. In 3, we introduce spin fluctuations in § Afterthissuggestion,detailedinvestigationshavebeen ageneralformandinvestigatetheMeissnereffectbycal- made into the triangular-type lattice,20–22 and into the culating the current-current response function with the effective model of U-compounds,23 both of which are re- first order correction of the critical spin fluctuations or vealed to possess the odd-ω state under some realistic spinwavemodesintheAFstate.There,weexaminethe conditions. It now appears probable that the odd-ω SC singlet pairing in the AF phase, where the realization can be realized in surprisingly familiar situations. The of the odd-ω is guaranteed by the previous work.11 The concept of the odd-ω SC is so general that nowadays it results indicate that the Meissner kernel is reduced due has expanded into various fields, e.g., magnetic or den- to the correction of such spin fluctuations. Next, in 4, § sitywaveorder,24,25superconductingjunctions,26–43vor- westudythetripletpairingwithferromagneticspinfluc- tex core,44,45 proximityeffect superfluid3He,46 andcold tuations in the same manner as in 3. It is shown that § atoms.47 the Meissner effect is also reduced in triplet pairings. In 5, we give another argument of the electromagnetic re- § ∗E-mail:[email protected] sponsebycalculatingthesuperconductingdensity,which 2 J.Phys.Soc.Jpn. FullPaper AuthorName isgivenbythespatiallygradientterminthefreeenergy. Δ Δ+ Up to the first order of the critical spin fluctuations, its = + x x result is equal to that obtained by the current-current _ response function as expected. With this procedure, we = x Δ carry out the calculation of higher order corrections up to the third order. Then, we conclude that the Meissner kernelisstronglyreducedbothforeven-andodd-ω pair- Fig. 1. Diagrammaticexpressionsoftheexpansionofthenormal G andanomalous GreenfunctionF. ing,evenifwetakeintoaccounttheinfinite orderofcor- rections.Our results also suggest that the Flude-Ferrell- Larkin-Ovchinnikov(FFLO)pairingisspontaneouslyre- some straightforwardmanipulations, we have alized without a magnetic field in the case of sufficiently p 2 strongcoupling.Finally,in 6,wediscussimplicationsof Q (0)=2e2T x the present results. § xx m Xp,n(cid:16) (cid:17) 2. Electromagnetic response of the coherent 2[G(p)]3G( p)+[G(p)G( p)]2 ∆ (ε )2 µ n × − − − | | part (cid:8)Ne2 ∆ (ε )2 (cid:9) µ n In this section, we reintroduce the Meissner kernel in = πT | | >0, (6) m ε 3 theGinzburg-Landau(GL)regionwiththecoherentpart n | n| X only in a convenientformfor later discussions.The rela- which leads to the ordinary (diamagnetic) Meissner ef- tionbetweenthecurrentdensityandthevectorpotential fect.50 (Here, we have used the relation N = p3/3π2.) has the following form50 F This expression, however, does not include the effect of j(q)= Q(q)A(q) the incoherent part, or the spin fluctuations, which is − indispensable for the realization of the odd-ω SC. Only Ne2 2e2T from eq. (6), we cannot see how the Meissner effect and = A(q) p[p A(q)] − m − m2 · electromagnetic responses will be modified by the indis- p,n X pensable corrections of the incoherent part. G(p+)G(p−)+F(p+)F+(p−) , (1) It should be noted here that there is no difference be- × tween the even- and odd-ω pairing in the calculation where p (p,(cid:2)ε ), p p q/2, G and F((cid:3)+) are the n ± ≡ ≡ ± of the Meissner kernel (except for the ε -dependence of normal Green function and the anomalous Green func- n ∆(ε )), since the structures of G and F are the same. tion,respectively.N isthenumberofquasiparticleswith n In other words, the classification of even- and odd-ω is a chargee anda massm. The kernelQ (q) is givenba- xx that with respect to the relative coordinate, p, whereas sically by the current-current response function, which the electromagneticresponse is to the center ofmass co- consists of a particle-hole diagram. (Note that the spa- ordinate,q,sothatthetheoreticalframeworkoftheelec- tiallygradientterminthefreeenergyconsistsofparticle- tromagnetic response is basically the same for even- and particle diagrams and will be discussed in 5.) These § odd-ω pairings. Green functions are given as iε +ξ 3. Singlet pairings G(p,ε )= n p , (2) n −ε2n+ξp2+|∆µ(p,εn)|2 3.1 Model Our purpose here is to calculate the corrections of ∆+(p,ε ) F+(p,ε )= µ n , (3) fluctuations to the Meissner effect. For this purpose, we n ε2 +ξ2 + ∆ (p,ε )2 n p | µ n | start from a simple and essential model. Judging from both for the even-ω (∆ ) and odd-ω (∆ ).49 In the GL thepreviousstudies,3–11,20,21 theodd-ω pairingtendsto e o region,i.e.,nearT ,wecanexpandthemwithrespectto be mediated by spin fluctuations, which originate from c ∆ . Up to the second order in ∆ , we have thelocalcomponent,i.e.,theincoherentpart.Therefore, µ µ weintroducethe followinglow-energyeffectiveactionon iε +ξ G(p) G(p)+ n p ∆ (p)2 the basis of the itinerant-localized duality theory:18,19 ≃ (ε2 +ξ2)2| µ | n p 1/T =G(p)+G( p)[G(p)]2 ∆ (p)2, (4) S = dτψ¯p,α(τ)(∂τ +ξp)ψp,α(τ) µ − | | p,αZ0 X ∆(+)(p) F(p) µ = G(p)G( p)∆(+)(p), (5) 1/T 1/T ≃−ε2 +ξ2 − − µ g2 dτ dτ′D(q,τ τ′)S(q,τ) S( q,τ′), n p − − · − q Z0 Z0 where G is the Green function in the normal state X (7) G(p) = [iε ξ ]−1. The diagrammatic expressions of n p these expansi−ons are shown in Fig. 1. The Meissner ef- whereψ¯p,α(τ)≡eτHψp†,αe−τH,andgisacouplingcon- fect can be demonstrated in the limit of q 0. After stant. The spin density is given by → 1 S(q,τ)= ψ¯ (τ)σ ψ (τ), (8) 2 p+q/2,α αβ p−q/2,β p,α,β X J.Phys.Soc.Jpn. FullPaper AuthorName 3 whereσdenotesthePaulimatrix.Theactualodd-ωpair- (a-1) (a-2) (a-3) (a-4) ing,i.e.,thegaplesssuperconductivity,hasbeenreported mainlyinthecoexistencephaseofsuperconductivityand antiferromagnetism.13–16 For such a situation, the most GGFF G-G-FF GGFF G-G-FF dominant fluctuation is the transverse spin-fluctuation (b-1) (b-2) due to the spin wave as g2T D(q,ωm)= v2qˆ2+Nω 2, (9) -GG-FF -GG-FF s | m| (c-1) (c-2) (d-1) (d-2) wheregisthecouplingconstant,T expressestheenergy N scaleofthe AFtransitiontemperature, v is the velocity s of the spin-wave, and qˆ = q Q (Q is the magnetic -GG-FF -GG-FF GGFF G-G-FF − order vector). This type of spin fluctuation has already (e-1) (e-2) (f-1) (f-2) been shown to realize the odd-ω SC in the AF phase.11 When we considerin the doubly foldedBrillouinzone, qˆ is replaced by q, so that D(q,ω ) is singular for q 0 m ∼ GGGG GGGG -GG-FF -GG-FF and ω 0. We use this transverse spin-fluctuation for m (g-1) (g-2) (g-3) (g-4) ∼ singlet pairings. The corrections of the spin-fluctuation to the kernel Q are xx GGFF GGFF GGFF GGFF ∆Q (q)=2e2T D(q′)∆ (p)2 (h-1) (i-1) (i-2) xx µ | | p,q′ X × −vpv−pG(p+)G(p+−q′)F↑+↓(p−)F↓↑(p+) (a-1) GGGG GGFF GGFF (j-1) (k-1) (k-2) (cid:2)v v G( p )G( p +q′)F+(p )F (p ) (a-2) − p −p − + − + ↑↓ − ↓↑ + v v G(p )G(p +q′)F+(p )F (p ) (a-3) − p −p − − ↑↓ − ↓↑ + FFFF FFFF FFFF v v G( p )G( p +q′)F+(p )F (p ) (a-4) − p −p − − − − ↑↓ − ↓↑ + Fig. 2. Diagrammaticexpressionsofthe current-currentcorrela- +v v G(p )G( p )F+(p )F ( p +q′) (b-1) p −p + − + ↑↓ − ↓↑ − + tionwithcorrectionoffluctuations. +v v G(p )G( p )F+( p +q′)F (p ) (b-2) p −p − − − ↑↓ − − ↓↑ + +vpv−p+q′G(p+)G(−p−+q′)F↑+↓(p−)F↓↑(−p++q′) +vpvp−q′G(p+)G(p+−q′)F↑+↓(p−)F↓↑(−p−+q′) (c-1) (i-2) +vpv−p+q′G(p−)G(−p++q′)F↑+↓(−p−+q′)F↓↑(p+) +vpvp−q′F↑+↓(p−)F↓↑(p+)F↑+↓(−p++q′)F↓↑(−p−+q′) (c-2) (j-1) −vpv−p+q′G(p+)G(p−)F↑+↓(−p++q′)F↓↑(−p−+q′) −vpv−pF↑+↓(p−)F↓↑(p+)F↑+↓(−p++q′)F↓↑(p+) (k-1) (d-1) v v F+(p )F (p )F+(p )F ( p +q′) , − p −p ↑↓ − ↓↑ + ↑↓ − ↓↑ − − −vpv−p+q′G(−p++q′)G(−p−+q′)F↑+↓(p−)F↓↑(p+) (cid:3)(k-2) (d-2) where v = p /m is the velocity of quasiparticles. The p x +v v G(p )G(p )G(p )G(p q′) (e-1) correspondingdiagramsareshownin Fig.2.Inthe limit p p + + − + − of q 0, we have +v v G(p )G(p )G(p )G(p +q′) (e-2) → p p + − − − ∆Q (0)=2e2T v2D(0)∆ (p)2 −vpvpG(p−)G(−p++q′)F↑+↓(p+)F↓↑(p+) (f-1) xx Xp,q′ p | µ | v v G(p )G( p +q′)F+(p )F (p ) (f-2) − p p + − − ↑↓ − ↓↑ − × 3G(p)G(p)G(p)G(p)+3G(−p)G(−p)F↑+↓(p)F↓↑(p) +v v G(p )G(p )F+(p )F ( p +q′) (g-1) (cid:20) p p + − ↑↓ + ↓↑ − + +2G(p)G(p)F+(p)F (p)+G(p)G(p)F+( p)F ( p) +v v G(p )G(p )F+( p +q′)F (p ) (g-2) ↑↓ ↓↑ ↑↓ − ↓↑ − p p − + ↑↓ − + ↓↑ + +3G(p)G(p)F+(p)F ( p)+3G(p)G(p)F+( p)F (p) +v v G(p )G(p )F+( p +q′)F (p ) (g-3) ↑↓ ↓↑ − ↑↓ − ↓↑ p p + − ↑↓ − − ↓↑ − 2G(p)G( p)F+(p)F (p) 2G(p)G( p)F+(p)F ( p) +v v G(p )G(p )F+(p )F ( p q′) (g-4) − − ↑↓ ↓↑ − − ↑↓ ↓↑ − p p + + ↑↓ − ↓↑ − −− 2G(p)G( p)F+( p)F (p) +vpvp−q′G(p+)G(p−)G(p+ q′)G(p− q′) (h-1) − − ↑↓ − ↓↑ − − +D(q′)F+(p)F (p)D(q′)F+( p)F ( p) +vpvp−q′G(p−)G(p+−q′)F↑+↓(−p++q′)F↓↑(p+)(i-1) +D(q′)F↑↑+↓↓(p)F↓↓↑↑(p)D(q′)F↑↑+↓↓(−−p)F↓↓↑↑(p−) 4 J.Phys.Soc.Jpn. FullPaper AuthorName +D(q′)F+(p)F (p)D(q′)F+(p)F ( p) . (10) eq. (11). For the zeroth order of D0 term (eqs. (6)), the ↑↓ ↓↑ ↑↓ ↓↑ − contribution from the ξ2-term gives (cid:21) H0eisreim,wpeorhtaavnetpinutthqe′ →Gin0zsbinucreg-oLnalnydDau(qr,eωgmio)n.wUitphtωomth=e vp2 −2G3pG−p+G2pG2−p O(ξ2) p second order of ∆(p) (eqs. (4)-(5)), X (cid:0) (cid:1)(cid:12) a π 1(cid:12) 2 = 2 +a π =0, (16) ∆Q (0)=2e2T v2D ∆ (p)2 − 2 2 ε xx p 0| µ | h (cid:16) (cid:17) i| n| Xp and for the (D1) term, the contribution from the ξ2- O 0 12G5G1 +12G4G2 6G3G3 (11) term becomes × − p −p p −p− p −p (cid:2)2e2T D ∆ (ε )22NFεF (cid:3) vp2 −12G5pG1−p+12G4pG2−p−6G3pG3−p O(ξ2) 0 µ n ≃ | | 3m p n X (cid:0) (cid:1)(cid:12) X a π a π 1 (cid:12) π π 3π 1 = 12 2 +12 0 6 2 =0. (17) 12 +12 6 − − 16 × − 8 ε 3 ×(cid:26)− (cid:16)16(cid:17) (cid:16)−4(cid:17)− (cid:18) 8 (cid:19)(cid:27)|εn|5 Conseqhuentl(cid:16)y,thec(cid:17)orrectiontoQ isie|xanc|tlyzeroupto 2N ε 1 xx =2e2T D ∆ (ε )2 F F ( 6π) ξ2,i.e.,the presentresultdoesnotdependonthe details 0| µ n | 3m − ε 5 n | n| of the band structure. X e2NT D ∆ (ε )2( 6π) 1 , (12) 4. Triplet pairings ≃ m 0| µ n | − ε 5 n | n| Next, let us consider the case of triplet pairing. The X where N mp /2π2, ε p2/2m, and G(p)’s are tripletpairingismediatedbytheferromagneticspinfluc- F ≡ F F ≡ F tuation for both the even- and odd-frequency. (The de- abbreviated as G ’s. Note that ∆(ε ) includes the fac- p n tailed discussions for the relationship between the pair- tor from the momentum integration of ∆(p) as ∆(ε ) n ∆(p,ε )Φ(p,ε ), where Φ(p,ε ) is some function∼, ing symmetry and the spin fluctuation are given in p n n n and D includes the factor from the frequency summa- Appendix.) We consider the ferromagnetic spin fluctu- 0 P ation in the form tion (T ). At around T , the dominant contribution q′ c of ∆(ε ) comes only from ε = πT , so that we can ap- g2N κ2 nP 0 c D(q,ω)= F 0 , (18) proximate as κ2+q2 iω/η(q) − D0 =T g2TN/vs2q2 ∼g2Tc/TN. (13) where κ and κ0 are the inverse correlation lengths with and without magnetic correlations, respectively. η(q) q X is defined as η(q) = T q using a characteristic spin- (Here we use v q T , where q is a cut off in the sf momentum spacse.c) F∼inaNlly, the totacl kernel becomes fluctuation temperature Tsf.52 Withthesameprocedureasforthesingletpairing,we e2N 1 D obtain the correction to the kernel due to the ferromag- Q (0)= πT 6 0 ∆ (ε )2. (14) xx m ε 3 − ε 5 | µ n | netic transverse spin-fluctuation as follows: n (cid:20)| n| | n| (cid:21) X From this result, it is revealed that the Meissner ker- ∆Qxx(q)=2e2T D(q′) nel is reduced by the critical spin fluctuation both for p,q′ X the even- and odd-ω pairing. When the spin fluctuation is moderate, D0 . (πTc)2/6 (i.e., g . π TcTN/6), the × −vpv−pG(p+)G(p+−q′)F↑+↑(p−)F↑↑(p+) (a-1) Meissnerkernelbecomessmall,butremainspositive.On (cid:20) the other hand, there is a possibility thapt the Meissner v v G( p )G( p +q′)F+(p )F (p ) (a-2) − p −p − + − + ↑↑ − ↑↑ + kernel becomes negative when the critical spin fluctua- tionissostrong,i.e.,D0 &(πTc)2/6.However,thisrapid −vpv−pG(p−)G(p−+q′)F↑+↑(p−)F↑↑(p+) (a-3) reduction is relaxed in we take into account the higher v v G( p )G( p +q′)F+(p )F (p ) (a-4) order corrections as is shown below in 5. − p −p − − − − ↑↑ − ↑↑ + § −vpv−p+q′G(p+)G(p−)F↓+↓(p+−q′)F↓↓(p−−q′) 3.2 Dependences on band structure (d-1) In the derivation of eq. (12), we assume that the den- sity of state (DOS) is constant with respect to ξp. How- −vpv−p+q′G(−p++q′)G(−p−+q′)F↑+↑(p−)F↑↑(p+) ever,theDOSsomewhatdependsonξ ingeneral.Here, (d-2) p we see the validity of the above result by expanding the +v v G(p )G(p )G(p )G(p q′) (e-1) DOS up to (ξ2) as p1 p1 1+ 1+ 1− 1+− O +v v G(p )G(p )G(p )G(p +q′) (e-2) 2 p p + − − − v2F(ξ)= dξN ε (1+a ξ+a ξ2+ )F(ξ). p p 3mZ F F 1 2 ··· −vpvpG(p−)G(−p++q′)F↑+↑(p+)F↑↑(p+) (f-1) X (15) v v G(p )G( p +q′)F+(p )F (p ) (f-2) − p p + − − ↑↑ − ↑↑ − The ξ-linear term in DOS gives no contribution since F(ξ) is an even function in ξ for the relevant quantity, +vpvp−q′G(p+)G(p−)G(p+−q′)G(p−−q′) (h-1) J.Phys.Soc.Jpn. FullPaper AuthorName 5 v v F+(p )F (p )F+(p q′)F (p ) (k-1) see the effect of higher order corrections to the Meissner − p −p ↑↑ − ↑↑ + ↓↓ +− ↑↑ + effect. v v F+(p )F (p )F+(p )F (p q′) (k-2) − p −p ↑↓ − ↓↑ + ↑↓ − ↓↑ −− The correspondingdiagramsarethe sameas thatofsin- 5.1 Up to 1st order gletpairingexceptfor(b),(c),(g),and(i)typediagrams The spatial derivative term without the spin fluctua- in Fig. 2. (Of course, the spin indices are different from tion is the singlet case.) Up to the second order of ∆(p), ∂2 ∂2 K (q)= T G G ∆Qxx(0)=2e2T vp2D0|∆µ(p)|2 ∂q2 p-p − Xp ∂q2 p+ −p− p X v2 12G(p)5G( p)1+6G(p)4G( p)2 2G(p)3G( p)3 =T 2pG(p)2G(−p)2−vp2G(p)3G(−p) × − − − − − p (cid:20) (cid:21) X (cid:2)2e2T D ∆ (ε )22NFεF (cid:3) N 1 0 µ n ≃ | | 3m = πT . (23) n 4m ε 3 X n | n| π π 3π 1 X 12 +6 2 The correctionsdue to the spin fluctuation, which is the × − 16 −4 − 8 ε 5 (cid:26) (cid:16) (cid:17) (cid:16) (cid:17) (cid:18) (cid:19)(cid:27)| n| same one as in the previous sections, are given by the e2N 1 FeynmandiagramsinFig.3(a)and(b).Theircontribu- T D ∆ (ε )2( 3π) . (19) ≃ m 0| µ n | − ε 5 tions are n n | | X v2 Here, D0 ∼ g2NFTcκ20/κ2. The total kernel for triplet ∆Kp′′-p(q)=T D0 2p 6G4pG2−p−4G3pG3−p pairing is then obtained as p (cid:20) X (cid:0) (cid:1) e2N 1 D Qxx(0)= m πT ε 3 −3 ε 05 |∆µ(εn)|2. (20) −2 6G5pG−p−3G4pG2−p+G3pG3−p n (cid:20)| n| | n| (cid:21) (cid:21) X (cid:0)N 6D (cid:1) TheMeissnerkernelfortripletpairingisalsoreducedby πT 0 (24) the spinfluctuationboth for even-andodd-ω , although ≃−4m εn 5 n | | X the coefficient of the second term of eq. (20) is smaller for singlet pairings, and than that for singlet pairing. v2 5. Higher order corrections ∆Kp′′-p(q)=T Dp 2p −12G5pG−p+6G4pG2−p−2G3pG3−p p So far, we have shown that the coefficient of ∆Qxx is X (cid:2) (cid:3) reduced at least up to the first order of D. However, it N 3D0 πT (25) is naturally expected that the signs of the higher order ≃−4m ε 5 n n | | corrections are oscillating; when the sign of the first or- X for triplet pairings. Then the total ρ (T) up to (D1) der is negative,that ofthe secondorderwill be positive, s O are and that of the third order will be negative etc.. Thus, we have to check the effect of higher order corrections, ρsin(T) πT 1 1 6D0 ∆ (ε )2, (26) especially paying attention to their convergence. Unfor- s ≃ ε 3 − ε2 | µ n | n | n| (cid:20) | | (cid:21) tunately, it is too complicated to proceed to the higher X order corrections with the scheme we took in the pre- ρtri(T) πT 1 1 3D0 ∆ (ε )2, (27) vious sections. Here, we instead take a strategy where s ≃ n |εn|3 (cid:20) − |ε|2(cid:21)| µ n | wecalculatethesuperfluiddensitybyadifferentmethod X for singlet and triplet pairings, respectively. These re- and then determine the Meissner kernel. sults are exactly equivalent to the results obtained from The superfluid density ρ is expressed in terms of the s thecurrent-currentresponsefunctionintheprevioussec- Meissner kernel as tions, eqs. (14) and (20). N (T) m s ρ (T)= = Q . (21) s N e2N xx 5.2 2nd and 3rd order Ontheotherhand,ρs canalsobeobtainedfromthespa- Now, we have confirmed the equivalence between two tiallygradientterm, ∆(r)2,inthe freeenergy,53,54 in different procedures for calculating ρ (T) up to the first |∇ | s otherwords,thecoefficientoftheq2-term.Thisspatially order of spin fluctuation, (D1). With regard to the O gradient term is expressed by the superconducting pair higher order calculations, we can carry out the calcula- susceptibility, Kp-p(q), in the form tionsofthespatiallygradienttermmoreeasilythanthat 4m ∂2 ofthecurrent-currentresponsefunctions.Theresultsfor ρ (T)= ∆ (p)2 K (q). (22) s N | µ | ∂q2 p-p p X We should have the same results for the Meissner kernel through the calculation of K (q). In this section, we p-p first show that the results in the previous sections can alsobederivedfromthecalculationofK (q).Then,we p-p 6 J.Phys.Soc.Jpn. FullPaper AuthorName [1st] N 168D3 = πT 0, (29) (a) (b) −4m ε 9 n n | | X forthethirdorder(Fig.3(h)-(y)).Thetotalsingletpair [2nd] susceptibility up to third order is given by (c) (d) (e) (f) N 1 D D 2 K′′ (0)= πT 1 6 0 +30 0 p-p 4m n |εn|3" − |εn|2 (cid:18)|εn|2(cid:19) X (g) D 3 D 3 0 0 150 18 . − (cid:18)|εn|2(cid:19) − (cid:18)|εn|2(cid:19) # (30) [3rd] (h) (i) (j) (k) Rathersurprisingly,thecoefficientsofeachtermareinte- gers(althougheachtermisgivenasafractionalnumber, e.g., G5G5 =35π/128ε 9, or G4G6 = 7π/32ε 9). (l) (m) (n) (o) Moreovper,−tphey are almo|snt|given aps a−gpeom−etric pr|ognr|es- sion, which can be written in the convergentform: 1 6(D /ε 2) (p) (q) (r) (s) ρ πT 1 0 | n| ∆ (ε )2 s ≃ ε 3 − 1+5(D /ε 2) | µ n | n | n| (cid:20) 0 | n| (cid:21) X (31) (t) (u) (v) (w) Therefore,ρ andsotheMeissnerkernelisreducedbythe s spinfluctuations,evenifwetakeintoaccountthe higher order corrections.With this geometric progressionform, (x) (y) we can go beyond the perturbation theory even though we made calculations only up to the third order. The results shouldbe valid as far as it converges,so that our results (31) is expected to be valid for any magnitude of Fig. 3. Diagrammatic expressions of the pair susceptibility with the spin fluctuations, since it is written in a convergent correctionoffluctuations. form. Then, we also conclude that the Meissner kernel canbenegativebothforeven-andodd-ωwhentheeffect of massless spin fluctuations is sufficiently large. singlet pairing are as follows: Similarestimationsofthehigherordercorrectionswill ∆(2)K′′ (q)= T D2 begivenforthetripletpairingjustbychangingthecoef- p-p − q p,q ficients. The result so obtained will be qualitatively the X sameasthatforthesingletpairing,namely,theMeissner ∂2 G3 G3 4G4 G2 +2G5 G1 kernel of the odd-ω triplet pairing also becomes positive × ∂q2 p+ −p− − p+ −p− p+ −p− (cid:20) with the critical spin fluctuations. +2G5 G1 +G3 G3 6. Discussions p+ −p− p+ −p− (cid:21) Summarizingthe progresshithertomade,wefindthat N 30D2 = πT 0, (28) the Meissner kernel in the GL region is given by 4m ε 7 Xn | n| Q = e2N πT 1 6D0/|εn|2 ∆ (ε )2, for the second order (Fig. 3(c)-(g)), and xx m |εn|3 n (cid:20) − 1+5D0/|εn|2(cid:21)| µ n | X (32) ∆(3)K′′ (q)= T D2 p-p − q whose D dependence is depicted in Fig. 4. This con- p,q 0 X clusion will be valid, even if we consider the infinite or- ∂2 × ∂q2 −G4p+G4−p− +4G5p+G3−p− +2G5p+G3−p−der in D0. The Meissner kernel is positive but strongly (cid:20) reduced by the critical spin fluctuations both for even- 2G4 G4 +2G5 G3 2G6 G2 and odd-ω pairing. Meanwhile, our results also indicate − p+ −p− p+ −p− − p+ −p− that the Meissner kernel can become negative both for −2G6p+G2−p− −4G6p+G2−p− −4G6p+G2−p− even- and odd-ω pairing, when the critical fluctuations aresufficientlylarge.Ineq.(31),the dominantcontribu- 2G4 G4 2G4 G4 +2G7 G1 − p+ −p− − p+ −p− p+ −p− tion from the εn-summation comes only from the lower +4G7p+G1−p− +2G7p+G1−p− +2G5p+G3−p− εwnh,ensintchee ∆re(tεanr)daitsiornapoifdltyhesuipnpterreascsetidonasisεsntrionncgr.e1a1s,e55s +2G7 G1 +2G5 G3 +2G7 G1 Then, the condition for the sign change is roughly given p+ −p− p+ −p− p+ −p− by D & T2( D ) or g & √T T in the case of sin- (cid:21) 0 c ≡ x c N glet pairing in the AF phase. Therefore, we can con- cludethatwithmoderatemagnitudeofspinfluctuations, J.Phys.Soc.Jpn. FullPaper AuthorName 7 1 possibility of the FFLO state, resulting in the possible up to 2 zero-field FFLO state. 0.8 Abrahams et al. (and more recently Dahal et al.) in- 0.6 troduced a composite operator which couples a Cooper pair to a spin fluctuation and has the same sym- Kn 0.4 up to 1 up to 8 metry as the odd-ω pairing.51,62 They showed that, in the composite-operator condensation states, the su- 0.2 perfluid density is reduced in some models of the 3 up to 0 magnon propagators. Although the magnon propaga- tor in Ref. 51, (q), resembles our spin fluctuation, -0.2 D(q), their contDributions to the Meissner kernel are 0.01 0.1 1 10 different from ours. For example, in the first order of 0 x (q) or D(q), the composite operator theory leads to D (q) 2G3G +G2G2 (eq. (4.3) in Ref. 51), which Fig. 4. (Color online) Relation between the spin fluctuation D0 D − p −p p −p has the form of the first line of eq. (6) supplemented by and the Meissner kernel, which corresponds to the super−fl2uid the m(cid:2)agnon propagator, w(cid:3)hereas (D1)-term is given densityρs orthesquareoftheinversepenetration depthλL . by D(q′) 12G5G1 +12G4G2 O6G3G3 (the first − p −p p −p− p −p line of eq. (11)) in our theory. Furthermore, in our the- (cid:2) (cid:3) D < D , the superconductivity with zero center-of- ory,thehigherordertermsareshowntoconvergehaving 0 x mass momentum is stable, but the superfluid density is an almost geometric progression structure, even though strongly reduced, while with sufficiently large spin fluc- the sign of the higher order of D is fluctuating. How- tuations, D > D , the uniform superconductivity is no ever, in the composite operator theory, the contribution 0 x longer stable. In such a situation of D >D , the super- of the higher order term has not been investigated as 0 x to whether it converges or diverges; it can differ greatly conductivity with Cooper pairs of the finite center-of- mass momentum can be stabilized, since the coefficient from the present results. Nevertheless, both approaches of q2-term is negative, but that of q4-term is positive. share a common aspect in which incoherent degrees of freedom beyond the quasiparticle picture (in a sense of Then, the FFLO pairing can be realized spontaneously without the magnetic field. the Fermi liquid theory) play crucial roles. In the following discussion, we make some comments Finally, we commentonthe odd-ω in the non-uniform on the relationship between the present results and the system,suchasthenormalmetal/superconductorjunc- previous works. The qualitative tendency of the present tions. For the Meissner effect of the pairs in the normal metal region,we do not need to consider the corrections results are consistent with the standard theory of a su- perfluid Fermi liquid,56 where λ is given by due to the incoherent part, since the spin fluctuations L are irrelevant there. 4πNe2 1 Y(T) λ−2(T)= (1+ 1Fs) − , (33) L m∗c2 3 1 1+ 1FsY(T) 7. Conclusions 3 1 where m∗ is the effective mass of quasiparticles, Fs is The effects of the critical spin fluctuations, the cru- 1 cialingredientforrealizingthe odd-ω superconductivity, the Landauparameter,andY(T)is the so-calledYosida on the electromagnetic response of the odd-ω supercon- function. It is noted that eq. (33) is also valid for the ductivity have been examined. The Meissner kernel is systems without the Galilean invariance. There, the in- stronglyreducedbythecriticalspinfluctuationsbothfor coherent contribution for the current-current response the even- and odd-ω pairing. Thus the superfluid den- function is not negligible and is incorporated into the Fermi liquid parameterFs, the ω-limitvertex Γω, which sity will be smaller and the penetration depth will be 1 arises from incoherent processes.56 In the case of cor- longerthanthecasewithoutcorrectionsduetothecriti- calspinfluctuations.Moreover,whenthe effectis strong related electron systems without the translational in- enough, the Meissner kernel becomes negative, suggest- variance, such as the heavy fermion systems, eq. (33) is modified as the effective mass m∗ is replaced by the ing the zero-field spontaneous FFLO state. This conclu- dynamic effective mass m .57 (m is given as m /m = sion has been reached by calculating two different val- d d d ues: one is the current-current response function,50 and [1 ∂Σ(k,ω)/∂ω] ,whereΣ(k,ω)istheselfen- − k=kF,ω=EF the other is the spatially gradient term (the coefficient ergy.) The spin-fluctuation increases m , so that it re- d duces λ−2. When the system is near the AF critical of q2-term) in the free energy.53,54 The results, obtained L by two different methods, completely agree with each pointorthemetal-insulatortransition,theDrudeweight, D = (πe2N/m∗)(1+ 1Fs), is reduced.58–61 In this case, other at least up to the first order of fluctuation. This is λ−2 is alsoreduced, w3hic1h is consistentwith ourresults. valid both for singlet pairing with the antiferromagnetic L fluctuation in the coexisting phase and for triplet pair- However, in the derivation of eq. (33), the possibility of ing with the ferromagnetic fluctuation. The validity has the FFLO state is discarded, so that we cannot discuss been also checked for the shape of the density of state the possibility of FFLO state only fromeq. (33). On the in the case of singlet pairing, and the presentresults are other hand, in our theory, we directly calculate the co- shown to be invariant, namely, the present conclusion is efficient of q2-term, which corresponds to the order pa- not affected by the detail of the band structure. rameter of the FFLO state, so that we can discuss the 8 J.Phys.Soc.Jpn. FullPaper AuthorName (a) (b) 0 0 Fig. A·2. Illustrationoftheω-dependentpairinginteractionΛ(ω) andthefunctionΛ(ω)cos(πω/ω0)for(a)η∼ω0and(b)η≪ω0. 0 Thecoefficientλ0 isgivenbytheintegrationofΛ(ω)andλ1 by thatofΛ(ω)cos(πω/ω0).Wecanseefromtheseillustrationsthat Fig. A·1. Illustration of the frequency dependence of pairing in- λ0 ≫λ1 for the instantaneous interaction and λ0 ∼ λ1 for the retardedinteraction. teractionΛ(ω). (a) ferromagnetic (b) antiferromagnetic Acknowledgments WearegratefultoH.Kusunoseforfruitfuldiscussions. This work is supported by a Grant-in-Aid for Scientific Research(No.19340099)fromTheJapanSocietyforthe PromotionofScience(JSPS),andaGrant-in-AidforSci- 0 q 0 q entific Research on Innovative Areas “Heavy Electrons” y y q q (No.20102008)fromtheMinistryofEducation,Culture, x 0 x 0 Sports, Science and Technology, Japan. One of the au- thors (Y. F.) is supported by a Grant-in-Aid for Young Fig. A·3. Illustrationofthemomentumdependenceofthepairing ScientistsStart-up from JSPS. interaction Φ(q)for(a) ferromagneticcases andfor(b) antifer- romagneticcases. Appendix: Possiblesymmetriesofodd-ωpairing Here,we discuss the possible symmetries of the odd-ω pairing on the basis of a general argument. It is found neous interaction only mediates the even-ω pairing. On that the odd-ω pairing becomes competitive with the the other hand, in cases where Λ(ω) strongly depends even-ω one when the interaction is strongly retarded. on ω, i.e., η ω0, the function Λ(ω)cos(πω/ω0) has al- ≪ WeassumethatthepairinginteractionV(q,ω)canbe most the same form as Λ(ω), so that λ1 is nearly equal separated as to λ0. Then, Tc of the odd-ω pairing can be comparable to that of the even-ω pairing. In fact, if the momentum V(q,ω)=Φ(q)Λ(ω), (A1) part of odd-ω φodd(q), which is neglected so far, has a · where the dimensionality of the system is arbitrary. larger value than that of even-ω φeven(q), it is possible Generally, we can assume that Λ(ω) has a maximum at that the odd-ω pairing is stabilized prevailing over the ω = 0, and we parameterize its peak width by η as dis- even-ω pairing.In order to determine which Tc is higher playedinFig.A1.SinceΛ(ω)is anevenfunction,itcan and what type of gap structure develops below Tc, we be expanded as· need more data about the model. λ πω 2πω Λ(ω) = 0 +λ cos +λ cos + (,A2) A.1 Spin fluctuation model 1 2 2 ω ω ··· · 0 0 Now, we consider the varieties of pairing on the basis 2 ω0 nπω ofthetwo-dimensionalspinfluctuationmodel.Letususe λ = dωΛ(ω)cos , (A3) n ω ω · 0 Z0 0 Vs(q,ω)=3Φ(q)Λ(ω), (A6) · with a sufficiently large cut-off ω . The pairing interac- 0 V (q,ω)= Φ(q)Λ(ω), (A7) tion is written in the separable form t − · Λeven(ε ε′) = λ0 +λ1cosπεcosπε′ + (A, 4) pasaitrhinegmwoidtheltinhteermacotmioenntfuomr sidnegpleetnd(Vens)ceanodf Φtr(ipql)etgi(vVetn) − 2 ω ω ··· · 0 0 as πε πε′ Λodd(ε−ε′) = λ1sinω0 sin ω0 +··· , (A·5) Φ(k−k′)=φ0+2φ1[cos(kx−kx′)+cos(ky −ky′)], (A8) for the pair scattering (ε, ε) (ε′, ε′). The maxi- · − → − mumeigenvalueisapproximatelygivenbyλ0/2foreven- where the ferromagnetic spin fluctuations gives φ0 > frequency pairing and λ1 for odd-frequency pairing. If φ1 > 0 and the antiferromagnetic spin fluctuation φ0 > Λ(ω) is independent of ω, that is to say, η →∞, λ0 >0 −φ1 >0. (See Fig. A·3) and λ = 0 for all n = 0. When Λ(ω) is a slowly vary- n 6 ing function, i.e., η ω , λ becomes finite but very 0 1 ∼ smallasisseeninFig.A2(a).Therefore,suchinstanta- · J.Phys.Soc.Jpn. FullPaper AuthorName 9 ferro. s-wave p-wave d-wave Similarly, for the antiferromagnetic case, φ < φ < 0 1 singlet — — — − 0, the anisotropic even-parity singlet pairing, the odd- triplet πφ0λ1 φ1λ0 2φ1λ1 parity singlet pairing, and the isotropic even-parity antiferro. s-wave p-wave d-wave triplet pairing is possible. The Tc for the dx2−y2-wave singlet — 6φ1λ1 3φ1λ0 singlet is related to the eigenvalue 3φ1λ0 and that for the p-wave singlet is related to 6φ λ . In the case of the triplet πφ0λ1 — — 1 1 s-wavetriplet,theT isrelatedtoπφ λ .(See TableA1 c 0 1 · for “antiferro.”.) Therefore, if λ is comparable to λ , Table A·1. Possible pairing symmetries and their coefficients of 1 0 the p-wave singlet and the d -wave singlet pairing theattractivecomponentsforferromagneticcases,φ1>0(upper x2−y2 table), and antiferromagnetic cases, φ1 < 0 (lower table). The are nearly degenerate. The p-wave singlet pairing sug- framerepresents theodd-ω gap. gested in Ref. 11 would correspond to this case. To summarize, s-wave and d-wave triplet odd-ω pair- ings are possible for the ferromagnetic case, and s-wave We can express Φ(k k′) in the separable form68 tripletandp-wavesingletodd-ω pairingsarepossiblefor − Φeven(k k′)=φ0+2φ1(γkγk′ +ηkηk′), (A9) the antiferromagnetic case. − · Φodd(k k′)=2φ (sink sink′ +sink sink′), − 1 x x y y (A10) 1) V.L.Berezinskii:JETPLett. 20(1974) 287. · 2) A.BalatskyandE.Abrahams:Phys.Rev.B45(1992)13125. where γ = (cosk + cosk )/√2 and η = (cosk 3) V.J.EmeryandS.Kivelson:Phys.Rev.B46(1992) 10812. k x y k x cosk )/√2. The functions γ , η , and sink are irr−e- 4) P.Coleman,E.MirandaandA.Tsvelik:Phys.Rev.Lett.70 y k k x,y (1993) 2960. ducible representations of the symmetry group of the 5) P.Coleman,E.MirandaandA.Tsvelik:Phys.Rev.B49(1994) square lattice. Then, adding the frequency part Λ(ω) = 8955. λ0/2+ nλncos(nπω/ω0),thepairinginteractionshave 6) P.Coleman,E.MirandaandA.Tsvelik:Phys.Rev.Lett.74 the forms (1995) 1653. P 7) P.Coleman,A.GeorgesandA.M.Tsvelik:J.Phys.:Condens. Vse,e(k−k′)=3[φ0+2φ1(γkγk′ +ηkηk′)] Matter 9(1997)345. 8) N.Bulut, D.J. Scalapino and S.R.White: Phys.Rev. B 47 (λ /2+λ cosǫcosǫ′), (A11) 0 1 (1993) 14599. × · 9) M.VojtaandE.Dagotto: Phys.Rev.B59(1999) R713. Vo,o(k k′)=3 2φ (sink sink′ +sink sink′) s − 1 x x y y 10) A.V.BalatskyandJ.Bonˇca: Phys.Rev.B48(1993) 7445. (λ(cid:2) sinǫsinǫ′), (A(cid:3)12) 11) Y. Fuseya, H. Kohno and K. Miyake: J. Phys. Soc. Jpn. 72 × 1 · (2003) 2914. Vte,o(k−k′)=−[φ0+2φ1(γkγk′ +ηkηk′)] 12) KK..IAshsaidyaa,mYa.,KCa.wGaesiabkeil,Kan.dTaFb.uSctheig,lKich.:KPashhyism.aR,eYv..KLeittat.ok8a2, (λ sinǫsinǫ′), (A13) (1999) 5353. 1 × · 13) Y.Kawasaki,K.Ishida,K.Obinata,K.Tabuchi,K.Kashima, Vo,e(k k′)= 2φ (sink sink′ +sink sink′) Y.Kitaoka,O.Trovarelli,C.GeibelandF.Steglich:Phys.Rev. t − − 1 x x y y B66(2002)224502. (λ0(cid:2)/2+λ1cosǫcosǫ′), (A(cid:3)14) 14) S.Kawasaki,T.Mito,Y.Kawasaki,G.-q.Zheng,Y.Kitaoka, × · D. Aoki, Y.Haga and Y.O¯nuki: Phys. Rev. Lett. 91 (2003) where ǫ = πε/ω , and Ve,e denotes the even-parity and 0 s 137001. even-ωsingletpairinginteraction,Ve,o denotestheeven- 15) R.Modler,M.Lang,C.Geibel,C.Schank,R.Mu¨ller-Reisener, t parity and odd-ω triplet pairing interaction, and so on. P.Hellmann,A.Link,G.Sparn,W.AssmusandF.Steglich: PhysicaB206&207(1995)586. 16) R. A. Fisher, F. Bouquet, N. E. Phillips, M. F. Hundley, P. In this representation, the negative coefficient corre- G.Pagliuso,J.L.Sarrao,Z.FiskandJ.D.Thompson:Phys. sponds to the attractive channel, so that only the ir- Rev.B65(2002) 224509. reducible representation with a negative coefficient can 17) E.E.SalpeterandH.A.Bethe: Phys.Rev.84(1951)1232. become the superconducting gap function. For the fer- 18) K.MiyakeandY.Kuramoto:PhysicaB171(1991) 20. romagnetic case, i.e., φ > φ > 0, both odd- and even- 19) Y.KuramotoandK.Miyake:Prog.Theor.Phys.108(1992) 0 1 199. paritytripletpairingsarepossible,whilethesingletpair- 20) K.Yada,S.Onari,Y.TanakaandK.Miyake:arXiv:0806.4241. ing is not. The even-ω triplet pairing has the p-wave 21) K. Shigeta, S. Onari, K. Yada and Y. Tanaka: Phys. Rev. B symmetry, and the odd-ω triplet pairing has the s-wave 79(2009) 174507. symmetry or the d -wave symmetry. The T for p- 22) K. Shigeta, Y. Tanaka, K. Kuroki, S. Onari, H. Aizawa: x2−y2 c wave triplet is related to the eigenvalue φ λ and that arXiv:1005.4755v1. 1 0 23) T.Hotta:J.Phys.Soc.Jpn.,78(2009) 123710. for s-wavetripletandfor d -wavetriplet pairingare x2−y2 24) A.V.BalatskyandE.Abrahams:Phys.Rev.Lett.74(1995) relatedtoπφ λ and2φ λ ,respectively.(See TableA1 0 1 1 1 1004. · for “ferro.”.) Here, we omit the extend-s-wave pairing 25) E.PivovarovandC.Nayak:Phys.Rev.B64(2001)035107. for the γ components. Therefore, if λ is comparable to 26) A.I.Buzdin:Rev.Mod.Phys.77(2005)935. 1 λ /2, odd-ω s-wave triplet pairing is expected to arise 27) F.S.Bergeret,A.F.VolkovandK.B.Efetov:Rev.Mod.Phys. 0 77(2005) 1321. since φ >φ in general. The odd-ω s-wave triplet pair- 0 1 28) F.S.Bergeret,A.F.VolkovandK.B.Efetov:Phys.Rev.Lett. ing that appears in the triangular lattice9,20–22 would 86(2001) 4096. correspond to this case. 29) M.Eschrig,J.Kopu,J.C.Cuevas andG.Sch¨on: Phys.Rev. Lett. 90(2003)137003. 10 J.Phys.Soc.Jpn. FullPaper AuthorName 30) Y. Tanaka and A. A. Golubov: Phys. Rev. Lett. 98 (2007) 132502. 037003. 49) H.Kusunose,Y.FuseyaandK.Miyake:arXiv:1011.4712,sub- 31) Y.Asano,Y.TanakaandA.A.Golubov:Phys.Rev.Lett.98 mittedtoJ.Phys.Soc.Jpn.. (2007) 107002. 50) A.A.Abrikosov,L.P.GorkovandI.E.Dzyaloshinski:Methods 32) Y.Tanaka,A.A.Golubov,S.KashiwayaandM.Ueda:Phys. of Quantum Field Theory inStatisticalPhysics(Dover,New Rev.Lett.99(2007) 037005. York,1975). 33) V. Braude and Y. V. Nazarov: Phys. Rev. Lett. 98 (2007) 51) E.Abrahams,A.Balatsky,D.J.ScalapinoandJ.R.Scrieffer: 077003. Phys.Rev.B52(1995)1271. 34) T.Yokoyama,Y.TanakaandA.A.Golubov:Phys.Rev.B75 52) P. Monthoux and G. G. Lonzarich: Phys. Rev. B 59 (1999) (2007) 134510. 14598. 35) Y.Asano,Y.Tanaka,A.A.GolubovandS.Kashiwaya:Phys. 53) A.J.Leggett: PhysicaFennica8(1973) 125. Rev.Lett.99(2007) 067005. 54) A.J.Leggett: J.Stat.Phys.,93(1998) 927. 36) Y.Tanaka, Y.TanumaandA.A.Golubov: Phys.Rev.B76 55) H.Kusunose,Y.FuseyaandK.Miyake:arXiv:1012.5333,sub- (2007) 054522. mittedtoJ.Phys.Soc.Jpn.. 37) M.Eschrig,T.L¨ofwander,T.Champel,J.C.Cuevas andG. 56) A.J.Leggett: Phys.Rev.140(1965)A1869. Sh¨on:J.LowTemp.Phys.147(2007) 457. 57) C.M.Varma,K.MiyakeandS.Schmitt-Rink:Phys.Rev.Lett. 38) Y.Asano,Y.Sawa,Y.TanakaandA.A.Golubov:Phys.Rev. 57(1986) 626. B76(2007)224525. 58) D.Baeriswyl,C.GrosandT.M.Rice:Phys.Rev.B35(1987) 39) Y.V.Fominov:JETPLetters86(2007) 732. 8391. 40) M.EschrigandT.L¨ofwander:NaturePhys.4(2008) 138. 59) T.Okabe:J.Phys.Soc.Jpn.67(1998) 2792. 41) Y. Tanaka, Y. Asano and A. A. Golubov: Phys. Rev. B 77 60) Y.Fuseya,H.Maebashi,S.YotsuhashiandK.Miyake:J.Phys. (2008) 220504(R). Soc.Jpn.69(2000) 2158. 42) J.Linder,T.Yokoyama,A.SudbøandM.Eschrig:Phys.Rev. 61) K.MiyakeandH.Maebashi:J.Phys.Chem.Solids62(2001) Lett. 102(2009) 107008. 53. 43) A.F.VolkovandK.B.Efetov:Phys.Rev.B81(2010)144522. 62) H.P.Dahal,E.Abrahams,D.Mozyrsky,Y.TanakaandA.V. 44) T.Yokoyama,Y.TanakaandA.A.Golubov:Phys.Rev.B78 Balatsky:NewJ.Phys.11(2009)065005. (2008) 012508. 63) Y.Tanaka,Y.Asano,A.A.GolubovandS.Kashiwaya:Phys. 45) Y.Tanuma,N.Hayashi,Y.TanakaandA.A.Golubav:Phys. Rev.B72(2005) 140503. Rev.Lett.102(2009)117003. 64) L.P.Gorkov:Sov.Phys.JETP7(1958) 505. 46) S.Higashitani,Y.NagatoandK.Nagai:J.LowTemp.Phys. 65) N.N.Bogolubov: Sov.Phys.JETP7(1958) 41. 155(2009)83. 66) G.M.Eliashberg:Sov.Phys.JETP11(1960)696. 47) R.M.Kalas,A.V.BalatskyandD.Mozyrsky:Phys.Rev.B 67) G.M.Eliashberg:Sov.Phys.JETP12(1961)1000. 78(2008) 184513. 68) K.Miyake,S.Schmitt-Rink,andC.M.Varma:Phys.Rev.B 48) D.Solenov,I.MartinandD.Mozyrsky:Phys.Rev.B79(2009) 34(1986) 6554.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.