T HÈSE DE DOCTORAT D ’U P M C E L NIVERSITÉ IERRE ET ARIE URIE Spécialité : Océanographie physique Écoledoctorale: “129-Sciencedel’environnement” réaliséeau Laboratoire d’Océanographie et du Climat présentéepar Casimir de LAVERGNE pourobtenirlegradede: DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Titredelathèse: Eléments du cycle de vie de l’Eau Antarctique de Fond Soutenance prévue le 23/09/16 devantlejurycomposéde: M. DavidMarshall (UniversityofOxford) Rapporteur M. JonasNycander (MISU,Stockholm) Rapporteur Mme PascaleBouruet-Aubertot (UPMC,Paris) Examinateur M. GillesReverdin (LOCEAN,Paris) Examinateur M. BrunoFerron (LPO,Brest) Examinateur M. GurvanMadec (LOCEAN,Paris) Directeurdethèse M. PatriceKlein (Caltech,Pasadena) Co-directeurdethèse Eléments du cycle de vie de l’Eau Antarctique de Fond Résumé : L’Eau Antarctique de Fond constitue la principale masse d’eau océanique par son vol- ume, et nourrit la composante la plus profonde et la plus lente de la circulation océanique. Les processus qui régissent son cycle de vie sont donc clé pour la capacité de stockage de l’océan en carbone et chaleur aux échelles centennales à multi-millénaires. Cette thèse tente de caractériser et quantifier les principaux processus responsables de la destruction (synonyme d’allègement et de remontée) de l’Eau Antarctique de Fond dans l’océan abyssal. A partir d’une estimée issue d’observations de la structure thermohaline de l’océan mondial et de diagnostics fondés sur le budget de densité des eaux profondes, les rôles respectifs du chauffage géothermal, du mélange turbulentpardéferlementd’ondesinternesetdelagéométriedesbassinssontévalués. Ilestmon- tré que la géométrie de l’océan gouverne la structure de la circulation de l’Eau Antarctique de Fond. La contribution du déferlement des ondes internes, bien que mal contrainte, est estimée insuffisante pour maintenir un rythme de destruction de l’Eau Antarctique de Fond comparable à celui de sa formation. Le chauffage géothermal a quant à lui un rôle important pour la remontée deseauxrecouvrantunelargesurfacedulitocéanique. Lesrésultatssuggèrentuneréévaluationde l’importancedumélangeauniveaudesdétroitsetseuilsprofonds,maisaussidurôlefondamental delaformedesbassins,pourl’allègementetletransportdeseauxabyssales. Mots clés : Masses d’eau, Océan abyssal, Circulation thermohaline, Chauffage géothermal, Mélange,Ondesinternes,Turbulence,Paramétrisation,Modélisation,NEMO On the lifecycle of Antarctic Bottom Water Abstract : Antarctic Bottom Water is the most voluminous water mass of the World Ocean, and it feeds the deepest and slowest component of ocean circulation. The processes that govern its lifecyclearethereforekeytotheocean’scarbonandheatstoragecapacityoncentennialtomulti- millennialtimescales. Thisthesisaimsatcharacterizingandquantifyingprocessesresponsiblefor thedestruction(synonymousoflighteningandupwelling)ofAntarcticBottomWaterintheabyssal ocean. Usinganobservationalestimateoftheglobaloceanthermohalinestructureanddiagnostics based on the density budget of deep waters, we explore the roles of basin geometry, geothermal heatingandmixingbybreakinginternalwavesfortheabyssalcirculation. Weshowthattheshape of ocean basins largely controls the structure of abyssal upwelling. The contribution of mixing powered by breaking internal waves, though poorly constrained, is estimated to be insufficient to destroyAntarcticBottomWaterataratecomparabletothatofitsformation. Geothermalheating plays an important role for the upwelling of waters covering large seafloor areas. The results suggestareappraisaloftheroleofmixingindeepstraitsandsills,butalsoofthefundamentalrole ofbasingeometry,forthelighteningandtransportofabyssalwaters. Keywords:Watermasses,Abyssalocean,Thermohalinecirculation,Geothermalheating,Mixing, Internalwaves,Turbulence,Parameterization,Modelling,NEMO Contents Introduction 1 Physicalproblem 7 I OntheconsumptionofAntarcticBottomWaterintheabyssalocean 37 II Theimpactofavariablemixingefficiencyontheabyssaloverturning 67 III Geometriccontrolsofthemeridionaloverturning 91 IV Observingandmodellingthebottomboundarylayer: challenges 109 V Towardsaparameterizationofinternalwave-drivenmixing 119 V.1 Two-dimensionalmappingofinternaltideenergysinks . . . . . . . . . . . . 121 V.2 Parameterizinginternalwave-drivenmixing . . . . . . . . . . . . . . . . . . 127 Conclusionsandperspectives 145 Appendix 159 Introduction Earth’s climate system is composed of different interconnected media: the atmosphere, theocean,seaice,landice,theseabed(bothsedimentsandbedrock)andcontinentalsurfaces (soils,vegetation,riversandlakes). Climatedynamicsaredrivenbyexchangesofenergy,mo- mentumandmatterbetweenthesemediaandwiththeouterspace. Describing,understanding andmodellingclimatethereforehingesuponcharacterizingandquantifyingtheseexchanges. Centraltotheclimatesystemistheatmosphere,whichregulatesradiativeexchangeswith the outer space, shuffles heat and freshwater around the globe and across media, and largely sets surface properties of continents and oceans. But the atmosphere’s ability to exchange and redistribute properties over large spatial and short temporal scales goes at the expense of its storage capacity and memory, both of which are limited relative to other media (Fig.1). Instead, storage and memory functions are largely attributes of the other main fluid of the climatesystem: theocean. Twodefiningpropertiesoftheoceandistinguishitfromtheoverlyingatmosphere: itsther- malinertiaanditsopacity. Becausetheoceanisnearly300timesheavierthantheatmosphere, and because it costs four times more energy to warm by one Celsius degree a given mass of waterrelativetothesamemassofair, thetotalheatcapacityoftheoceanisover1,000times that of the atmosphere. Its total heat capacity is also much larger than that of Earth’s frozen water,whosevolumeisonlyabout2%thatoftheocean. Hence,theoceanistheprimaryheat reservoiroftheclimatesystem. 1 INTRODUCTION #& !" !"#% Deep ocean! Ocean mixed layer! #$ !" @AB<!"## Atmosphere! Polar ice sheets! :69 Soils and vegetation! 2>.3!"#! ? 2 > 236 Mountain glaciers! =8!"#" !* !" Sea ice! !) Rivers and lakes! !" !( !" −# −! " ! # $ % & ' !" !" !" !" !" !" !" !" !" +,-./.0123.4563.7869:821;< Figure1: Typicalequilibrationtimeandtotalheatcapacityofvariouscomponentsoftheclimatesys- tem. The total heat capacity [J/K] is the amount of energy required to raise by one Celsius degree the mean temperature of each component. The equilibration timescale is the typical duration for a component to adjust to modified boundary conditions. Values from McGuffie and Henderson-Sellers (2014). Yet most of this reservoir is not readily accessible. Indeed, whereas solar radiation is abletopenetratethroughouttheatmosphere,theopacityofseawaterpreventsitfromreaching ocean depths greater than 200 meters. As a result, the incoming solar energy warms pref- erentially the land and ocean surface. This surface warming is a destabilizing force for the atmosphere but a stabilizing force for the ocean, because gravity needs warmer, lighter fluid torestabovecolder,denserfluid. Solarheatingthusstimulatesarapidverticalrearrangement of atmospheric properties, but inhibits this vertical redistribution and the downward pene- tration of atmospheric forcing in the ocean. The ocean’s opacity thus contributes to isolate the large deep ocean reservoir from the remainder of the climate system. Together with the ocean’stremendousthermalinertia,theinefficientoceanicredistributionexplainswhyitmay 2
Description: