ebook img

On the lattice of [pi]°1 classes PDF

73 Pages·2001·3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the lattice of [pi]°1 classes

ONTHELATTICEOFn°CLASSES By FARZANRIAZATI ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2001 Copyright2001 by FarzanRiazati ACKNOWLEDGMENTS Iwishtoexpressmygratitudetomyadvisor,ProfessorDouglasCenzer. Ialso wishtothankAndreNies. m TABLEOFCONTENTS Page ACKNOWLEDGMENTS iii LISTOFTABLES v ABSTRACT vi CHAPTERS 1 PRELIMINARIES 1 1.1 TerminologyandNotation 1 1.2 ExistenceandExamples 5 1.3 BasicProperties 8 1.4 AppearancesandApplications 11 1.5 StoneRepresentationandComputableBooleanAlgebras . . 15 2 LOCALPROPERTIESOFH$CLASSES 17 2.1 PostProgramandtheLatticeCu 17 2.2 PrincipalIdealsofn°Classes 17 2.3 TheWorldofSimpleU°Classes 21 2.3.1 MinimalExtensionsof11°Classes 22 2.3.2 Quasiminimal11°Classes 30 2.3.3 FullyComplementedPrincipalIdeals 33 2.3.4 WhereThereAreNoComplements;Nerode'sTheorem 38 2.4 PrincipalCoveringFilters 41 2.5 TheSplittingProperty 44 3 GLOBALPROPERTIESOFn°CLASSES 48 3.1 Definability,andAutomorphisms 48 3.2 HomogeneityandEmbeddings 51 REFERENCES 58 BIOGRAPHICALSKETCH 62 IV LISTOFTABLES Table page 2.1 InitialprincipalidealsofC^ 18 2.2 PrincipalfiltersofE* 22 2.3 StructureofprincipalidealsofC^ 32 AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ONTHELATTICEOFIT?CLASSES By FarzanRiazati August2001 Chairman: ProfessorDouglasCenzer MajorDepartment: Mathematics Effectivelyclosedsets,asmodeledby11°classes,haveplayedanimportantrole incomputabilitytheorygoingbacktotheKleenebasistheorem[1955]. Manyofthe fundamentalresultsabout11°classesandtheirmemberswereestablishedbyJockusch andSoarein[1972]. Cenzeret. al[1999]isashortcourseon11°classes.The11°classes occurnaturallyintheapplicationofcomputabilitytomanyareasofmathematics. Cenzerand Remmel[1998] isarecentsurveywithmanyexamples. Minimaland thin 11° classes wereinvestigated by Cenzer et al. [1993]. This dissertation is a comparativestudyofthelattice£nof11°classeswiththelatticeSofcomputably enumerable (c.e.) sets. Thework in this thesis concerns thelatticeof11° classes (modulofinitedifference),comparedandcontrastedwiththelatticeofc.e.sets. The notion ofaminimalextension Q ofaclass P is definedto meanthat thereisno classstrictlybetweenPand Q. Previouslyonlytrivialexampleswereknown, but herewegivegeneralconditionsunderwhichPhasaminimalextension. Recently initialsegmentsofthelattice(thatis,subsetsofagivenset)havebeenstudied. It vi wasshown,incontrasttothelatticeofc.e.sets,thatafinitelatticecanberealized whichisnotaBooleanalgebra;inparticular,anyfiniteordinalcanberealized. This thesisannouncesanimprovmentoftheseresultsbyconstructinga11°classPsuch thatthefamilyofsubclassesofPisisomorphictothesmallestinfiniteordinal(u). Alsostudiedaredefinabilityofvariousproperties(suchasfiniteness)andinvariance underautomorphism. vn CHAPTER 1 PRELIMINARIES 1.1 TerminologyandNotation Webeginwithsomebasicdefinitions. Letu={0,1,2,...}denotethesetofnatural numbers. Foranyset S, £<u; denotesthesetoffinitestrings (cr(0),...,a(n—1)) ofelementsfromS. And S^ denotesthesetofcountablyinfinitesequencesfrom E. Forastringa=(c(0),0"(l)i •>a{n~1))? ||°"|| denotesthelengthnof<r. The emptystringhaslength andisdenotedby0. Astringofn manyA;'sisdenoted bykn. Form< |J<r|j,cr[misthestring(cr(0),...,cr(m—1)). Wesayaisaninitial segmentofr(writtena-<r)ifcr=rfraforsomem. Giventwostrings<randr, theconcatenationof<7and r, denotedbycr~r (orsometimesjust o-t), isdefined by a""t = (<t(0),<t(1),...,<r(m—l),r(0),r(l),...,r(n—1)), where ||cr|| = mand ||r(| = n. Wewritea~aforcr~(a)and a^afor (a)~<r. Foranyx G £"andany finiten,theinitialsegmentx\nofxis(x(0),...,x(n—1)). ForastringaG £<u/ andanya;€ S1^,wewritecr-<xifcr=a;\nforsomen. ForanyaG Sraandany I 6 £*",wehavea~x= (er(0),...,a(n—1),x(0),x(l),...). Givenstringsaandr oflengthn,welet<x(g)r=(cr(0),r(0),...,a{n—1),r(n—1));if||<r||=n+1 and ||t|| =n,thena(g)r= (a\n®r)"cr(n). Giventwoelementsx,yof£•*,x®y=z wherez(2m)=x(m)andz(2m+1)=y(m). Weneedtocodeastringa£u><a;asaninteger. Let [m,n]denotethestandard pairingfunction,thatmapsthepairofnaturalnumbersm,n6wto l(m+")+3m+"l_ ForeachaGuk,welet<a>=[<a\(k-l)>,a(k)},where<>=0,and<m>=m foreachmGu>. A tree ToverS<w isasetoffinitestringsfrom£<w whichcontainstheempty string andwhichisclosedunderinitialsegments.Wesaythatr£Tisanimmediate successorofastringa £ Tifr = <r^aforsomea £ £. Sinceouralphabetswill always becountableandeffective,wemayassumethat T C lu<uj. Suchatreeis saidtobeu-branchingsinceeachnodehaspotentiallyacountablyinfinitenumberof immediatesuccessors. WeshallidentifyTwiththeset{<a>:a£T}. Thuswesay thatTiscomputable,computablyenumerable,etc.if{<a>:a£T}iscomputable, computablyenumerable,etc. Foragivenfunctiong:u<UJ4w,atreeTCw<c"is saidtobeg-boundedifforeverya£w"^andeveryi£o>,if<r~z£T,thent<g{o). Thus,forexample,ifg(&)=2forallcr,thenag-boundedtreeissimplyabinarytree. TissaidtobefinitebranchingifTisg-boundedforsomegthatis,ifeachnodeof Thasfinitelymanyimmediatesuccessors. Observethatthisisequivalenttotheexistenceofaboundingfunctionhsuchthat <r(t)<h(i)foralla£Tandalli< \\a\\. Tissaidtobecomputablybounded(c.b.) ifitisg-boundedforsomecomputablefunctiong. Asabove,thisisequivalenttothe existenceofacomputableboundingfunctionhsuchthata(i) <h(i)foralla£T and alli < \\a\\. IfTis computable,thenthisis alsoequivalenttotheexistence ofapartialcomputablefunction/suchthat, foranya £ T, ahasat most f(a) immediatesuccessorsinT. AcomputabletreeTissaidtobehighlycomputableifit isalsocomputablebounded. ForanytreeT,aninfinitepaththroughTisasequence (.t(0),x(1),...)suchthatx\n6Tforalln. Welet[T]denotethesetofinfinitepaths throughT. ItisimportanttonoteherethatweconsideraIT?settosignifyasubsetofwand ingenerala11°,S°orA°setisasubsetofuwiththeappropriateformofdefinability inthearithmeticalhierarchy[23]. Wedenotebycard(A)thecardinalityofthesetor classA. GiventwotreesSandTcontainedinlo<uj,weletS®T={a®r:a£5,r£ Tsuchthat ||r||<\\a\\<\\r\\+1}. FortwoIT classesP=[S]andQ=[T],define theamalgamationofPandQ,P<g>Q,byP<g>Q={x$y:xGPAyGQ}- Thenit isclearthatP®Q=[S®T]. Moregenerally,definetheinfiniteamalgamation0,-S; tobethosestringsasuchthatforeachi,(er([i,0]),cr([i,1]),...,cr([i,j]))G£#,where j isthemaximumsuchthat [i,j] < \\a\\. Then [®j5,-] isisomorphictothedirect productII;[5,-]. Wealsowishtoconsiderthefollowingnotionofdisjointunion. Giventwotrees SandTcontainedinu<UJ,S T={0}U{<Ta:<rGS}U{l~r:rGP}. Fortwo n°classesP=[S]andQ=[T],P9Q={O^x:xGPU{l"y:yGQ}. Itiseasy toseethat[S®T]=[S]@[T]. ClearlyS©TisboundedifandonlyifbothSandP areboundedandsimilarlyfortheothernotionsofboundedness. Moregenerally,the infinitedisjointunionQ)iQimaybedefinedtobe{(i)*y:y(zQi]forunbounded classes Q,. AnodeaofthetreePCco<UJissaidtobe extendible ifthereissome x G [P]suchthata-<x. ThesetofextendiblenodesofTisdenotedbyExt(T). Ext(T)maybeviewedastheminimaltreeSsuchthat [S]=[P]. AnodeaGPis saidtobeadeadendifa£Ext(T),thatis,ifahasnoinfiniteextensionin[P]. Weareinterestedin11°classesinthespaces {0,l}w(theCantorspace) anduiw (theBairespace). Thetopologyonlouisdeterminedbyabasisofintervals1(a)= {x€ w*":o-<a?}. Noticethateachintervalisalsoaclosedsetandisthereforesaid tobeaclopenset. MoreovertheclopensubsetsoftheCantorspacearejustthefinite unionsofintervals. TheCantor-BendixsonderivativeD(P) ofacompactsubset Pof{0,l}"isthe setofnonisolatedpointsofP. ThusapointxGPisnotinD(P)ifandonlyifthere issomeopensetUcontainingxwhichcontainsnootherpointofP. Equivalently, x^D(P)ifandonlyifthereissomeclosedsetUsuchthatUPIP={x}. Another usefulobservationisthat,foranycompactset P, D(P) isemptyifandonlyifP isfinite. TheiteratedCantor-BendixsonderivativeDa(P) ofaclosedset P C X is defined for all ordinals a by thefollowing transfinite induction. D°(P) = P;

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.