ebook img

ON THE KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS OF CANONICAL ALGEBRAIC PDF

21 Pages·1999·0.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ON THE KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS OF CANONICAL ALGEBRAIC

ON THE KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS OF CANONICAL ALGEBRAIC CURVES J C EILBECK, V Z ENOLSKII, AND D V LEYKIN 1. INTRODUCTION The discovery of classical and quantum completely integrable systems ledtoanincreaseininterestinthetheoryofAbelianfunctionsintheoretical physicsandappliedmathematics. Thisareawasconsideredtraditionallyas afieldofpuremathematics. Thisnewtrendmakesitnecessarytoreconsider classicalresultsintheareafromthepointofviewofmodernapplications. In this paper we consider an arbitrary algebraic curveV of genus g and constructthefieldofmeromorphicfunctionsonitsJacobivarietyJac V in termsofKleinian -functions, 2 u ln u i j 1 g ij u u i j wherethevectoru Jac V and istheKleinian -function. Theeffective construction of the -function plays the principal role in our approach. It is defined on the universal space of Jacobians, which is the fibration with the base given by the space of moduli, M V of the curveV of dimension d 3g 3 and a fibre generated by Jacobi variety Jac V . The Kleinian functionrepresentsanaturalgeneralizationoftheWeierstrassellipticfunc- tionto the caseof anarbitraryalgebraiccurve, andhas thefollowingprop- erties: The -function is automorphic with respect to the action of the sym- plecticgroupSp 2g . The -function is an entire function on the universal space and is ex- pandedin apowerserieswhoseentriesaremonomials u 1 u g 1 d 1 g 1 d whereu Jac V , M V , g, d, 0 . TheresearchdescribedinthispublicationwassupportedinpartbygrantsfromtheCivil ResearchDevelopmentFoundation,CRDFgrantno. UM1-325,theINTASgrantno. 96- 770 and the Engineering and Physical Sciences Research Committee, grant GR/L06119 (JCEandVZE). 1 2 JCEILBECK,VZENOLSKII,ANDDVLEYKIN The addition formula for the function inherits the form of the addi- tiontheoremfortheWeierstrass functionandiswrittenas u v u v polynomialin u 2 v 2 i j ThisconstructionbeganwithWeierstrass[22,23]andKlein[13]andwas welldocumentedin[1,2];recentlyB.M.Buchstaberandtwooftheauthors reviewedthehyperellipticcase[4,5,6]. Theprincipalresultof[4,5]isthediscoveryofa g 2 g 2 matrix H ofarank 4whoseentriesare functionsandthemoduliofthecurveV andwhichdictatesallthetheory: the4 4minorsgivetheembeddingofthe Kummer variety Kum V in the projective space, 3 3 minors describe in the same way the Jacobi variety Jac V , and the associated KdV hierarchy is constructed in terms of 2 2 minors of the matrix H. The hyperelliptic Kleinian functions were also developed in [16, 10] for a description of the latticeKdVsystem. Thepresentpaperisaimedatdevelopingtheanalogousmatrixrealization of the Kleinianconstructionof Abelian functionsfor an arbitraryalgebraic curve, including the case of a singular curve. The paper is based on the recentresultsof[7],wheretheconstructionoftheKleinian functionswas given for a non-hyperellipticcurve, and contains a set of explicit formulae torealizetheapproachof[7]. The paper starts from an example of a hyperelliptic curve of genus two for which we give the basic formulaeof the theory and their application to completely integrable systems. We concentrate further on the construction of the principle objects – Kleinian functions for a wide class of alge- braic curves (the so called canonical curves). With this purpose we derive thecanonicalabeliandifferentialsusingtheWeierstrassgaptheoremasthe main working tool. We obtain as the result the Kleinian formula (3.28), which is a generating one for deriving the complete set relations between functions and their derivatives. The principle result of the paper is the explicitsolution of the Jacobi inversionproblem, which is an alternativeto that given by M.No¨ther [17]. We consider as a main example the case of a non singular trigonal curve, for which we give the complete set of formu- lae, analogous to those given in [1, 2] for hyperelliptic curve. The paper is completed by a short discussion on the application of our approach to completely integrable equations and of the further perspectives of the de- velopmentofthetheory. KLEINIANCONSTRUCTIONOFABELIANFUNCTIONS 3 2. KLEINIAN FUNCTIONS OF THE GENUS TWO HYPERELLIPTIC CURVE Inthissectionweconsiderthesimplestexample-theKleinianfunctions of an algebraic curve of genus two, and demonstrate how these functions workin completelyintegrablesystems. WeconsidertheRiemannsurfaceofacurveV x y ofgenusg 2, (2.1) y2 4x5 x4 x2 x2 x 4 3 2 1 0 5 4 x a a a k i j k 1 equippedwithahomologybasis ; H V . 1 2 1 2 1 Introduce the canonical basis in the space of holomorphic differentials duT du du 1 V asfollows 1 2 dx xdx du du 1 2 y y TheassociatedcanonicalmeromorphicdifferentialsofthesecondkinddrT dr dr havetheform 1 2 x 2 x2 12x3 x2 3 4 (2.2) dr dx dr dx 1 2 4y y The2 2matricesoftheirperiods, 2 du 2 du l l k kl 12 k kl 12 2 dr 2 dr l l k kl 12 k kl 12 satisfytheequations, ı T T 0 T T 1 T T 0 2 2 which generalizes the Legendre relations between complete elliptic inte- gralsto thecaseg 2. Thefundamental functioninthiscaseisanaturalgeneralizationofthe Weierstrasselliptic functionandisdefinedasfollows u det 2 4 a a 1 i j 5 i j exp uT 2 1u 2 1u 1 4 JCEILBECK,VZENOLSKII,ANDDVLEYKIN where 8 1and v isthe functionwithanoddcharacteristic 1 2 , 1 2 v expı m T m 2 v T m m 2 Wedenote 2 2 u ln u u ln u 11 u2 12 u u 1 1 2 2 u ln u 22 u2 2 The multi-index symbols etc. are defined as logarithmic derivatives i jk bythevariableu u u onthecorrespondingindicesi j k etc. i j k TheequationsoftheJacobiinversionproblem, x x 1 2 u du du 1 1 1 a a 1 2 x x 1 2 u du du 2 2 2 a a 1 2 areequivalentto analgebraicequation (2.3) x u x2 u x u 0 22 12 thatis,thepair x x isthepairofrootsof(2.3). So wehave 1 2 (2.4) u x x u x x 22 1 2 12 1 2 Thecorrespondingy is expressedas i (2.5) y u x u i 1 2 i 222 i 122 Thereis the followingexpressionfor the function u in terms of x x 11 1 2 andy y : 1 2 F x x 2y y 1 2 1 2 (2.6) u 11 4 x x 2 1 2 where 2 (2.7) F x x xrxr 2 x x 1 2 1 2 2r 2r 1 1 2 r 0 All the possible pairwise productsof the functions are expressed as ijk followsin terms of and constants of the defining equation 22 12 11 s KLEINIANCONSTRUCTIONOFABELIANFUNCTIONS 5 (2.1). Wegivehereonlybasisequations 2 4 4 3 4 2 222 11 3 22 22 12 22 4 22 2 1 1 2 2 2 222 122 2 1 12 11 22 2 3 12 4 2 12 22 4 12 22 2 4 2 4 2 122 0 11 12 4 12 22 12 All such expressions may be rewritten in the form of an extended cubic relationasfollows. Forarbitraryl k 4 thefollowingformulaisvalid[2] 1 H l (2.8) lT Tk det 4 kT 0 where T andH isthe4 4matrix: 222 221 211 111 1 2 2 0 2 1 11 12 1 4 1 2 2 H 2 1 2 11 2 3 12 22 2 1 2 4 2 11 2 3 12 4 22 2 2 2 0 12 22 The vector satisfies the equation H 0, and so the functions 22 12 and arerelatedbytheequation 11 (2.9) detH 0 Theequation(2.9)definesthequarticKummersurface in 3 [12]. The functionsareexpressedasfollows ijkl 1 (2.10) 6 2 4 2222 22 2 3 4 22 12 (2.11) 6 2 2221 22 12 4 12 11 1 (2.12) 2 4 2 2211 22 11 12 2 3 12 1 (2.13) 6 2111 12 11 2 12 1 22 0 2 1 1 (2.14) 6 2 3 1111 11 0 22 1 12 2 11 2 0 4 8 1 3 These equations can be identified with completely integrable partial dif- ferential equations and dynamical systems, which are solved in terms of Abelianfunctionsofhyperellipticcurveofgenustwo. TodemonstratethisstatementweconsiderthestationaryVeselov-Novikov equation, u u 3 vu 3 wu 0 xxx yyy x y (2.15) w u v u x y y x 6 JCEILBECK,VZENOLSKII,ANDDVLEYKIN where 0areconstants. Thenthefollowingpropositionisvalid Proposition2.1. The stationary flow of the Veselov-Novikov equation is satisfiedifweset u x y 2 x y 22 1 (2.16) v x y 2 x y 12 4 3 1 w x y 2 x y 11 2 3 Proof. A straightforward substitution of (2.16) into (2.15) and use of the relations(2.11),(2.13)andH 0. Because the Kleinian functions are the coordinates of the 22 12 11 Kummer surface, the stationary Veselov-Novikov equation, being associ- atedwithahyperellipticcurveofgenustwo,describestheKummersurface. ThelinkbetweenthestationaryVeselov-NovikovequationandtheKummer surfacewasrecentlydiscussedbyFerapontov[11]. It can be also shown, that the equations (2.10)-(2.14) describe hierar- chiesofKdVand”sine-Gordon”equationsassociatedwiththehyperelliptic curveofgenustwo. In what follows we develop the Kleinian construction of Abelian func- tionsforacertainclassofnon-hyperellipticalgebraiccurves. 3. KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS 3.1. Thecurve. LetV beanalgebraiccurvegivenbyanirreducibleequa- tion n (3.1) f x y 0 f x y a x yn a x yn k 0 k k 1 where a x are polynomials in x and a x and a x , k 1 n have no k 0 k commonfactors. The curveis called singularif a x 1and nonsingular 0 otherwise. In other words, a singular curve is the curve which has points y x . Definition3.1. The orderN of an arbitraryrationalfunction x y on the curveV is the number N of common solutions x y x y of the 1 1 N N equations (3.2) f x y 0 x y 0 We shall call the positive integers n s orders of the curve V because, clearlyxisa functionofordernandyisa functionoforders. The definitions given above permit us to formulate the Weierstrass gap theorem,whichservesasaprincipalworkingtoolinwhatfollows. KLEINIANCONSTRUCTIONOFABELIANFUNCTIONS 7 Theorem 3.1(WeierstrassLu¨ckensatz). ForV thereexistsanumbergof positive integers n n (“gap sequence”) such that for each number n 1 g i theequations (3.3) f x y 0 x y 0 ord x y n V i havenosolutionsand all exceptionalintegers(“gaps”)belongtotheinterval 1 2g 1 0 n n n 2g 1 2 g if the numbers n and n – are permitted (“non-gaps”) then the num- i j bers pn qn ,where p q arealsonon-gaps. i j Thefollowingcorollariesarevalid Corollary3.1.1. Considerthegapsequencewiththenumberofgapsg. Let nbethelowestfromthenon gaps. Denotebys,i 1 n 1thelowest i non-gapssuchthats modn i n. Thenthefollowingequalityisvalid i n 1 s i (3.4) g n i 1 Corollary3.1.2. Suppose that the condition of Corollary 3.1.1 are satis- fied. Lets min s s . Thenthefollowingequalityisvalid 1 n 1 n 1 s 1 (3.5) g where 0 2 The Weierstrass gap theorem introduced two important positiveintegers gand whicharetheprincipalgeometricalinvariantsofthecurve. Definition3.2. The nonnegativeinteger is the numberof multiple points ofthecurve,whichcannotexceed n 1 s 1 2. Thenumberofgapsg, which is the difference between the maximal number of multiple points of a curve of orders n s and number of multiple points, which it actually has,is calledthegenus1 ofthecurve. Todescribethenumber analyticallywecomputethediscriminant(iny) D x ofthecurve(3.1), y n 1 (3.6) D x d i x r x y i i 1 where 2. Zerosofd x i 1 n 1,where i j d x x i ij j ij j 1 1Inclassicalliterature–Geschlechtordeficiency 8 JCEILBECK,VZENOLSKII,ANDDVLEYKIN are multiple points, whence zeros of the polynomial r x are the branching pointsofthecurve. Letuswritethenumber n 1 (3.7) 1 i i i 1 where we denote 0, as number of multiple points. The curve is callednon-degenerateif 0anddegenerateotherwise. IntroduceonV the structure of one-dimensionalcompact complexman- ifold – the Riemann surface of algebraic curve by introducing a local parametrization of the point y x y x in the vicinity of a point a b ,where is thelocalcoordinate: a b if a b is anregularpoint a b m if a b is anbranchingpoint 1 1 if a b isbranching y x s n pointatinfinity a m b if a b is anmultiplepoint ofmultiplicitym We will employ further the same notation for the plane curve and the Rie- mannsurface–V. Combiningnotionsintroducedso far,wecomeupwith Definition3.3. ThealgebraiccurveV oforders n s iscallednonsingular non-degeneratecanonicaliffa x 1, 0and n s areco-prime. 0 It is clearly that the Weierstrass gap sequence of the nonsingular non- degenerate canonical curveV of orders n s is generated by two coprime integersnands. Alternatively,theWeierstrassgapsequenceofanonsingu- lardegeneratecanonicalcurveV oforders n s isgeneratedbytheintegers nands s s ,where1 k n 1. 1 k The canonical algebraic curve has a branching point at infinity, where the coordinates x and y are given as x 1 y 1 2 n s n s where is the local coordinate. The polynomial f x y defining the canonicalcurvecanbewrittenin theform f x y yn xs termsoflowerorder Letusfixintheformofapropositiontheimportantpropertyofthenonsin- gularcurve Proposition3.2. The order of a monomial xPyQ, P Q on nonsingular non-degeneratecurveof orders n s equals (3.8) ord xPyQ nP sQ V KLEINIANCONSTRUCTIONOFABELIANFUNCTIONS 9 Example3.1. Consider all canonical curves of genus g 4 and construct theassociatedWeierstrassgapsequences. Nonsingularcanonicalhyperellipticcurve 0 1 2 3 4 5 6 7 8 9 Thesequenceis generatedbytheorders2and9. Nonsingularcanonicaltrigonalcurve 0 1 2 3 4 5 6 7 8 9 Thesequenceis generatedbytheorders3and5. Singularcanonicaltrigonalcurve 0 1 2 3 4 5 6 7 8 Thesequenceis generatedbytheorders3,7and8. Singularcanonicalfour-sheetedcovering 0 1 2 3 4 5 6 7 8 9 Thesequenceis generatedbytheorders4,5and6. 3.2. The differentials and integrals. All the construction is based on the explicitrealizationofthefundamentalsecondorder2–differential. Definition3.4. The 2–differential d y x;w z on V V is called a fun- damental second order 2-differential if it is symmetric d x y;z w d z w;x y and has the only pole of the second order along the diagonal, x zin thevicinityofwhichitcan begivenas d d (3.9) d y x;w z O 1 d d 2 where – are local coordinates of the points x and z respectively. We shalllookforarealizationofd y x;w z intheform[1] F y x;w z dxdz (3.10) d y x;w z x z 2f x y f z w y w whereF y x;w z isapolynomialofitsvariables. Holomorphic differentials can be represented locally at every point X Y V in the form du h d , where h – is the holomorphic func- tionand –isthelocalparameterinthevicinityofthepoint X Y . Forthe algebraic curve of genus g there exist exactly g independent holomorphic differentials,whichcanbewrittenintheform xPiyQidx (3.11) du i 1 g i f x y y 10 JCEILBECK,VZENOLSKII,ANDDVLEYKIN whereord xPiyQi,i 1 gareexactlygfirstnon-gapsoftheWeierstrass V gapsequence. Introducetheg-vector (3.12) T i j 1 g whose components xPiyQi are ordered by increasing order of the i j monomials: 1 x 1 00 2 10 Definition3.5. Let x be a polynomial in x of order ord x n and x F x polynomialsofordersk,suchthattheequality k x z n zn kF x k x z k 0 is valid. Then Dk z F x is the umbral derivative of order k of the z k polynomial z . Definition3.6. Therationalfunction x y onthenonsingularcurveV is called an entire rationalfunction,if x y iff x . Entire rational functionsgeneratearing,whichwe denoteby V . Let x y T 1 x y x y 1 n 1 beabasisin V ,where Dn if x y y (3.13) x y i 0 n 1 i d x i where Dk – is the umbral derivativein y of order k, and f x y is the poly- y nomialdefiningthecurve. Thenit followsfromthedefinitionoftheumbralderivativeandtheexis- tenceofsuchfunctions (3.14) x y T x y x y x y 0 1 n 1 that f x Y f x y (3.15) x y T x Y Y y Thefunctions have,clearly,theform i x y d x yn i 1 i 0 n 1 i i

Description:
d 3g 3 and a fibre generated by Jacobi variety Jac V . The Kleinian function represents a natural generalization of the Weierstrass elliptic func-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.