ebook img

On the kinematic evolution of young local associations and the Sco-Cen complex PDF

0.76 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the kinematic evolution of young local associations and the Sco-Cen complex

Astronomy&Astrophysicsmanuscriptno.paper (cid:13)c ESO2008 February2,2008 On the kinematic evolution of young local associations and the Sco-Cen complex D.Ferna´ndez1,2,⋆,F.Figueras1,andJ.Torra1 1 Departamentd’AstronomiaiMeteorologia,IEEC-UniversitatdeBarcelona,Av.Diagonal647,08028Barcelona,Spain 2 ObservatoriAstrono`micdelMontsec,ConsorcidelMontsec,Plac¸aMajor1,25691A`ger(Lleida),Spain 8 0 Received26April2007/Accepted13December2007 0 2 ABSTRACT n a Context.Over thelast decade, several groups of young (mainlylow-mass) starshavebeen discovered in thesolar neighbourhood J (closer than ∼100 pc), thanks to cross-correlation between X-ray, optical spectroscopy and kinematic data. These young local as- sociations–includinganimportantfractionwhosemembersareHipparcosstars–offerinsightsintothestarformationprocessin 3 low-densityenvironments,shedlightonthesubstellardomain,andcouldhaveplayedanimportantroleintherecenthistoryofthe localinterstellarmedium. ] h Aims.Tostudythekinematicevolutionofyounglocalassociationsandtheirrelationtootheryoungstellargroupsandstructuresin p thelocalinterstellarmedium,thuscastingnewlightonrecentstarformationprocessesinthesolarneighbourhood. - Methods.Wecompiledthedatapublishedintheliteratureforyounglocalassociations.UsingarealisticGalacticpotentialweinte- o gratedtheorbitsfortheseassociationsandtheSco-Cencomplexbackintime. r Results.Combiningthesedatawiththespatialstructureof theLocalBubbleand thespiral structureoftheGalaxy, wepropose a t s recenthistoryofstarformationinthesolarneighbourhood.WesuggestthatboththeSco-Cencomplexandyounglocalassociations a originatedasaresultoftheimpactoftheinnerspiralarmshockwaveagainstagiantmolecularcloud.Thecoreofthegiantmolecular [ cloudformedtheSco-Cencomplex,andsomesmallcloudletsinahaloaroundthegiantmolecularcloudformedyounglocalassoci- ationsseveralmillionyearslater.Wealsoproposeasupernovainyounglocalassociationsafewmillionyearsagoasthemostlikely 1 candidatetohavereheatedtheLocalBubbletoitspresenttemperature. v 5 Keywords.Galaxy:kinematicsanddynamics–Galaxy:solarneighbourhood –Galaxy:openclustersandassociations:general– 0 Stars:kinematics–Stars:formation–ISM:individualobjects:LocalBubble 6 0 . 1 1. Introduction (ISM)filledbyanX-rayemittingplasma,whichbecameknown 0 astheLocalBubble(LB).ThelaunchoftheROSATsatellitein 8 Thefirstmovinggroupsofstarswerediscoveredearlyoninthe 1990allowedtheLBtobestudiedinmoredetail.Theopeningof 0 history of Galactic dynamics. As early as 1869, R.A. Proctor theX-raywindowintheskyandobservationsofstarsbelonging : v publishedaworkinwhichheidentifiedagroupofstarsaround to clusters with known ages also led to the realisation that X- i the Hyades open cluster that was moving together through the rayemissionpersistsinyoungstarsforaperiodoftheorderof X Galaxy. He also found another 5 comoving stars in the Ursa 100Myr.Animportantfractionoftheseyoung,X-rayemitting ar Majorconstellation.Inthe1960s,O.J.Eggensuggestedtheex- stars are T Tauri stars. These very young (<∼10 Myr) stars also istence of a Local Association (see for example Eggen 1961, exhibitexcessIRemission(duetothepresenceofnearbyheated 1965a, 1965b) formed by a group of young stars with approx- dustparticlesformingdisksorenvelopes)aswellasUVlineand imately the same spatial velocity (also referredas the Pleiades continuumemissionproducedbytheaccretionofthesurround- moving group). Eggen’s Local Association included the near- inggasanddust.Whenthestarsreachtheageof∼10Myr,both est brightB-type stars, stars in the Pleiades, the α Perseus and IRemissionsandopticalactivitydeclineconsiderably.X-rayac- IC2602 clusters, and the stars belonging to the Sco-Cen com- tivitythenbecomesthebasisforascertainingyouthfulness. plex. However, it was difficult to defend a unitary view of the groupduetothewiderangeofages(<∼100Myr)andwidespread The ROSAT All-Sky Survey (RASS) detected more than spatialdistribution(∼300pc)ofitsconstituentstars. 100,000 X-ray sources at keV energies (Voges et al. 2000). Usingakinematicapproachandsearchingforgroupsofcomov- At the same time as Eggen was studying his Local ingstarsallowsustodeterminewhichofthemareTTauristars. Association, the first X-ray detectors were installed in rockets Thisgreatlyreducesthenumberofcandidatestarsthatmustbe andlaunchedintospace.Thisledtothediscoveryofthediffuse observedspectroscopicallytoconfirmtheiryouthfulness. soft X-ray background (SXRB). The anticorrelation observed between the SXRB and the HI column density was rapidly in- In this way, several young stellar associations have been terpretedasevidenceofalocalcavityintheinterstellarmedium discovered within 100 pc of Earth during the last decade (see Jayawardhana2000, and Zuckerman& Song 2004for a recent Sendoffprintrequeststo:D.Ferna´ndez, review). The stars belonging to these young local associations e-mail:[email protected] (YLA) haveagesrangingfroma few million to severaltensof ⋆ At present at Institut d’Estudis Espacials de Catalunya (IEEC), millions of years. Due to their proximity to us, these stars are c/.GranCapita`2-4,08034Barcelona,Spain. spreadoveralargeareaofthesky(uptoseveralhundredsquare 2 D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex degrees)makingitdifficulttoidentifytheassociationsassingle entities. Furthermore,they are far away frommolecular clouds orstarformingregions(SFR).Thisiswhytheyremainedunno- ticeduntilrecently. Theseyoungstarsofferinsightsintothestarformationpro- cess in low-density environments, which is different from the dominantmechanismobservedindenserSFR.Thediscoveryof theseYLAhasalsocontributedtosubstellarastrophysics,since dozens of dwarfs have been identified in them. For instance, it has been confirmed that isolated brown dwarfs can form in these low-density environments (see for example Webb et al. 1999;Lowranceetal.1999;Chauvinetal.2003).YLAalsopro- videimportantcluesregardingrecentstarformationinthesolar neighbourhood(since they contain the youngest stars near the Sun)anditseffectonthelocalISM. In Sect. 2 of this paperwe reviewcurrentunderstandingof theLBandtheSco-Cencomplexandpresentpublisheddatafor thenearly300starsbelongingtoYLA.InSect.3wepresentour methodfororbitintegration,whichmakesuseofaGalacticpo- Fig.1. 3D volumic density of the Local Bubble from the iso tentialthatincludesthe generalaxisymmetricpotentialand the equivalent width contours for W = 20 mÅ and 50 mÅ (from perturbations due to the Galaxy’s spiral structure and the cen- Lallementetal.2003). tral bar. This leads us to study, in Sect. 4, the origin and evo- lution of the local structures and, in Sect. 5, to propose a sce- narioforrecentstarformationinthesolarneighbourhood.This ofabout70-90pc,theequivalentwidthoftheNaID-linedoublet scenario explainsthe origin of the Sco-Cen complexand YLA increasesfrom<5mÅ to>30mÅ.Theyinterpretthissuddenin- throughthe collision of a parentgiant molecularcloud (GMC) creaseasa neutralgasboundaryofthelocalcavity,i.e.theLB with the Sagittarius-Carina spiral arm. Finally, the conclusions limit. This boundary (see Fig. 1) has some interstellar tunnels ofourworkaresummarisedinSect.6. thatconnecttheLBwithothercavities,suchasLoopIandthe supershellGSH238+00+09.Inthemeridianplane,thestructure is clearly observedto tilt by about20◦(see Fig. 5 in Lallement 2. Thenearestsolarneighbourhood et al. 2003). This tilt is probablythe result of squeezing of the LB by the surroundingstructures belongingto the Gould Belt, Inthissectionweconsiderthreeimportantstructures:theLocal which form a local chimney perpendicular to the plane of the Bubble(itsspatialstructureispresented);theSco-Cen(-Lupus- Belt.(Sfeiretal.1999;Welshetal.1999). Crux) complex (spatial structure, kinematics and age are pre- SomeLBformationmodelshavebeenproposed(seeforex- sented); and the recently discovered YLA (for which we have ample Cox 1998), most of which involve several recent super- produceda complete compendiumof their membersand mean novae(SNe).TheSco-Cencomplexisthemostlikelycandidate properties). tohaveshelteredtheseSNe(Ma´ız-Apella´niz2001;Fuchsetal. 2006). 2.1.TheLocalBubble 2.2.TheSco-Cencomplex Locally,withinthenearest100pc,theISMisdominatedbythe LB. The displacement model (Snowden et al. 1990, 1998) for The Sco-Cen complex dominates the fourth Galactic quadrant thisstructureassumesthatthe irregularlocalHIcavityis filled (deZeeuwetal.1999;hereafterZ99).Itisaregionofrecentstar by an X-ray-emittingplasma, with an emission temperature of formation and contains an importantfraction of the most mas- ∼106Kandadensity,n ,of∼0.005cm−3.Usingthedistanceto sivestarsinthesolarneighbourhood.Inthe1960sthecomplex e theMBM12molecularcloudasadistancescale,Snowdenetal. wassplitintothreecomponents(Blaauw1960):UpperScorpius (1998)derivedanextensionfortheLBof40to130pc,itbeing (US),UpperCentaurusLupus(UCL)andLowerCentaurusCrux largerathigherGalacticlatitudesandsmallernearertheequator. (LCC).TheISMrelatedtothiscomplexwasstudiedbydeGeus Nevertheless,thereisnoagreementintheliteratureconcerning (1992), who found that there is not much interstellar material thedistancetoMBM12;valuesrangefrom60to300pc(seefor associated with UCL and LCC, whereasfilamentousstructures exampleHeartyetal. 2000a, 2000b;Luhman2001;Andersson connect US with the cloud complex in Ophiuchus. The most et al. 2002). This could explain why the extension of the LB widely accepted ages for the componentsof the complex were calculated from SXRB observations does not agree (by a few derived by de Geus et al. (1989) from isochrones in the HR tens of parsecs) with the extension of the local cavity derived diagram: ∼5-6 Myr for US, ∼14-15 Myr for UCL and ∼11-12 fromHIobservations(Paresce1984;Welshetal.1994). MyrforLCC.Blaauw(1964,1991)suggestedthatthisagepro- Sfeir at al. (1999) and Lallementet al. (2003) obtained the gressionwastheresultofasequenceofstarformationeventsin contoursoftheLBfromNaIabsorptionmeasurementstakento- theGMCthatformedalloftheSco-Cenregion.Theseclassical wardsaselectedsetofstellartargetswithHipparcosparallaxes ages have recently been questionedby studies of the low-mass of up to 350 pc from the Sun. These observations allowed the componentofthecomplex.Theagesobtainedfromsuchstudies authorstodrawmapsoftheneutralgasdistributioninthelocal are in the range of 8-10 Myr for US and 16-20 Myr for UCL ISMand,inparticular,totracethecontoursandextensionofthe and LCC (Sartori et al. 2001; Mamajek et al. 2002; Sartori et LBwithanestimatedprecisionof≈ ±20pcinmostdirections. al. 2003, hereafterS03). However,Preibisch et al. (2002) once Lallementetal.(2003)concludedthatforheliocentricdistances againobtainedanageof∼5MyrforUSfromtheHRdiagramof D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex 3 thestarsbelongingtothisassociationwith massesbetween0.1 tainingallthedata(inASCIIformat)areavailableonawebpage and20M⊙. wehavepublished1. Differentnomenclatureisusedbytheauthorstodefineeach Z99,searchingintheHipparcoscatalogue,found120mem- YLA.ThenatureoftheηChaclusterisclear:thestarsarecom- bers of US, 221 of UCL and 180 of LCC, with mean trigono- pactedinaregionaveryfewpcindiameter.Fortheothergroups, metric distances (corrected for systematic effects) of 145 ± 2, authorsusedthetermsassociation,movinggrouporevensystem 140±2and118±2pc,respectively(seeTable1).Withregard (forHD141569,withonly5knownmembers).Inthispaperwe tokinematics,allthreeassociationshavelargevelocitycompo- have respected the denominationfor each YLA used in the lit- nentsinthedirectionawayfromtheSun,classicallyassociated erature.However,the differencebetween the termsassociation with the expansion motion of the Gould Belt (see for example and moving group applied to the different entities is not clear, Po¨ppel1997,butalsoseeTorraetal.2000).Z99providemean since their spatial dispersions and kinematics are very similar propermotionsfromthe Hipparcoscatalogueandradialveloc- (andifslightdifferencesareapparent,theydonotcorrespondto itiesfromthe HipparcosInputcatalogueforthe starsidentified theclassificationsassociationormovinggroup;seeTable1). as membersof US, UCL and LCC. Madsen et al. (2002; here- Except for the case of AB Dor, all YLA studied here are afterM02)obtainastrometricradialvelocitiesforthemembers youngerthan∼30Myr(evenconsideringthelargeuncertainties oftheSco-CenassociationsidentifiedbyZ99,assumingthatall in the age estimations published in the literature; see Table 2). memberssharethesamevelocityvector.S03compileradialve- The Tuc-Hor/GAYA association has an estimated age of about locitiesfortheSco-Cenmembersandderivefromthemthemean 20Myr,whereastheotherYLA(TWHya,βPic-Cap,ǫ Cha,η spatialmotion,usingHipparcosparallaxesandpropermotions. Cha,HD141569andExt.RCrA)areyoungerthan∼15Myrand The mean spatial motions and standard deviations obtained by of similar ages to (or younger than) the Sco-Cen associations. these authorsare shown in Table 1. We can see thatthe results (TheABDormovinggroupisclearlyolderandwillnotbeused arequitesimilar,exceptforthecaseofUS,wherethereisaclear in our analysis; see, however, Lo´pez-Santiago et al. 2006 and discrepancyintheU value.AsstatedbyM02,USisclosetothe Makarov2007.) limit of their method(larger distance, smaller angular size and Atpresent,allYLAmembersinourcompendiumarespread smaller numberof memberstars, in comparisonwith LCC and overaregionofabout120x130x140pc,mainlyconcentrated UCL);thus,significantbiasesmaybeintroducedintothesolu- in the fourth Galactic quadrant,and mostly in the southern ce- tion they obtained for this association. Therefore, hereafter in lestial hemisphere (see Fig. 2). The spatial distributionswithin thispaperthe Sco-CenkinematicsfromS03 havebeenused to eachassociationreachafewtensofpcintheGalacticplane,and compute the back-tracingmotion of the three associations. We lessthan20pcintheperpendiculardirection(seeTable1). haveonlyusedMadsen’sdatainTable5. Theheliocentricvelocitycomponentsofalltheassociations are very similar, (U,V,W) ∼ [−(9-12), −(16-21), −(3-10)] km s−1 (exceptfortheextendedRCrAassociationand,maybe,the 2.3.Younglocalassociations HD 141569 system). To obtain these mean values we used all the stars for which complete kinematic data are available. We A decade ago, very few PMS stars had been identified less checkedthatrejectingthosestarswiththelargerresidualsdoes than 100 pc from the Sun. Nearly all the youngest stars (<∼30 notmodifythemeanvaluesbymorethan1.0kms−1,thoughthe Myr) studied then were located more than 140 pc away in the standarddeviationsareclearlyreduced(inmostcaseslessthan molecular clouds of Taurus, Chamaeleon, Lupus, Sco-Cen and 2.0kms−1forallthecomponents).Theonlyexceptionistheex- RCrA(allofthemregionsofrecentstarformation).Thecross- tendedRCrAassociation.Itcontainsonly5starswithcomplete correlation of the Hipparcos and ROSAT catalogues suddenly kinematic data and there are large uncertainties in their radial changed this; a few stars were identified as very young (from velocities.Thisresultsinlargestandarddeviationsintheveloc- their X-ray emission and lithium content) but closer than 100 itycomponents,especiallyinU,andpreventsusfromusingthis pc, where there are no molecularclouds with SFR (see for ex- associationinouranalysis. ample Neuha¨user & Brandner 1998). Two explanationsfor the TheresultingYLAvelocitycomponentsareverysimilar to existence of these young stars far away from SFR were pro- those of the associations in the Sco-Cen complex (see Table posed. Sterzik & Durisen (1995) suggested that the stars were 1). Takingintoaccountthe similar kinematicsobservedamong formed in molecular clouds and later ejected as high-velocity YLA, and the observation that most of them are nearly coeval starsduringthedecayofyoungmultiplestarsystems.Feigelson (agesof∼5-15Myr),itisinterestingtoconsiderwhetherwecan (1996)suggestedthatthestarswereformedinsidesmallmolec- reallyspeakofdistinctentities.Figure3showsthevelocitydis- ularclouds(orcloudlets),whichlaterdispersedamongtheISM tribution of YLA member stars for which complete kinematic andthereforecannolongerbedetected. dataareavailable.Usingakernelestimation,severaloftheasso- These youngnearbystars were groupedinto clusters, asso- ciationsare clearly distinguishedkinematically:we can clearly ciations and moving groups, each with a few dozen members. identify peaks corresponding to Tuc-Hor/GAYA, β Pic-Cap, ǫ DifferentapproacheswereusedineachYLAdiscovery,butmost ChaandηCha.TheHD141569systemisnotidentifiedinFig. of them made use of Hipparcos proper motions, X-ray emis- 3 due to the small number of members whose complete kine- sion (as a youth indicator), infrared emission (youth indicator) maticdataareavailable(only2stars). and ground-based spectroscopy (Hα lines: youth indicator, Li Initially,it is surprising that the TW Hya association is not lines: age estimation, radial velocities) and photometry (ages). evident in Fig. 3, and even a local minimum in density can be We have compiledall the published YLA data in AppendixA. observednearitsexpectedpositions([U,V,W]∼[−10,−17,−5] Table 1 shows the mean spatial and kinematic properties, ages km s−1; see Table 1). This may be due to a combination of andnumberofmembersforeachYLA.Theadoptedageshown three factors: its position in the (UVW) planes very near other inTable1isthatassignedforback-tracingtheassociationorbits YLA, its relatively high total velocity dispersion σ (computed inthenextsection(seeTable2foranexhaustivelistofestimated valuesfoundintheliterature).Moreinformationandtablescon- 1 http://www.am.ub.es/∼dfernand/YLA 4 D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex Table1.MeanspatialcoordinatesandheliocentricvelocitycomponentsoftheyounglocalassociationsandtheSco-Cencomplex (inthelattercase,datafromZ99,M02andS03).Inbrackets,thestandarddeviationofthesamplingdistribution.N isthenumber ofknownmembersineachassociation(N withdistancedeterminationandN withcompletekinematicdata). r k Association ξ′ η′ ζ′ r U V W Age N N N r k (pc) (pc) (pc) (pc) (kms−1) (kms−1) (kms−1) (Myr) TWHya −21 −53 21 63 −9.7 −17.1 −4.8 8 39 19 17 (22) (23) ( 7) (30) (4.1) (3.1) (3.7) Tuc-Hor/GAYA −12 −24 −34 49 −10.1 −20.7 −2.5 20 52 50 44 (22) (11) ( 8) ( 8) (2.4) (2.3) (3.8) βPic-Cap −9 −5 −15 35 −10.8 −15.9 −9.8 12 33 24 24 (27) (14) (10) (11) (3.4) (1.2) (2.5) ǫCha −47 −80 −25 96 −8.6 −18.6 −9.3 10 16 6 5 ( 8) (14) ( 5) (17) (3.6) (0.8) (1.7) ηCha −33 −80 −34 93 −12.2 −18.1 −10.1 10 18 3 2 ( 2) ( 5) ( 2) ( 6) (0.0) (0.9) (0.5) HD141569 −77 10 64 101 −5.4 −15.6 −4.4 5 5 3 2 ( 3) ( 8) ( 8) ( 8) (1.5) (2.6) (0.8) Ext.RCrA −97 −1 −30 102 −0.1 −14.8 −10.1 13 59 7 4 (44) ( 4) (16) (47) (6.4) (1.4) (3.3) ABDor 6 4 −12 32 −7.4 −27.4 −12.9 30-150 40 36 35 (21) (17) (16) (13) (3.2) (3.2) (6.4) US Z99 −141 −22 50 145 5-6 120 (34) (11) (16) ( 2) M021 −138 −22 49 149 −0.9 −16.9 −5.2 120 (27) (10) (12) (28) S03 −6.7 −16.0 −8.0 8-10 155 (5.9) (3.5) (2.7) UCL Z99 −122 −69 32 140 14-15 221 (30) (26) (16) ( 2) M021 −121 −68 32 145 −7.9 −19.0 −5.7 218 (26) (21) (15) (24) S03 −6.8 −19.3 −5.7 16-20 262 (4.6) (4.7) (2.5) LCC Z99 −62 −102 14 118 11-12 180 (18) (24) (16) ( 2) M021 −61 −100 14 120 −11.8 −15.0 −6.7 179 (14) (15) (15) (18) S03 −8.2 −18.6 −6.4 16-20 192 (5.1) (7.3) (2.6) 1M02derivedaninternalvelocitydispersionamongindividualstarsof1.33kms−1forUS,1.23kms−1forUCLand1.13kms−1forLCC. Fig.2. Locations of the young local associations projected onto the Galactic (left) and meridian (right) planes. The size of the ellipsesrepresentstheprojecteddimensionoftheassociations(morethan90%ofthestarsinsidetheplottedarea).ξ′ ispointingto theGalacticanti-centre,η′isthedirectionofGalacticrotationandζ′ ispointingtothenorthGalacticpole. as σ = σ2 +σ2 +σ2 and comparedwith its neighboursin inTable1,(U,V,W)forthesetwoassociations.However,inthe q U V W case of TW Hya, no central peak is found at the expected po- these planes), and the relatively low number of TW Hya stars sitionontheplanesforthemeanvalues.InFig.5weshowthe withcompletekinematicdata(N inTable1)comparedtoTuc- k positions in the (U,V) plane for the stars belongingto the TW Hor/GAYAand β Pic-Cap associations(resultingin a low con- Hya association,and we comparethem with the meanvelocity tributiontotheprobabilitydensityfunctionshowninFig.3). components for the YLA. Whereas the other YLA have their To study thiscase in more detail, Fig. 4 showsthe velocity own place in this plane (with low superposition of their error distribution[(U,V)and(U,W)planes]ofthestarsbelongingto bars), the TW Hya association seems to fill a regionshared by the three associations with the most complete kinematic data: other YLA. We have computed the distance in the (UVW) ve- TWHya,Tuc-Hor/GAYAandβPic-Cap.Atfirstsightitisclear locityspacefromeachTWHyastartothepositionofthemean thatthetwoentitiesTuc-Hor/GAYAandβPic-Caparemuchbet- velocity of the YLA. Only 4 out of 17 stars are nearer to the terdefinedintheseplanesthantheTWHyaassociationis.The position of the TW Hya association in the (UVW) space than mainkernelestimatorpeaksagreewiththemeanvaluesshown to other YLA. In Table 3 we have done the exercise of recom- D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex 5 Table2.EstimatedagesfortheYLApublishedintheliterature. Association Estimatedage Method Reference TWHya 10+10Myr Spectroscopy+HRdiagram(BVI) Soderblometal.(1998) −5 ∼8Myr HRdiagram(JHK) Webbetal.(1999) 5-15Myr HDdiagram(IR) Weintraubetal.(2000) 8.3Myr Expansionage Makarov&Fabricius(2001) 4.7±0.6Myr Expansionage Makarovetal.(2005) 20+25Myr Expansionage Mamajek(2005) −7 8.3±0.8Myr Dynamicalage delaRezaetal.(2006) 10+10Myr Spec.+HRdiagram(VIJK)+Li+Hα BarradoyNavascue´s(2006) −7 Tuc-Hor/GAYA ∼40Myr Hαemission Zuckerman&Webb(2000) 10-30Myr X-rayemission Stelzer&Neu¨hauser(2000) ∼30Myr Kinematic+HRdiagram(BV) Torresetal.(2000) 10-40Myr HRdiagram(VRI) Zuckermanetal.(2001b) ∼20Myr Kinematicage Torresetal.(2001) 27Myr Dynamicalage Makarov(2007) βPic-Cap 20±10Myr HRdiagram(BVI) BarradoyNavascue´s(1999) 12+8Myr HRdiagram(VI)+Li Zuckermanetal.(2001a) −4 11.2±0.3Myr Dynamicalage Ortegaetal.(2002) 12Myr Dynamicalage Songetal.(2003) 22±12Myr Dynamicalage Makarov(2007) ǫCha 5-15Myr HRdiagram(BV) Terranegraetal.(1999) 3-5Myr HRdiagram(VI) Feigelsonetal.(2003) 7Myr Dynamicalage Jilinskietal.(2005) ηCha 2-18Myr HRdiagram(R)+Li Mamajeketal.(1999) 10-15Myr Dynamicalage Mamajeketal.(2000) 5±4Myr HRdiagram(VRI) Lawsonetal.(2001) 6+2Myr HRdiagram(JHK) Luhman&Steeghs(2004) −1 7Myr Dynamicalage Jilinskietal.(2005) HD141569 5±3Myr X-ray+Li+HRdiagram(JHK) Weinbergeretal.(2000) 4.7±0.3Myr Spectroscopy+Kurucz’s(1993)models Mer´ınetal.(2004) Ext.RCrA 10-15Myr HRdiagram(BVRI-JHK) Neuhau¨seretal.(2000) ∼15Myr Dynamicalage Quastetal.(2001) ABDor ∼50Myr Hαemission Zuckermanetal.(2004) 75-150Myr HRdiagram(VK) Luhmanetal.(2005) 30-50Myrand80-120Myr(2subgroups) HRdiagram(VI)+Li Lo´pez-Santiagoetal.(2006) 38Myr Dynamicalage Makarov(2007) 118±20Myr Dynamicalage Ortegaetal.(2007) Fig.3. Distribution in the (U-V) [left], (U-W) [middle] and (V-W) [right] planes of heliocentric velocity components for YLA memberstarswhosecompletekinematicdataareavailable.Akernelestimatorwasusedtoindicatetheisocontours. puting the mean velocity componentsand their dispersions for at all, and one may even wonder if its member stars could be the YLA after addingthe TW Hya stars to the nearest YLA in redistributedamongtheotherYLA.However,therearetwoim- the (UVW) space. We can see that the change in the mean ve- portant facts that do not support this hypothesis. The first one locityvectorsoftheassociationsismuchsmallerthantheircor- concernsthe spatial distributionof the YLA atpresent. As can responding standard deviation. A controversial hypothesis one beseeninFig.2,TWHyaisclearlyisolatedinthe(X,Z)plane couldproposeisthattheTWHyaassociation(thefirstonedis- (notconsideringthemucholdermembersoftheABDormoving covered among the YLA) could not actually be an association group),withaspatialextentinagreementwiththatobservedin 6 D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex −5 3. Stellarorbits TW Hya Tuc−Hor/GAYA The integration back in time of the Sco-Cen and YLA orbits β Pic−Cap ε Cha allowsustostudytheiroriginandpossibleinfluenceontheim- HD 141569 mediateISMoverthelastmillionyears.Tocomputethestellar −10 (cid:127)TW Hya individual stars orbitsbackintimeweusedthecodedevelopedbyAsiainetal. (1999b)basedontheintegrationoftheequationsofmotionus- ingarealisticmodeloftheGalacticgravitationalpotential. −1) If we consider a coordinatesystem (ξ,η,ζ)2 centred on the m s −15 SunandrotatingaroundGalacticcentrewithaconstantangular V (k velocityΩ⊙,theequationsofmotionofastarare: (cid:127) ∂Φ ξ¨ = − −Ω2⊙(R⊙−ξ)−2Ω⊙η˙ ∂ξ −20 ∂Φ η¨ = − +Ω2⊙η+2Ω⊙ξ˙ ∂η ∂Φ ζ¨ = − (1) −25 ∂ζ −20 −15 −10 −5 0 (cid:127)U(cid:8) (km s −1) where Φ = Φ(R,θ,z;t) is the gravitational potential of the Galaxyingalactocentriccylindricalcoordinates. Fig.5.MeanhelicocentricvelocitycomponentsoftheYLA(in- WhenΦisaknownfunction,theseequationscanbesolved dicatingtheir1σerrorbars;standarddeviation)andpositionin numericallythrougha fourth-orderRunge-Kuttaintegrator.We the (U,V) plane of those stars (with complete kinematic data) havedecomposedΦintothreecomponents:thegeneralaxisym- belongingtotheTWHyaassociation. metricpotentialΦ (Allen&Santilla´n1991),thepotentialdue AS tothespiralstructureoftheGalaxyΦ ,andthatduetothecen- Sp tralbarΦ (seeTable4).Inthiswaywegetarealisticestimate B Table3.Meanheliocentricvelocitycomponents(andtheirstan- oftheGalacticgravitationalpotential. darddeviations)oftheyounglocalassociationsbeforeandafter ThespiralstructurepotentialistakenfromLin’stheory(Lin addingthosestarsbelongingtoTWHya(seetext). &Shu1964;Linetal.1969): Association U V W Nk ΦSp(R,θ;t)=Acos m(Ωpt−θ)+ψ(R) (2) (kms−1) (kms−1) (kms−1) h i Tuc-Hor/GAYA −10.1(2.4) −20.7(2.3) −2.5(3.8) 44 where: addingstars −10.2 −20.5 −2.5 47 (2.6) (2.3) (3.7) βPic-Cap −10.8(3.4) −15.9(1.2) −9.8(2.5) 24 A = (R⊙Ω⊙)2fr0tani addingstars −11.2(3.3) −16.3(1.4) −9.2(1.6) 28 m ǫCha −8.6 −18.6 −9.3 5 (3.6) (0.8) (1.7) m R addingstars −9.5(3.0) −19.2(1.4) −8.9(1.9) 9 ψ(R) = − ln +ψ⊙ (3) HD141569 −5.4 −15.6 −4.4 2 tani R⊙! (1.5) (2.6) (0.8) addingstars −5.2 −14.3 −1.9 8 (1.9) (2.5) (1.9) where A is the amplitude of the spiral potential, f the ratio r0 betweentheradialcomponentoftheforceduetothespiralarms andthatduetothegeneralGalacticfield,Ω theconstantangular p velocityofthespiralpattern,mthenumberofspiralarms,ithe pitchangleofthearms,ψtheradialphaseofthespiralwaveand ψ⊙itsvalueatthepositionoftheSun.Wehavetakenthevalues theotherYLA.Thepreviouslydiscussedkinematicreassigment obtainedbyFerna´ndezetal.(2001;seealsoFerna´ndez2005)for of stars would enlarge, clearly in excess, the present accepted amodelwith2spiralarms. sizefortheotherassociations.Thesecondimportantfactisthat, In the case of the potential due to the central bar, we have whereasalmostallTuc-Hor/GAYAandβPic-Capmembershave chosen the triaxialellipsoid modelof Palous˘ et al. (1993) with Hipparcosparallaxes,70%of the TW Hyamembershave only a rotation speed Ω = 70 km s−1 kpc−1 (Binney et al. 1991). an estimated distance from broadbandphotometry(Song et al. B Althoughlargeuncertaintiesarestillpresentinthebarparame- 2003).Theassumptionofarelativeerrorofabout20%forthis ters, thisstructurehasan almostnegligibleeffectonourstellar parameterwouldhaveacontributionofupto3-4kms−1 inthe trajectories(asfarbackas30Myr;seeAsiain1998). velocitydispersion components.Thisvalue, convolvedwith an Allthe figuresin the nextsectionuse the (ξ′,η′,ζ′) coordi- intrisic velocitydispersionof about1 kms−1 (Mamajek2005), nate system centred on the Sun’s current position and rotating wouldjustifythevaluesshowninTable1.Furthermore,wehave aroundGalacticcentreataconstantvelocityΩ⊙ (seeFig.6).ξ′ confirmedthatthediscrepanciesbetweenthesephotometricdis- pointstotheGalacticanti-centreandisdefinedasξ′ = R−R⊙. tancesandthemovingclusterdistancesbyMamajek(2005)are η′isalinearcoordinate,measuredalongthecircleofradiusR⊙, about20%.Fromtheaboveargumentsitisclearthatmoreaccu- which is positive in the direction of Galactic rotation. The co- rateastrometricdataismandatorytoclarifyboththekinematic ordinate system (ξ′,η′,ζ′) is convenient for our purposes as it dispersion and membership assignment of TW Hya members. minimisesvariationinthevariables. Thelargedispersionobservedintheestimatedagesforthisas- sociation (see Table 2) also contributesto the deficient charac- 2 ξpointstowardsGalacticcentre,ηinthedirectionofGalacticrota- terisationofthisentity. tionandζtowardstheGalacticnorthpole. D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex 7 Fig.4.Distributioninthe(U,V)[toprow]and(U,W)[bottomrow]planesofheliocentricvelocitycomponentsforthosestarswith completekinematicdatabelongingtotheTWHyaassociation(leftcolumn),theTuc-Hor/GAYAassociation(middlecolumn)and theβPic-Capmovinggroup(rightcolumn). Table4.PositionandvelocityofLSR,andlocaldensity(Kerr& ξ’ Lynden-Bell1986),bulge,diskandhaloparameters(Miyamoto η & Nagai 1975; Allen & Santilla´n 1991), together with spiral *star structure (Ferna´ndezet al. 2001) and central bar (Binney et al. ξ (< 0) 1991; Palous˘ et al. 1993) parameters used in the integrationof ξ’ stellarorbits. R η’ o η’ R⊙ 8.5kpc Θ⊙ 220kms−1 ρ⊙ 0.15M⊙ pc−3 MB 1.4·1010M⊙ Ωo MD 8.6·1010M⊙ MH 1.1·1011M⊙ a 0.39kpc B aD 5.3kpc Fig.6. Heliocentric coordinates (ξ,η,ζ) and (ξ′,η′,ζ′) (from bD 0.25kpc Asiain1998;seealsoAsiainetal.1999b). a 12.0kpc H m 2 i −6◦ ψ⊙ 330◦ Wehaveintegratedtheorbitsoftheassociationsasawhole, f 0.05 usingthemeanpositionandvelocityforeachassociationshown r Ω 30kms−1kpc−1 inTable1.TheresultsarepresentedinFigs.7and8,wherenot p aB/bB 2.381 onlydoweconsidertheorbitsintheGalacticplane(asisusual aB/cB 3.030 intheliterature),butalsointhemeridianandrotationplanes.In q 5kpc Fig.7weshowtheestimatederrorinthepositionoftheassoci- B t 5·108years ationsatbirth(greyarea).Theseerrorareashavebeenobtained o Ωθo 4750◦kms−1kpc−1 computingthe orbitsback in time, usingthe valuesU ±2SeU, B V ±2Se aspresentvelocitycomponents(whereSe andSe V U V are the standard errors in the U,V mean velocity components 8 D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex 0000 −−−−55550000 −−−−111100000000 c) p ξ’ ( −−−−111155550000 TW Hya Tuc−Hor/GAYA β Pic−Cap ε Cha −−−−222200000000 η Cha HD 141569 US UCL LCC −−−−222255550000 −−−−111155550000 −−−−111100000000 −−−−55550000 0000 55550000 111100000000 111155550000 222200000000 222255550000 η’ (pc) Fig.7. Positionsandorbitsin the Galactic plane (ξ′,η′) ofYLA andthe Sco-Cencomplexgoingback in time to their individual ages.Theorbitsarealsoshown(smalldots)asfarbackas−20Myr.Thegreyareasshowtheexpectedpositionalerrorsatbirthdue tokinematicobservationalerrors.Thecentreofthe(ξ′,η′)coordinatesystemiscomovingwiththeLSR. obtainedfromthestandarddeviationsinTable1).Wehavecon- componentsof the associations do nothave a crucial influence firmedthatuncertaintiesin theW componenthavea negligible onthepreviousresults:theerrorareashavetypicalsidelengths effect on the orbits shown in Fig. 7 3. An error in age shall be ofabout10-30pc. readasadisplacementoftheerrorareasalongtheplottedorbits InthecaseoftheSco-Cenassociations,bothUCLandLCC in the figure. Unfortunately, age uncertainties are large for all beganlifeveryneartheGalacticplane;forbothofthem−19 <∼ theassociations(seeTable2).Laterinthispaperwestudyhow ζ′ <∼−12pcatbirth(theywerecloserthan∼4pctotheGalactic theselargeuncertaintiesinagemayaffectourresults. plane).ForUS,ζ′ ∼40pcatbirth. ThemostobvioustrendobservedinFigs.7and8isthespa- tialconcentrationofalltheassociations(Sco-Cencomplexand YLA) in the first Galactic quadrant in the past. All the YLA 4. Originandevolutionofthelocalstructures (except the relatively old Tuc-Hor/GAYA) were in the region of the Galactic plane bounded by −70 <∼ ξ′ <∼ −30 pc and Theresultsobtainedintheprevioussectionsuggestthatthefor- 35 <∼ η′ <∼ 110 pc at their time of birth. There is a very con- mation of YLA was triggered in a neighbouring region of the spicuousspatialgroupingatthetimeofbirthofTWHya,ǫCha, first Galactic quadrantbetween 5 and 15 Myr ago. In this sec- ηChaandHD141569(inasphere25pcinradius).Atitsbirth,β tionwepresentadescriptionofthismechanismandlinkittothe Pic-Capwaslocatedabout50pcfromtheotherYLA.Alltheas- originandevolutionoftheSco-CencomplexandtheLB. sociationswereconcentratedintheregion0<∼ζ′ <∼45pcattheir birth.Thereforetheassociationswereformedslightlyabovethe Galactic plane (the Sun, whose position is the origin of the ζ′ 4.1.OriginoftheSco-Cencomplex coordinate,islocatedabout16pcabovetheGalacticplane;see The gas associated with the Sco-Cen complex has classically Binney&Merrifield1998).Theregionwheretheseassociations beenconsideredasapartoftheLindbladRing;atoroidalstruc- were formed had a size of 40 x 75 x 45 pc (ξ′ x η′ x ζ′). At ture of HI and molecular clouds in expansion (Lindblad 1967) present,thestarsbelongingtoYLAaredistributedinaregionof belonging to the Gould Belt. Close to Sco-Cen, the clouds of about120 x 130 x 140 pc. The volume they occupyhas there- LupusandρOph,andtheso-calledAquilaRift,wouldalsoform fore increased by a factor of ∼ 16 since their birth. As can be partoftheLindbladRing. observedinFig.7,theerrorsassociatedwiththemeanvelocity Thestructurethat resultsfromconsideringall these molec- ular complexes has a length of about 120◦, and extends from 3 Avariationof±2Se inWimpliesachangeintheverticalposition W the Vela regionto the Aquila Rift. Below, we discuss the most (ζ′) with time, thus slightly affecting the radial and azimuthal forces plausiblescenariosforstarformationinthisregionandwecon- actingonthestar(seeEq.9inAsiainetal.1999bandEqs.1,3and5 inAllen&Santilla´n1991).However,wehaveconfirmedthatthiseffect cludethatthemostlikelyisthecollisionofaGMCwithaspiral resultsinachangeinpositionoflessthan10−3 pcinthe(ξ′,η′)plane arm.WementionthereviewpublishedbyS03,whereotherless inthepresentcase. plausiblescenarioscanbefound. D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex 9 ξ’ (pc) the successive sources of star formation would not necessarily −320 −280 −240 −200 −160 −120 −80 −40 0 40 80 formgroupsofstarswithclearlyidentifiedradialvelocitycom- 120 ponents.Thus,contrarytotheopinionofS03,wethinkthatthe TW Hya Tuc−Hor/GAYA sequentialstar-formationmechanismcouldhaveacrucialrolein 80 β Pic−Cap ε Cha theglobalscenarioforstarformationinthisregion. η Cha 40 HUDS 141569 UCL c) LCC 4.1.2. TheGouldBeltmodelbasedonanexpandinggasring p 0 ζ’ ( The kinematicsof the stars belongingto the Gould Belt seems −40 compatiblewiththeexpansionmodelproposedbyOlano(1982): agasringwithacentrelocatedatadistanceofabout166pcin −80 the direction l ∼ 131◦. However, the Sco-Cen complex is pre- ciselyoneoftheregionsoftheGouldBeltthatdoesnotfitthis −111222000 model,since the observedpropermotionsare notorientatedas predictedbyOlano(seealsoMorenoetal.1999).Moreover,as 8800 shownabove,asweprojecttheorbitsofthestarsinthisregion back in time, they no longer indicate the centre of the Gould 4400 Belt.S03alsomentionsotherproblems,suchasthefactthatthe c)c) ageofthestarsinSco-Cenisanimportantfractionoftheageof pp 00 ζζ’ (’ ( theGouldBeltpredictedbythismodel(30Myr),inspiteofthe largedistance betweenthe presentpositionofSco-Cenandthe −−4400 expansioncentreoftheBelt. −−8800 Furthermore, as shown in a previous paper (Torra et al. 2000), the Sco-Cen associations are not needed to explain the −−112200 peculiarkinematicsoftheGouldBelt. −−116600 −−112200 −−8800 −−4400 00 4400 8800 112200 116600 220000 224400 ηη’’ ((ppcc)) Fig.8.PresentpositionsandorbitsintheGalacticplanes(ξ′,ζ′) 4.1.3. Starformationtriggeredbyaspiralarmshockwave (top) and (η′,ζ′) (bottom) for YLA and the Sco-Cen complex. Theregioninquestioncouldalsohavebeenformedasaresultof Theerrorareas(notshown)areofsimilarsizeasinFig.7.(See theinteractionoftheparentGMCwiththeshockwaveofaspiral commentsatFig.7.) arm.Inthiscase,themainproblemtobefacedisthattheclassi- calviewofthespiralstructureoftheMilkyWayplacestheSun inaninterarmregion,atabout1kpcfromthenearestarm(see, 4.1.1. Thesequentialstar-formationmodel forexample,Georgelin&Georgelin1976)wherethereisnospi- ral shock wave capable of triggering star formation. However, This model was formulated by Blaauw (1964, 1991) and sug- in recentyearstherehasbeensome evidencethatthisclassical geststhatstarformationbeginsatoneendofaGMCandpropa- viewcouldbewrong(see,forinstance,Ferna´ndezetal.2001for gatestoadjacentregionsduetostellarwindsandsupernovae. astellarkinematicsstudyorAmoˆres&Le´pine2005foramodel Preibisch&Zinnecker(1999)laterproposedahistoryofstar of interstellar extinction in the Galaxy), with the Sun closer to formationintheSco-Cencomplex,usingtheclassicalagesofde the inner (Sagittarius-Carina) arm. This forces us to study this Geusetal.(1989).StarformationinSco-Cenwouldhavebegun possiblescenarioinmoredetail. around 15 Myr ago in UCL. 12 Myr ago, when star formation started in LCC, the most massive star in UCL would have ex- Figure9showstheorbitsofYLAandtheOBassociationsin plodedasasupernova,formingthelargestHIshellsurrounding Sco-Cenfortimes0>t>−30Myrinagalactocentricreference theassociation.5Myrago,theshockfrontfromthissupernova frame(X′,Y′)whichisrotatingwithanangularvelocityΩ=Ωp wouldhavepassedthroughthecloud,whichwastobecomethe (therotationvelocityofthespiralarmsoftheGalaxy;so,inthis parentof US, triggering star formationthere. Shortly after, the systemthespiralarmsremainfixed).WeusedthevalueΩp =30 strong stellar winds from the most massive stars in US would km s−1 kpc−1 obtained by Ferna´ndez et al. (2001). The figure begintosweepawaythemolecularcloud,stoppingthestarfor- shows that, back in time, the orbits tend to concentrate these mationprocess.Only1.5Myrago,themostmassivestarinUS associations in a region with a phase of the spiral structure of wouldhaveexplodedasasupernova,completelydispersingthe 0◦<∼ψ<∼10◦,verynearthespiralpotentialminimumatψ=0◦. US cloud. Nowadays, the wave front of this supernova would Followingthenon-lineardensitywavetheory,themotionof betravellingthroughtheρOphmolecularcloud,triggeringstar thespiralstructureintheGalacticplanegeneratesashockwave formationthere. just before the arm potential minimum for regions outside the FollowingS03,thismodelwouldresultinsystematicveloc- corotationradius(Roberts1969;Bertin&Lin1996).Inthecase ity fields with radial components directed away from the dif- of our galaxy,the phase separationbetween the position of the ferent centres of star formation. This is not what we observe shock wave and the potential minimum is not exactly known intheresultsobtainedinprevioussections.However,theprob- (see, for example, Gittins & Clarke 2004). To quantify this, it lem could be a little more complicated since the velocities of iscommontodefinetheoffsetfunctionΘ(R)=m(θ −θ ), shock min the youngstars would not only depend on the velocity and di- where m is the numberof spiralarms of the Galaxy,and θ shock rectionoftheshockfrontthatcompressedtheparentcloud;the and θ are the Galactic longitude of the shock wave and the min kinematics of the new stars would also depend on the original spiralpotentialminimumrespectively,atgalactocentricdistance velocity of the molecular cloud, which could be similar to, or R. Roberts(1969) derivesa smallvalue forthis function,close evenlargerthan,thevelocityoftheshockfront.Followingthis, to 0. However,Shu et al. (1972) obtain Θ(R) = −72◦, whereas 10 D.Ferna´ndezetal.:OnthekinematicevolutionofyounglocalassociationsandtheSco-Cencomplex 400 US UCL LCC 200 V i 0 c) p X’ ( Vf −200 −400 Vf −600 V −200 0 200 400 600 800 1000 1200 1400 i Y’ (pc) 400 TW Hya Tuc−Hor/GAYA β Pic−Cap ε Cha η Cha 200 HD 141569 US UCL LCC Fig.10. Variation of the velocity vector of a test particle when ithitstheshockwave(solidline)inthevicinityofthecentreof 0 c) a spiral arm (shadow) and in a region inside (top) and outside p X’ ( (bottom)thecorotationradius(inareferenceframeinwhichthe −200 armsarefixed.) −400 wave of a spiral arm hits a molecular cloud, it is compressed, andstarformationcanbetriggered. −600 −200 0 200 400 600 800 1000 1200 1400 ThisistheprocessproposedbyS03fortheformationofthe Y’ (pc) Sco-Cencomplex.TheyassumethattheSunisplacedinaregion Fig.9. Orbits in the Galactic plane (X′-Y′) integrated back in slightly inside the corotationradius.The gasand stars that fol- time to t = −30 Myr for YLA and the three associations of low the Galactic rotationalmotion are then moving faster than theSco-Cencomplex(below,onlytheorbitsforSco-Cen).The the shock wave. In this framework, with respect to a reference thick-dashedlineshowsthepositionoftheminimumofthespi- frame that is rotating at the same velocity as the spiral arms, ralpotential(Ferna´ndezetal.2001).Thethin-dashedlineisthe the gas is slowed when it hits the shock wave, and afterwards positionofthephaseofthespiralstructureψ=10◦. it moves practically parallel to the spiral arm, approachingthe Galacticcentre(seeFig.10,top).However,withrespecttoLSR, the compressedgasand the newlybornstars have velocitiesin the direction opposite to the Galactic rotation and away from Yuan&Grosbøl(1981)adoptΘ(R)=−30◦.Despitetherebeing Galacticcentre.S03arguesthat,asthisisthepresentmotionof nogoodagreementonthevalueofthisparameter,itshouldhave the Sco-Cen stars, it favours the following star formation sce- anabsolutevalueofnomorethanafewtensofdegrees. narioforSco-Cen:ashockwithaspiralarmpositionedslightly Recent works have studied the formationof a GMC due to insidethecorotationradius.However,S03doesnotconsiderthe thearrivalofthespiralshockwave,eithergatheringtogetherpre- variation in the orientation of the velocity vector of these stars existing molecular gas or inducing high densities in the shock, fromtheirbirthtonow. converting HI into HII (see Dobbs & Bonnell 2007 and refer- FromFig.7wecanseethat,infact,attheirbirththeSco-Cen ences herein).Accordingto these authors,GMC formationoc- associationsweremovinginGalacticantirotationandawayfrom curs within a very few Myr (<∼ 5 Myr) and star formation be- Galactic centre.This motionis notcompatiblewith an interac- ginsveryquickly,∼5Myrafterthecloudformation(Clarketal. tion with a spiral arm placed inside the corotation radius, and 2005).Thefirstsupernovaeeventoccursabout∼4Myrafterthe thereforecontradictsthescenarioproposedbyS03.However,it formationoftheveryhighmassstars,haltingthestarformation is perfectlycompatiblewith the expectedvelocityif the arm is process.ThestarsoftheOBassociationcomplexarethenborn, outside the corotation radius (see Fig. 10, bottom), as recently about∼10-15Myrafterthearrivalofthespiralshockwave. derivedinseveralworks(see,forexample,Mishurov&Zenina When the shock wave hits the gas, its direction of motion 1999andFerna´ndezetal. 2001). Here,thedifferencein veloc- changes.Assumingthattheshockisstrongandsufficientlydis- itybetweentheshockwaveandtheGalacticrotationisabout2 sipative,thevelocitycomponentperpendiculartothespiralarm km s−1 kpc−1, so the difference in the velocity in the direction is stronglyreduced(see for exampleLandau & Lifshitz 1982). of Galactic rotation is about 12-13 km s−1. Following numer- After interaction with the shock wave, the gas moves in a di- ical simulations of the collapse of nuclei in molecular clouds rection practically tangential to the spiral arm (see Fig. 10). (Vanhala&Cameron1998),onecouldexpectaspiralarmshock Considering Ωp = 30 km s−1 kpc−1, in the vicinity of the Sun wave to trigger star formation with relative velocities with re- theshockwaveismovingaround4kms−1 kpc−1fasterthanthe specttothegasofaslowas10kms−1 (thoughthemechanism localstandardofrest(LSR;equivalentto30-35kms−1,depend- ismoreefficientwhenthevelocitiesarebetween20and45km ing on the value adoptedfor the distance to Galactic centre) in s−1).Thisscenariowouldthenbepossibleinourcase.Moreover, the Galactic rotation direction. In this framework, if the shock therelativevelocitybetweentheparentmolecularcloudandthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.